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ABSTRACT
Providers today run numerous applications on their networks with
diverse quality of service requirements. An appealing vision to deal
with the resulting complexity of network operation, is to give more
control to the network, allowing it to become more autonomous
and to dynamically “self-adjust”, to meet its requirements. This
paper presents an architecture, ReactNet, to realize this vision, by
leveraging two enabling technologies. First, we use programmable
dataplanes and P4 to get accurate information about the traffic
patterns the network currently serves. Second, we leverageMachine
Learning (ML) techniques to process this information and react to
the network changes dynamically.
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1 INTRODUCTION
The complexity of cloud provider networks as well as the amount
of traffic served by these networks is growing rapidly. To account
for the diverse mix of application needs, network operators often
develop customized scripts to tailor the network to specific work-
loads [3]. Besides the complexity of providing the different desired
quality-of-service requirements, the efficient operation of these net-
works is also complicated by the limited insights operators typically
have into the traffic currently served by their networks.

This paper is motivated by the vision of self-adjusting networks,
that is, more autonomous networks that unburden human opera-
tors from many manual tasks (a.k.a. self-driving networks [3]). In
particular, self-adjusting networks should be able to automatically
observe their current state, and dynamically react accordingly, to
optimize for specific performance goals.
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A first key enabler is the increasing programmability and soft-
warization of networks: this not only allows collecting additional
information about the network traffic and load (from the packet
processing switches), but also to flexibly adjust network configura-
tions. For example, network operators could place programmable
switches where their access networks connect to the Internet [4],
to obtain fine-grained information using either active or passive
measurements [3, 7].

A second key enabler is Machine Learning (ML), which based
on measurements earlier on allows deriving patterns and optimize
for oncoming traffic flows. However, employing such approaches
is still challenging, as they need to apply to various use cases and
apply also to dynamic traffic patterns, requiring minimal parameter
tuning. Thus, a self-adjusting system needs to update its training
data with oncoming traffic flows to better drive the network.

Contributions: The ReactNet allows the admins to collect the
data stream for the ML-based classification whenever needed. It
can adapt itself to the traffic changes and update the forwarding
rules according to the network demands. We implement our system
using the programmable data plane, e.g., P4 [2], to test its feasibility.

2 SYSTEM DESIGN
To design the envisioned self-adjusting network, we need to ac-
count for interactions of many components, collect the information
regarding the network status and apply optimized mechanisms to
better handle the current situations of the network. We design and
develop ReactNet in P4 that has five main components: P4 switch,
collector, ML classifier, optimizer and agent. The P4 switch mirrors
the traffic according to desired header fields. The controller applies
ML classifiers to classify the packets based on the user-defined
classes. The P4 runtime agent updates the rules. We now explain
each component of the system architecture in detail (Fig. 1).
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Figure 1: The architecture of our system.
ReactNet allows the network operators to collect a training

data stream whenever needed using a flag. If the flag is set, the
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system mirrors the traffic to the designated egress port. We use a
P4 register to store the flag value. ReactNet leverages the In-band
Network Telemetry (INT) provided by P4 [8] to feed the data stream.
We collect the following information: source and destination IP ad-
dresses, source and destination ports, protocol number, enqueue and
dequeue sizes, packet size, ingress_port, packet inter-arrival time,
and the packet processing time. We leverage the egress_clone
when mirroring the traffic. Currently, the system mirrors all the
traffic to the traffic collector, but the network operator can tune
this parameter to the desired intervals [6].

The collector component uses Logstash [1] to log the telemetry
packets mirrored from the P4 switch to the traffic collector. This
component also formats the data and inserts them into the dataset
implemented using influxDB. ReactNet stores the existing records
into an appropriate file. Since each packet has a different processing
time at the switch, we use four labels when collecting the data. More
specifically, we use a range of integer numbers for each group of
packet processing time.

After collecting the dataset, the ReactNet applies the ML classi-
fiers to classify the data. We use the widely used classifiers in net-
working [5]: K-Nearest Neighbor, AdaBoost, Decision Tree, Support-
Vector Machine (SVM), Random Forest, and Logistic Regression.
The results of the classification are fed into Optimizer component
of the system to make the corresponding decision for each class of
the traffic. The Optimizer component also generates the required
forwarding rules to be placed on top of the switches.

The Agent component of the system writes the forwarding rules
to handle the upcoming traffic based on the detected traffic pattern.
Also, it sets the flag whenever the dataset needs updating with the
new telemetry information.

3 PRELIMINARY RESULTS
We set up a dumbbell topology with two switches, namely, s1 and
s2, connected with a 10Mbps link to test the performance of the
system and the ML-based classification techniques. We connect two
hosts to each switch and use Mininet with BMv2 for the emulation.
We use iPerf to generate the traffic from the two hosts connected to
switch s1, and the two hosts connected to switch s2 are the traffic
sink. One of the source hosts generates TCP traffic while the other
one generates UDP traffic. We run experiments for 20 minutes to
collect enough data for our dataset.

Table 1: Classifying our architecture’s traffic.

Model A FPR TPR P FS

AdaBoost 0.69 0.09 0.42 0.78 0.55
Decision Tree 0.89 0.1 0.89 0.87 0.89
K-Nearest Neighbors 0.86 0.14 0.88 0.83 0.86
Logistic Regression 0.85 0.16 0.87 0.81 0.85
Naïve Bayes 0.67 0.45 0.94 0.50 0.65
Random Forest 0.90 0.1 0.90 0.88 0.89
SVM 0.86 0.15 0.87 0.85 0.85

To test the dataset, we attach the traffic collector to switch s1
that mirrors the traffic. The ReactNet extracts the headers of
the collected mirrored packets and applies each of the ML-based
techniques to classify them. We use four different traffic classes to
differentiate the packets using the packet processing time. Table 1

shows that Random Forest has the highest accuracy (90%) among
the other classifiers.
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Figure 2: Impact of changing the priority after ML classifica-
tion.

The optimizer of ReactNet assigns the highest priority using
DiffServ header fields in the IPv4 header to the class of packets
that the system needs to serve earlier. The agent updates the cor-
responding P4 register on top of switch s1 afterward. We assess
the impact of the optimizer on applying the higher priority to TCP
flows when competing with UDP ones. Fig. 2 depicts the throughput
of the different flows by classifying them with and without using
ReactNet after 30 seconds– for a 60-second experiment with the
egress queue size of 50 packets.
Future work.We plan to apply our system to autonomously run
a cluster of distributed stream processing systems such as Apache
Flink and Apache Storm. Many organizations deploy these sys-
tems to get insights from their customers. Thus, depending on the
running application, the network operators apply different traf-
fic policies. We also plan to empower our optimizer with more
sophisticated approaches to handle the network traffic flows.
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