
Traffic Engineering with
Joint Link Weight and Segment Optimization

Mahmoud Parham
University of Vienna

Faculty of Computer Science
Vienna, Austria

mahmoud.parham@univie.ac.at

Thomas Fenz
University of Vienna

Faculty of Computer Science
Vienna, Austria

thomas.fenz@univie.ac.at

Nikolaus Süss
University of Vienna

Faculty of Computer Science
Vienna, Austria

nikolaus.suess@univie.ac.at

Klaus-Tycho Foerster
TU Dortmund

Dortmund, Germany
klaus-tycho.foerster@tu-

dortmund.de

Stefan Schmid
TU Berlin, University of Vienna, and

Fraunhofer SIT
Germany and Austria

stefan.schmid@tu-berlin.de

ABSTRACT

Most ISPs use sophisticated traffic engineering strategies based on
link weight optimizations to efficiently provision their backbone
network and to serve intra-domain traffic. While traditionally, traf-
fic is split among the shortest weighted paths using ECMP, recently,
an additional dimension for optimization arose in the context of seg-
ment routing: traffic can be steered away from congested shortest
paths by inserting intermediate destinations, so-called waypoints.

This paper investigates the benefits of jointly optimizing the
link weights and waypoints for traffic engineering both analytically
and empirically. In particular, we formulate the joint optimization
problem and formally quantify the benefits of joint optimizations
over separate link-weights and waypoints optimizations, using a
rigorous analysis. We also present an efficient joint optimization
algorithm and evaluate its performance in realistic and synthetic
scenarios.

CCS CONCEPTS

• Networks→ Traffic engineering algorithms.

KEYWORDS

traffic engineering, network algorithms, segment routing

ACM Reference Format:

Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster,
and Stefan Schmid. 2021. Traffic Engineering with Joint Link Weight and
Segment Optimization. In The 17th International Conference on emerging

Networking EXperiments and Technologies (CoNEXT ’21), December 7–10,

2021, Virtual Event, Germany. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3485983.3494846

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494846

1 INTRODUCTION

Traffic engineering (TE) is a fundamental task in communication
networks. To optimally use their infrastructure and avoid conges-
tion, Internet Service Providers (ISPs) employ sophisticated algo-
rithms to steer intra-domain traffic through their network. Many
innovations in networking over the last years were at least partially
motivated by the desire to improve traffic engineering [1].

Traditionally, traffic routes can be influenced only fairly indi-
rectly by adapting link weights: Routing is based on the Equal-Cost-
MultiPath (ECMP) protocol, in which flows are split at nodes where
several outgoing links are on shortest paths to the destination, using
per-flow static hashing. Thus, by changing link weights, shortest
paths can be adjusted accordingly. While several clever algorithms
are known today to optimize such link weights [2], such strategies
provide relatively limited control over the paths taken by flows.

Segment routing (SR) [3–6] has recently introduced a powerful
opportunity to optimize traffic engineering along an additional
dimension: by specifying one or multiple waypoints in the packet
header, traffic can be routed around potentially congested links. In
particular, given a waypoint 𝑤 , traffic from a source 𝑠 to a desti-
nation 𝑑 , is not anymore restricted to a shortest 𝑠𝑡-path, and it is
routed along a shortest path from 𝑠 to𝑤 (the first segment) and then
from𝑤 to 𝑡 (the second segment). Segment routing hence provides
two knobs for traffic engineering: the link weights in the network
and the sequence of waypoints to be visited along the way.

The benefits of segment routing have been demonstrated em-
pirically in many scenarios and have received significant attention
for traffic engineering [6–10]. 1 However, relatively little is known
today about the fundamental algorithmic problems arising from op-
timizing link weights and segments jointly. This paper studies the
benefits of traffic engineering mechanisms for jointly optimizing
link weights and waypoints. In particular, we aim at an analytical
understanding of the improvements possible by joint optimization
compared to optimizing link weights and waypoints independently.
For example, we will show that the usefulness of waypoints criti-
cally depends on the given weight setting and inappropriate weight
settings can render waypoint optimization ineffective. Accordingly,
we study algorithms for joint optimization.

1See [6] for a recent survey on segment routing.

https://orcid.org/0000-0002-6211-077X
https://orcid.org/0000-0003-4635-4480
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.1145/3485983.3494846
https://doi.org/10.1145/3485983.3494846
https://doi.org/10.1145/3485983.3494846

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

1.1 Background

Traffic engineering objectives typically revolve around network
utilization, which is also the focus of this paper. In particular, we
are interested in the maximum link utilization (MLU): the ratio
obtained by dividing the load of a link by its capacity is called link

utilization, and MLU is simply the largest such ratio over all links.
When flows are constrained to shortest paths (OSPF) and even-

splits (ECMP), the maximum link utilization MLU can be signif-
icantly larger than the optimal utilization feasible without these
constraints by a factor linear in the number of nodes [11].
Traffic Engineering (TE) under OSPF and ECMP. The open
shortest path protocol (OSPF) [12] is a routing protocol for the IP
layer, widely used within a single domain (e.g., an ISP, an enterprise,
or a datacenter). Under OSPF, a packet is always routed along the
shortest path to its destination. Hence, links weights (a.k.a. link
costs) determine the actual route taken by a packet, and one can
influence the distribution of traffic’s load across a network by tuning
these weights. Under OSPF, there might be multiple (shortest path)
next-hops available from a node, which is an opportunity to split
the traffic over multiple paths and prevent congestion. OSPF is often
installed together with Equal-Cost-MultiPath (ECMP) routing [13],
the local strategy of splitting the traffic evenly between all shortest
paths available at a node. We assume a fine-grained splitting model,
where flows split at the packet level [14].
TE via Link-Weight Setting. Tuning link weights for congestion
control is a common TE technique, where the objective is often
to optimize (a function of) network resources. Link weights (as
positive real numbers) determine whether a link is on the shortest
path to a node or not, and they are computed offline by network
operators. Link weights are often chosen to induced shortest paths
that do not congest any link beyond a tolerable factor of its capacity.
This practice is known as link weight optimization (LWO), which
is generally NP-hard even for constant-factor approximation and
the case of a single source-destination pair [11, 15]. Henceforth,
in practice, link weights are computed using heuristics. One such
heuristic (recommended by Cisco [16]) is to assign a weight to each
link proportional to the inverse of its capacity.
TE via Waypoint Setting. Given a set of demands, setting link
weights alone is not always sufficient to achieve a balanced load
over all links, as will also show in this paper (§3). An attractive
solution enabled by segment routing is to insert intermediate des-
tinations and force traffic flow to reach them in a specific order
before arriving at its final destination. We refer to this technique as
waypoint routing, and we refer to the problem of finding appropri-
ate waypoints as waypoint optimization (WPO). Informally, given a
demand matrix, for each demand,WPO decides whether to insert
waypoints for that demand and if so, it determines which of the
nodes to use as waypoints for this particular demand.
TE via Joint Weights andWaypoint Setting. This paper is inter-
ested in the optimization problem obtained by combining the two
previous dimensions, link weight and waypoint optimizations. The
motivation behind this approach is to alleviate shortcomings with
LWO and WPO by joining their benefits; 1) LWO cannot optimize
link weights for each demand independently of the other demands,
while waypoints can be applied to each demand separately. 2) The
effectiveness of WPO depends on the given link weights.

As we will show,WPO may perform poorly when link weights
are set arbitrarily or even when they are given by standard settings
commonly used in practice. We consider three such weight settings:
uniform weights, the inverse of capacities, and optimal weights.

1.2 Contributions

We present analytical and empirical insights into the algorithmic
opportunities of jointly optimizing link weights and waypoints for
traffic engineering. We make the following contributions:

The Optimality Gap.We show that the joint optimization of
weights and waypoints is provably competitive against the separate
optimizations (§3). We formally define a notion of competitiveness
between the two TE strategies, referring to it as the optimality gap.
We advocate the effectiveness of the joint optimization by compar-
ing its network utilization to the utilization under link weight and
waypoint optimizations separately. We show that their joint opti-
mization can improve network utilization by a factor in Ω(𝑛 log𝑛),
where 𝑛 is the number of nodes (Theorem 3.15).

We provide an upper bound for the gap in𝑂 (𝑛 log𝑛) (§4), which
implies our LB is tight on general networks (i.e., general graphs and
capacities) and single source-target demands. We prove that the gap
does not exist under uniform capacities and single source-target
demands (Theorem 4.2). Additionally, the gap does grow by 𝑛, if
the source and target are sparsely connected, e.g., when they are
connected by a constant number of paths with disjoint capacities
(Theorem 4.3).

Approximation Algorithm for Weight Optimization. As part
of our gap analysis, we present an algorithm (§5) that computes
a link weight setting that minimizes the maximum link utiliza-
tion approximately. To the best of our knowledge, this is the first
polynomial-time approximation algorithm for this problem on gen-
eral directed networks (although single source-target demands),
with a provable factor that depends on the number of nodes (in
contrast to [17] which restricts capacities to a finite set of integers
and the factor depends on the size of this set). Our approximation
factor also serves as an upper bound for the extend of MLU im-
provement achievable in the joint optimization when compared to
separate single optimizations (Corollary 4.4). Moreover, it shows
that our example captures the worst case, i.e., the gap is tight.

Heuristic Algorithm. Since the general problem is NP-hard, in
§6, we present a heuristic that extends the local search algorithm
introduced in [11] by combining it with a greedy waypoint setting
algorithm. We evaluate the quality of our algorithm on a variety of
real-world topologies.

Empirical Gap Observation.We provide a mixed-integer linear
program (MILP) formulation of the joint optimization problem
available in [18]. We use the formulation to demonstrate the TE
gap on small examples. For large networks, we run our heuristic
and compare the resulting MLU to that of standard weight settings
and computed by local search [11].

Artifacts. To contribute to the research community, ensure repro-
ducibility, and support future research in this area, we release all
our experimental artifacts and implementations as open source
together with this paper [18].

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

1.3 Related Work

Traffic engineering is an evergreen topic in networking. Besides
adjusting linkweights in IP networks, traffic engineering can also be
performed usingMPLS [19] or centralized controllers as in software-
defined networking [20]. We employ segment routing [3], which is
a relatively recent TE approach.

Fortz and Thorup in [11] showed that OSPF with ECMP can
result in an MLU that is larger than the optimal feasible MLU un-
der arbitrary flows by a factor in Ω(𝑛) where 𝑛 is the number of
nodes. They also prove the NP-hardness of LWO and present a
“local search” heuristic. We first show a linear gap between LWO
and Joint (§3) using a similar network construction, and then we
present a stronger construction (§3.5) that improves the gap by a
logarithmic factor. Generally, it is known that weight setting is NP-
hard to approximate within any constant factor even with single
source-target demands [15, 17]. We complement this inapproxima-
bility result with a polynomial-time approximation algorithm and
a provable approximation guarantee.

Chiesa et al. [15] provided impossibilities for several weight opti-
mization problems. In particular, they showed that LWO is NP-hard
on general topologies and even on the special class of hypercubes.
They presented one positive result on special topologies known as
“folded Clos networks”: an ad-hoc algorithm producing weights and
an optimal congestion (as in OPT). When capacities are restricted
to a finite set of integers, Pióro et al. [17] show a constant factor
approximation for the maximum LWO, while our approximation
works with arbitrary real capacities.

Segment routing [3] for traffic engineering has been considered
in, e.g., [7, 8, 21, 22], see [6] for a recent survey on SR. Moreno et
al. [22] using linear programming and heuristics showed that a very
limited number of stacked labels suffice to exploit the benefits of
segment routing successfully. Using a worst-case construction, we
demonstrate that SR cannot benefit TE under inappropriate weight
settings, even with an arbitrarily large number of segments. Aubry
et al. [8, 23] lay the algorithmic foundations of segment routing,
considering different and related applications, however, primarily
focusing on the waypoint optimization. However, we are not aware
of any analytical quantification of the benefits of joint waypoint
and weight optimization with segment routing.

2 MODEL AND PROBLEM DEFINITION

We next define our key terminology and notations formally.

Network Instance.We model a network as a tuple N = (𝑉 , 𝐸, 𝑐),
where 𝑉 is a set of 𝑛 := |𝑉 | vertices (nodes or routers), 𝐸 is the set
of directed links (communication links) connecting nodes, and the
mapping 𝑐 : 𝐸 ↦→ R+ assigns to each link ℓ ∈ 𝐸 a capacity 𝑐ℓ > 0.

A flow is an assignment 𝑓 : 𝐸 ↦→ R+ that respects flow con-
servation constraints. The load on a link ℓ denoted by 𝑓ℓ ≥ 0 is
the amount of the (total) flow assigned to this link. Whenever the
source and target of a flow 𝑓 is clear from the context, |𝑓 | denotes
the total size of the flow emitting (entering) the source (the target).
A demand list is a multiset denoted by D and consists of tuples
(𝑠, 𝑡, 𝑑) ∈ D, where 𝑠, 𝑡 ∈ 𝑉 are the source and target (destination)
nodes of the demand, and 𝑑 ∈ R+ is its size (i.e., required band-
width). A weight setting 𝑤 : 𝐸 ↦→ R+ assigns a positive real𝑤ℓ > 0
to each link ℓ ∈ 𝐸. A waypoint is a node assigned to a demand, and

serves as an intermediate destination for the flow of that demand.
That is, the flow of that demand must reach the waypoint prior
to reaching its final destination. A waypoint setting denoted by
𝜋 : 𝑉𝑊 ↦→ D assigns up to𝑊 waypoint nodes to each demand,
where𝑊 is a given parameter.

TE Instance. The input to all our TE problems is a traffic engi-

neering instance (TE-instance), denoted by the tuple I = (N ,D, 𝜔),
whereN is the given network,D is the given demand list with total
demand size 𝐷 :=

∑
(𝑠,𝑡,𝑑) ∈D 𝑑 , and 𝜔 is the given weight setting.

Using these notations, we formally describe the TE objective and
optimization problems considered in this paper.

Maximum Link Utilization (MLU). Given a network N and a
flow assignment 𝑓 , the utilization of any link ℓ under the flow
𝑓 is the ratio 𝑓ℓ/𝑐ℓ . The network utilization is the maximum link
utilization under 𝑓 , that is,𝑀𝐿𝑈 (N , 𝑓) := maxℓ∈𝐸 𝑓ℓ/𝑐ℓ .
Even-Split Flow (ES-Flow). The aggregate flow that enters a
node 𝑣 and is destined to a node 𝑡 may split over (a subset of)
outgoing links of 𝑣 . An even-split flow (ES-flow) either does not
split at 𝑣 or it splits evenly at this node, i.e., it may not split arbi-
trarily as in OPT.

ECMP Flow . If an even-split flow exiting a node 𝑣 is constrained
to traverse only the outgoing links of 𝑣 that are on a shortest path
to 𝑡 , then we refer to it as an ECMP-flow.

2.1 Problem Definition

The minimal input common to all our optimization problems con-
sists of a network N with 𝑛 nodes and a demand set D. We refer
to a demand list where all demands share the same source-target
pair (𝑠, 𝑡) as a single source-target demand list. Next, we formally
define each problem and its additional inputs separately.

Link-Weight Optimization (LWO). Given (N ,D) as an input,
the LWO problem computes a link weight setting such that the
induced ECMP-flow minimizes MLU.

WaypointOptimization (WPO). The input is (N ,D,𝑤), where𝑤
is a weight setting. WPO selects an ordered set of up to𝑊 way-
points for each demand in D. The ECMP-flow must reach each
waypoint in the given order before finishing at 𝑡 . WPO chooses
these waypoints so that the MLU under the total flow is minimized.

Joint Link-Weight andWaypoint Optimization (Joint). Given
the input (N ,D), Joint computes a link-weight setting and a se-
quence of up to𝑊 waypoints for each demand such that MLU is
minimized when flows are routed through shortest paths between
consecutive waypoints.

The MLU for an instance I is denoted by LWO(I), WPO(I),
and Joint(I), respectively, under an optimal weight setting, an
optimal waypoint setting, and an optimal joint weight andwaypoint
setting. We omit I wherever it is clear from the context.

Note that in comparison to OPT, in the three latter problems, a
flow must follow shortest path links, and it must split equally over
all outgoing links that belong to a shortest path. Hence, LWO is
equivalent to Joint when𝑊 = 0. By definition, if Joint and WPO
are constrained to at most𝑊 waypoints (per demand), then

OPT ≤ Joint ≤ min{LWO,WPO}. (2.1)

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

Clarifying terminology on Joint. We emphasize that Joint is not
equivalent to applying LWO and WPO separately (e.g., sequen-
tially), and it generalizes both of these optimizations, and hence, it
is stronger. Joint is specifically the optimization problem of mini-
mizing MLU over the Cartesian product of all link-weight settings
and all waypoint settings. However, our heuristic approximates
Joint using a sequential optimization.
The Optimal Flow (OPT). OPT is the multi-commodity flow prob-
lem with the objective of minimizing the MLU subject to link capac-
ities (formulated in [18]). Note that OPT has no routing restrictions;
it may assign a positive flow to any link, and it may split a flow arbi-
trarily at any node. We denote the optimal MLU of a TE-instance I
under the optimal flow byOPT(I). Let 𝑓 ∗ be a maximum (𝑠, 𝑡)-flow.
Observe that OPT ≥ 𝐷/|𝑓 ∗ |.
Acyclic Maximum Flow. An acyclic maximum (𝑠, 𝑡)-flow from a
source 𝑠 to a target 𝑡 always exists: 1) take any maximum flow,
2) find a cycle and a link with the smallest flow value on this
cycle, 3) subtract this value from the flow of every link of the
cycle. 4) repeat from step 2 until the flow is acyclic. It is easy to see
that the new flow has the same size and the algorithm terminates
in polynomial time.

3 OPTIMALITY GAPS

In this section, we investigate the question of how competitive
Joint is compared to LWO and WPO? To this end, we present
several network instances where Joint yields a value for MLU
noticeably smaller than the optimal values obtained from LWO or
WPO separately. This will immediately imply that applying Joint
is necessary in order to utilize the best of weights and waypoints.
We assume single source-target demands throughout this section.
We will study gaps (as ratios) between the optimal MLU feasible in
Joint and the optimal values from LWO andWPO separately.

Definition 3.1. Given a network instance I, the optimality gap

between Joint and each of the two problems is defined as ratios:

𝑅LWO (I) :=
LWO(I)
Joint(I) , and 𝑅WPO (I) :=

WPO(I)
Joint(I) .

The ratio 𝑅WPO depends on the given link-weight setting. We
restrict the given weight setting to the special cases that are often
used in practice. LWO does not take any weight setting as input.

Definition 3.2. We refer to any of the following weight settings
as a standard weight setting.

• Unit weights: the weight 1 set for every link.
• Inverse of capacities: the weight of each link equals the recip-
rocal of its capacity (capacity−1).

• Optimal weights: weight settings optimal for LWO.
We refer to general weight settings as arbitrary.

Definition 3.3. We define the TE gap as the worst-case ratio
between the best MLU obtainable from individual optimizations
and the one from Joint. Formally,

𝑅∗ := max
I

min{𝑅LWO (I), 𝑅WPO (I)}.

We may drop the instance I where it is irrelevant or clear from
the context. Note that (2.1) implies 𝑅LWO, 𝑅WPO, 𝑅

∗ ≥ 1.

Table 1: TE gaps for single source-target demands

Weights Capacities TE-Gaps

Lower Bounds (Cor. 3.16) 2≤𝑊∈𝑂 (1) 𝑊 =1

arbitrary arbitrary Ω(𝑛 log𝑛) Ω(𝑛)
uniform arbitrary Ω(𝑛 log𝑛) Ω(𝑛)
capacity−1 arbitrary Ω(𝑛 log𝑛) Ω(𝑛)
optimal arbitrary Ω(𝑛 log𝑛) Ω(𝑛)
Upper bounds 𝑅∗ ≤ 𝑅LWO

optimal uniform 1, Theorem 4.2

Thm. 4.3 arbitrary |𝐸 |, Theorem 4.3

optimal arbitrary 𝑛 log𝑛, Corollary 4.4

s v2 v3 . . . vm

t

m m m m

1 1 1 1

Figure 1: See TE-Instance 1. There are 𝑚 = 𝑛 − 1 unit-size

demands from 𝑠 to 𝑡 . The optimal flow and Joint are able

to split one unit size flow away from the thick path at each

node 𝑣𝑖 . This is not possible under shortest path routing

which causes a large gap in Ω(𝑛) between Joint and LWO.

Intuitively, a lower bound for the gap 𝑅∗ indicates how far Joint
can lower the MLU over the best of the other two optimizations.
That is, a larger lower bound (i.e., a larger gap) emphasizes the
necessity of applying Joint over separate optimizations.

Table 1 summarizes our findings for the gap in two major cases:
i) when Joint is restricted to𝑊 = 1 waypoint per demand (Theo-
rem 3.4), and ii) when Joint is restricted to 2 waypoints per demand
(Corollary 3.16). Note that WPO is granted the extra privilege of
using more waypoints as long as𝑊 is a constant.

The remainder of this section is devoted to showing the following
statement.

Theorem 3.4. There exist network instances with 𝑛 nodes and

demand lists that admits a TE gap 𝑅∗ ∈ Ω(𝑛) (Definition 3.3), when

Joint andWPO are restricted to at most𝑊 = 1 waypoint per demand.

We present a network instance that we use to prove Theorem 3.4.
Similar examples are presented in [17] and [2] to show the gap
between the optimal flow and the LWO for single demand cases.
Here we adopt a similar example as in [17] and [11] and show that
the linear bound holds for our gap ratio as well.

TE-Instance 1 (Figure 1). Consider the network in Figure 1.

It consists of 𝑛 nodes {𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑠, 𝑡} where 𝑠 = 𝑣1, arcs
(𝑣𝑖 , 𝑣𝑖+1), 1 ≤ 𝑖 < 𝑚 each with capacity𝑚, and arcs (𝑣𝑖 , 𝑡), 1 ≤ 𝑖 ≤ 𝑚

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

each with capacity 1. There are𝑚 = 𝑛 − 1 unit-size demands from 𝑠

to 𝑡 . The optimal flow routes each demand via one of the paths with

capacity 1, e.g., it may route the 𝑖th demand through 𝑠, 𝑣𝑖 , 𝑡 , which

yields the optimal utilization OPT = 1.

Next, we observe that in this instance the optimal MLU is feasible
in Joint using only one waypoint per demand.

Lemma 3.5. Instance 1 admits Joint = OPT = 1 using up to one
waypoint for each demand.

Proof. We observe that the optimal flow is feasible also for
Joint using the following waypoint and weight setting.
i) Set the node 𝑣𝑖 as a waypoint for the 𝑖th demand. ii) Set the
weight 𝑚 for every link (𝑣𝑖 , 𝑡), (𝑡, 𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑚, and iii) set the
weight 1 for the other (horizontal) links. The flow of the 𝑖th demand
runs through the unique shortest path to 𝑣𝑖 , that is 𝑠, 𝑣2, . . . , 𝑣𝑖 ,
which has the cost 𝑖 . The (unique) shortest path from 𝑣𝑖 to 𝑡 has the
cost𝑚 and it consists of the link (𝑣𝑖 , 𝑡). Therefore, Joint assigns
the (unit-size) flow of the 𝑖th demand to the unit-capacity path
𝑠, 𝑣2, . . . , 𝑣𝑖 , 𝑡 . This flow assignment is identical to that of optimal
flow and therefore Joint = OPT = 1. □

3.1 Optimizing with Link Weights

Optimizing (only) weights may lead to an MLU significantly larger
than the optimal feasible MLU in Joint. We show that applying
only LWO may result in an MLU that is worse than the optimal
from Joint by a factor in Ω(𝑛).

Consider Instance 1 (Figure 1). Any optimal even-split flow splits
evenly at a node 𝑣𝑖 , 𝑖 < 𝑚. Assume w.l.o.g. that the optimal flow
splits evenly at 𝑣1 = 𝑠 . As a result, half of the flow runs through the
link (𝑠, 𝑡) having the capacity 1, that is, the load𝑚/2 on this link.
Observe that splitting at the latter nodes 𝑣𝑖 , 𝑖 ≥ 2 does not improve
the MLU. We set the weight 2 for the link (𝑠, 𝑡) and the weight 1
for every other link. This weight setting realizes the optimal even-
splitting flow that splits only over the two shortest paths 𝑠, 𝑡 and
𝑠, 𝑣2, 𝑡 . We conclude this case by comparing the MLU in LWO and
Joint using Lemma 3.5 in the following statement.

Lemma 3.6. The optimal link weight setting for TE-Instance 1 yield
a maximum link utilization LWO ≥ (𝑛 − 1)/2.

Proof. We observe that the size maximum feasible even split
(𝑠, 𝑡)-flow is 2 units which implies the claim for the total demand
size 𝐷 =𝑚 = 𝑛 − 1. From 𝑣𝑚 to 𝑡 , only 1 unit of ES-flow is feasible.
We reason that the size of the maximum ES-flow feasible via each
𝑣𝑖 , 𝑖 < 𝑚, is 2. From 𝑣𝑚−1 to 𝑡 , 2 units of ES-flow splits into two unit
size parts, one part traverses the path 𝑣𝑚−1, 𝑡 and the other part
reaches 𝑡 through the node 𝑣𝑚 . In general, at 𝑣𝑖 , 𝑖 < 𝑚, only 2 units
can be delivered via the neighbor 𝑣𝑖+1, i.e., if the flow does not split
at 𝑣𝑖 . If the flow splits at 𝑣𝑖 then each of the two paths delivers 1
units. Therefore, the size of the maximum the ES-flow at 𝑣𝑖 , 𝑖 < 𝑚

is 2, whether it splits into two or not. □

3.2 Optimizing with Waypoints

Waypoint optimization on top of arbitrary or standard weight set-
tings is not always competitive to Joint. That is, applying only
WPO may result in an MLU worse than the optimal of Joint by a
factor in Ω(𝑛).

Lemma 3.7. Given an arbitrary or a standard weight setting (Defi-

nition 3.2), there exists a network instance of 𝑛 nodes on which the

optimal waypoint setting from WPO subject to𝑊 = 1 waypoint (per
demand) yields a maximum link utilizationWPO ≥ (𝑛 − 1)/3.

Proof. We show the claim in several cases of the given weight
setting using TE-Instance 1 (Figure 1) denoted by I1.
Arbitrary Weights. Consider the weight setting for I1 that as-
signs the weight 𝜖 = 1/3 for all links connected to 𝑡 , i.e. to links
(𝑣𝑖 , 𝑡), (𝑡, 𝑣𝑖) for every 1 ≤ 𝑖 ≤ 𝑚, and it assigns the weight 1 to
every other link. Under this weight setting, the shortest path from
𝑠 to 𝑡 is the link (𝑠, 𝑡). The shortest path from 𝑠 to any node 𝑣𝑖 is
𝑠, 𝑡, 𝑣𝑖 . Therefore, with any choice of waypoints, the flow of every
demand uses the link (𝑠, 𝑡), which leads toWPO =𝑚 = 𝑛 − 1.
UniformWeights. Assume every link has the weight 1 in I1. Con-
sider any assignment of zero or one waypoint to each demand. The
flow that has 𝑣3 as waypoint must split evenly over the two shortest
paths 𝑠, 𝑣2, 𝑣3 and 𝑠, 𝑡, 𝑣3 with equal costs of 2. All flows without
a waypoint use the path 𝑠, 𝑡 . Each flow using the node 𝑣𝑖 , 𝑖 ≥ 4
as waypoint takes the shortest path 𝑠, 𝑡, 𝑣𝑖 . Thus, an optimal way-
point setting may distributes the total load into at most three parts
which assigns at least 1/3 of the load to the link (𝑠, 𝑡) and therefore
WPO ≥ 𝑚/3 = (𝑛 − 1)/3.
Inverse of Capacities. In this case, the weight of each link equals
the reciprocal of its capacity. We transform the network instance
into a new instance I ′

1 with 𝑛 = 2𝑚 + 1 nodes (same demands). We
replace each of the links (𝑠, 𝑣2) and (𝑣2, 𝑣3) with𝑚 unit-capacity
paths of two links as follows:

(1) Add 2𝑚 new nodes 𝑢1, . . . , 𝑢𝑚 and 𝑧1, . . . , 𝑧𝑚 .
(2) Replace (𝑠, 𝑣2) with𝑚 paths where the 𝑗th path consists of

unit-capacity links {(𝑠,𝑢 𝑗), (𝑢 𝑗 , 𝑧 𝑗), (𝑧 𝑗 , 𝑣3)} for 1 ≤ 𝑗 ≤ 𝑚.
(3) Set capacity of every new link to 1.

Consider the weight setting for I ′
1 that sets the weight of each link

to the inverse of its capacity. Every link (𝑣𝑖 , 𝑣𝑖+1), 𝑖 ∈ {3, . . . ,𝑚}, has
the weight 1/𝑚, and every other links has the weight 1. For 𝑖 ≥ 2,
any path 𝑠,𝑢 𝑗 , 𝑧 𝑗 , 𝑣2, . . . , 𝑣𝑖 has a cost at least 3. Then the shortest
path from 𝑠 to any node 𝑣𝑖 , 𝑖 ≥ 2 is 𝑠, 𝑡, 𝑣𝑖 of cost 2. Therefore,
with any waypoint setting inWPO, the link (𝑠, 𝑡) having capacity 1
receives the entire load andWPO(I ′

1) =𝑚 = (𝑛 − 1)/2.
Optimal LWO Weights.We show even when the given weight
setting is optimal for LWO, the MLU obtained fromWPO can be
significantly larger than that of Joint.

By Lemma 3.7, the MLU under an optimal weight setting is
is LWO ≥ 𝑚/2, as it splits the flow into two parts at a node 𝑣𝑖 . Con-
sider the weight setting that assigns the weight 2 to the link (𝑠, 𝑡)
and the weight 1 to every other link. Under this weight setting, the
flow of size 𝑚 splits evenly at 𝑣1 = 𝑠 into two parts of size 𝑚/2,
overloading the link (𝑠, 𝑡) by the factor𝑚/2. Hence, LWO = 𝑚/2
and the weight setting is optimal.

We show that using a single waypoint per demand under the
optimal weight setting does not improve the MLU beyond an ad-
ditive factor. Assume w.l.o.g. that the optimal waypoint setting
assigns 𝑣𝑖 as the waypoint for the 𝑖th demand. The shortest paths
to 𝑡 and 𝑣2 are respectively 𝑠, 𝑡 and 𝑠, 𝑣2, which are used by the first
two demands without splitting. The third demand is destined to
its waypoint 𝑣3 and splits at 𝑠 , since both paths 𝑠, 𝑡, 𝑣3 and 𝑠, 𝑣2, 𝑣3

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

have the same cost of 3. The shortest path to 𝑣𝑖 for every 𝑖 ≥ 4 is
uniquely 𝑠, 𝑡, 𝑣𝑖 . Thus, the link (𝑠, 𝑡) receives a flow larger than𝑚−4
and henceWPO > 𝑚 − 4 = 𝑛 − 5 in the optimal weight setting. □

3.3 Bounding the TE Gap

We can now show the TE gap claimed in Theorem 3.4.

Proof of Theorem 3.4. We show the claim for TE-Instance 1
illustrated in Figure 1. First, we derive the individual gap ratios of
Definition 3.1. From Lemma 3.5, we have Joint = 1. Lemma 3.6
implies 𝑅LWO = LWO/1 ≥ (𝑛 − 1)/2. Due to Lemma 3.7, under
arbitrary and standard weight settings (Definition 3.2) the instance
admits a gap 𝑅WPO = WPO/Joint = WPO/1 ≥ (𝑛 − 1)/3 , when
both Joint andWPO are constrained with𝑊 = 1. Hence, by Defini-
tion 3.3, we conclude the claimed TE gap𝑅∗ ≥ (𝑛−1)/3 ∈ Ω(𝑛). □

3.4 The Special Case of Uniform Capacities

So far we considered instances with arbitrary (i.e., non-uniform)
capacities. We will show later (in Theorem 4.2) that gaps larger
than 1 do not exist in the special case of uniform capacities and
single source-target demands. In particular, we show when all link
capacities are equal and all demands share the same source-target
pair then LWO = Joint = OPT, which implies 𝑅LWO = 1. The gap
𝑅LWO can be larger than 1 when there are demands with arbitrary
source-target pairs.

Theorem 3.8. Under uniform capacities and arbitrary source-

target pairs, there exists an instance with 𝑛 nodes where the MLU is

in Ω(𝑛) under either of LWO or WPO, when the latter is restricted to

one waypoint and standard/arbitrary weight settings.

Proof. Consider the TE-Instance 1 (Figure 1) and denote it by
I := ((𝐺, 𝑐),D). We construct a new instance I ′ := ((𝐺, 𝑐 ′),D ′),
where 𝑐 ′ is the uniform capacity assignment that assigns the ca-
pacity𝑚 to every link, and D ′ is a demand list generated as fol-
lows. i) Initialize D ′ = D. ii) ∀ℓ = (𝑢, 𝑣) ∈ 𝐺, 𝑐 (ℓ) < 𝑚 : D ′ =
D ′ ∪ {(𝑢, 𝑣,𝑚 − 𝑐 (ℓ))}. That is, D ′ includes all demands in D and
an additional demand between the endpoints of each link in I
with capacity less than 𝑚. It is not difficult to see that under all
link-weight settings that we use in our lower bound analysis, the
(unique) shortest path between the endpoints of a link is the link it-
self. Therefore, under both LWO andWPO, each demand inD ′ \D
is routed along the link that connects its endpoints. Hence, once we
deduce the capacities occupied by these additional demands, the
residual capacities are exactly those assigned by 𝑐 (as in Figure 1).
Thus, our lower bounds hold for I ′ via an analysis similar to that
of Theorem 3.4. □

3.5 Amplifying the TE Gap

In this section, we introduce an instance that admits a TE gap
𝑅∗ = Ω(𝑛 log𝑛) (Theorem 3.15). First, we introduce and analyze
an instance that offers a logarithmic gap, and later, we combine it
with TE-Instance 1 to obtain a new instance that admits larger gap.

TE-Instance 2 (Figure 2a). In Figure 2a, there are𝑚 = 𝑛 − 2
demands from 𝑠 to 𝑡 , where demand sizes constitute the harmonic

series 𝐻𝑚 := 1, 1/2, . . . , 1/𝑚. The size of the maximum (𝑠, 𝑡)-flow
through this network is

∑
1≤𝑘≤𝑚 1/𝑘 ≈ ln(𝑚).

Next, we analyze the optimal even-split flow for Instance 2.

Lemma 3.9. Let 𝑓 be any maximum even-split (𝑠, 𝑡)-flow on In-

stance 2. The flow splits evenly over a subset of (𝑠, 𝑡)-paths with
capacities that form a prefix of 𝐻𝑚 .

Proof. Let 𝑓 be the maximum ES-flow and 𝑃 be the subset
of paths 𝑠,𝑤 𝑗 , 𝑡 used by 𝑓 . Equivalently to the statement of the
claim, 𝑃 consists of paths with consecutive capacities (in 𝐻𝑚) at
least 1/ 𝑗∗ for some 1 ≤ 𝑗∗ ≤ 𝑚. Then, in a maximum ES-flow,
the path 𝑝∗ ∈ 𝑃 with the smallest capacity 1/ 𝑗∗ is saturated, the
load on each of the paths in 𝑃 is 1/ 𝑗∗, and the size of the ES-flow
is |𝑓 | = |𝑃 | · 1/ 𝑗∗. Assume for contradiction that this is not the
case, that is, for some 𝑘 < 𝑗∗, 𝑃 does not contain a path 𝑝 with a
larger capacity 1/𝑘 > 1/ 𝑗∗. Consider the set 𝑃 ′ = {𝑝} ∪ 𝑃 \ {𝑝∗}.
Let 𝑓 ′ denote the ES-flow that splits evenly over all paths in 𝑃 ′.
The smallest capacity in 𝑃 ′ is at least 1/(𝑗∗ − 1). Since |𝑃 ′ | = |𝑃 |,
we obtain |𝑓 ′ | = |𝑃 ′ | · 1/(𝑗∗ − 1) = |𝑃 | · 1/(𝑗∗ − 1) > |𝑓 | , which
contradicts 𝑓 being a maximum ES-flow. □

Lemma 3.10. In the network Instance 2, the size of the maximum

even-split (𝑠, 𝑡)-flow is 1.

Proof. By Lemma 3.9, for some 1 ≤ 𝑗∗ ≤ 𝑚, the maximum
ES-flow 𝑓 splits over a subset of paths 𝑠,𝑤 𝑗 , 𝑡 , 1 ≤ 𝑗 ≤ 𝑗∗ with
capacities that constitute the first 𝑗∗ numbers in 𝐻𝑚 . The smallest
capacity of these paths is 1/ 𝑗∗ which yields |𝑓 | = 𝑗∗ · 1/ 𝑗∗ = 1. □

Next, we introduce a network instance that has Instance 2 as a
substructure, and admits a gap 𝑅LWO ∈ Ω(𝑛 log𝑛).

TE-Instance 3 (Figure 2b). Consider the network in Figure 2b

with 𝑛 nodes and the parameter𝑚 = 𝑛/2. Capacities of links (𝑣𝑖 ,𝑤1),
. . . , (𝑣𝑖 ,𝑤𝑚) form the harmonic series𝐻𝑚 = {1, 1/2, . . . , 1/𝑚}. Equiv-
alently, every link connected to𝑤 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, has the same capacity

1/ 𝑗 . All links (𝑣𝑖 , 𝑣𝑖+1), (𝑤𝑖 ,𝑤𝑖+1) have the capacity 𝐷 . There are𝑚2

demands from 𝑠 = 𝑣1 to 𝑡 = 𝑤𝑚 . Demand sizes can be partitioned

into𝑚 subsets, where each subset constitutes the Harmonic series 𝐻𝑚 .

Hence, the total demand size is 𝐷 =𝑚 ·∑1≤𝑘≤𝑚 1/𝑘 ≈𝑚 · ln(𝑚).

Next, we show that for TE-Instance 3, two waypoints are suffi-
cient to obtain a joint waypoint and weight setting that admits an
ES-flow with𝑀𝐿𝑈 = 1.

Lemma 3.11. In TE-Instance 3 (Figure 2b), using only two way-

points per demand, Joint achieves a utilization Joint = 1.

Lemma 3.12. TE-Instance 3 admits a gap 𝑅LWO ∈ Ω(𝑛 log𝑛) when
Joint is constrained with𝑊 ≥ 2 waypoints per demand.

The proof of lemmas 3.11 and 3.12 can be found in Appendix A.
We now present another instance similar to TE-Instance 3 that

differs only in link capacities. We will use it to lower bound the gap
𝑅WPO (Definition 3.1).

TE-Instance 4 (Figure 2c). Consider the network in Figure 2c

with 𝑛 nodes and the parameter 𝑚 = 𝑛/2. Each link (𝑣𝑖 ,𝑤 𝑗), 1 ≤
𝑖, 𝑗 ≤ 𝑚, has the capacity 1/(𝑚− 𝑖 +1). All links (𝑣𝑖 , 𝑣𝑖+1), (𝑤𝑖 ,𝑤𝑖+1)
have the same capacity 𝐷 ≥ 𝑚 ln𝑚, where 𝐷 is the total demand size.

The demand list identical to that of Instance 3.

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

s

wm. . . w2w1

t

1
m

1
m

1
2

1
2

1

1

(a) See TE-Instance 2. The

gap 𝑅LWO is in Ω (ln𝑛) given
𝑚 = 𝑛 − 2 demands from 𝑠

to 𝑡 with harmonic sizes.

s v2 . . . vm

t. . .w2w1

D D D

D D D

1 1
2

1
m

Hm
HmHm

(b) See TE-Instance 3. The gap 𝑅LWO is

in Ω (𝑛 log𝑛) under 𝑚2
demands with

sizes that constitues 𝑚 harmonic sets

𝐻𝑚 ,𝑚 = 𝑛/2, with total demand size 𝐷 .

s v2 . . . vm

t. . .w2w1

D D D

D D D

1
m

1
1

m−1

(c) See TE-Instance 4. Demands are iden-

tical to 2b. The gap 𝑅WPO is in Ω (𝑛 log𝑛)
which holds for any constant number of

waypoints inWPO.

Figure 2: Each instance has 𝑛 nodes. Arc labels represent link capacities. Bi-directed arcs represent two directed links in the

opposite directions with equal capacities. All demands are between 𝑠 = 𝑣1 and 𝑡 . The parameter𝑚 is in Ω(𝑛). In each instance,

Joint = OPT = 1 using up to two waypoints per demand. In 2b, OPT and Joint separate one harmonic subset of demands away

from the thick path at each node 𝑣𝑖 causing a large gap between LWO and Joint, while in 2c, they separate a subset of equal-size

demands away from the thick path at each 𝑣𝑖 causing large gap betweenWPO and Joint. In short, OPT and Joint are capable of

fine-grained control over individual paths unlike LWO andWPO.

Similarly to Lemma 3.11, we show that for TE-Instance 4, two
waypoints are sufficient to obtain a joint waypoint and weight
setting that admits an ES-flow with𝑀𝐿𝑈 = 1.

Lemma 3.13. In TE-Instance 4 (Figure 2c), using two waypoints

(per demand), Joint achieves the utilization Joint = 1.

The proof of Lemma 3.13 can be found in Appendix A.
In the following lemma, we lower-bound the gap 𝑅WPO when

the input weight setting is arbitrary or the standard weight setting
from Definition 3.2.

Lemma 3.14. Let I3 denote TE-Instance 3 (Figure 2b), and I4 de-
note TE-Instance 4 (Figure 2c). Assume the number of waypoints

per demand for Joint is constrained to𝑊 ≥ 2, and for WPO, it is

constrained to𝑊 = ⌈𝑐 · 𝑛⌉, 0 < 𝑐 < 1/3.
(i) If the given weight setting is arbitrary, uniform, or the inverse

of link capacities, then the instance I4 admits a gap

𝑅WPO (I4) ∈ Ω((𝑛 log𝑛)/𝑊) .

(ii) If the given weight setting is the optimal from LWO then I3
admits a gap 𝑅WPO (I3) ∈ Ω((𝑛 log𝑛)/𝑊).

The proof of Lemma 3.14 can be found in Appendix A.

TE-Instance 5. LetN3 = (𝐺3, 𝑐3) denote the network instance 3
and (𝑠3, 𝑡3) denote its source-target pair. Let N4 = (𝐺4, 𝑐4) denote
instance 4 and (𝑠4, 𝑡4) denote its source-target pair. We define the TE

instance (N5,D) where

N5 = (𝐺3 ∪𝐺4 ∪ {(𝑡3, 𝑠4)}, 𝑐3 ∪ 𝑐4 ∪ {(𝑡3, 𝑠4) ↦→ 𝐷})

is the concatenation of the two networks N3 and N4 with 𝑛 = 4𝑚 + 2
nodes. The source node in N5 is 𝑠3 and the target node is 𝑡4. The link
(𝑡3, 𝑠4) with capacity 𝐷 connects the target of N3 to the source of N4,
where 𝐷 is the total demand size. The demand list is identical to that

of instances 3 and 4. That is, D consists of𝑚2
demands with sizes

that can be partitioned into𝑚 identical harmonic sets 𝐻𝑚 .

We aggregate all our optimality gaps into the (joint) TE gap 𝑅∗

from Definition 3.3.

Theorem 3.15. TE-Instance 5 admits a gap 𝑅∗ ∈ Ω(𝑛 log𝑛/𝑊) if
(1) WPO is constrained to𝑊 ≤ 𝑐 · 𝑛 waypoints for 𝑐 ≤ 1/3,
(2) Joint is constrained to 2 waypoints, and
(3) the given weight setting input to WPO is arbitrary, or it is the

standard setting from Definition 3.2.

The proof is in the Appendix A. We unify the lower bounds from
Theorems 3.4 and 3.15 (restricting𝑊 ≤ 2) as follows:

Corollary 3.16. WhenWPO is constrained to a constant number

of waypoints (per demand) at least𝑊 , and Joint is constrained to

at most𝑊 waypoints, the TE gap (Definition 3.3) satisfies 𝑅∗ ∈ Ω(𝑛)
for𝑊 = 1, and 𝑅∗ ∈ Ω(𝑛 log𝑛) for𝑊 = 2.

4 UPPER BOUNDING THE GAP

In this section, we compare optimal values in Joint and LWO
by studying the worst case of the ratio LWO/Joint and its upper
bounds. This ratio is at least 1 since any feasible solution to LWO is
feasible also in Joint for𝑊 = 0 (no waypoints). We consider only
single source-target demands in this section.

First, we restate a helper lemma from [15]. Given a directed
acyclic graph (DAG) 𝐺 , it ensures a weight setting on 𝐺 such that
the ECMP-flow under this weight setting assigns positive flows to
all links of𝐺 , i.e., every link is on a shortest path to the target node.

Lemma 4.1 (Lemma 2.5 in [15]). Assume a given DAG 𝐺 contain-

ing nodes 𝑠 and 𝑡 without any incoming link to 𝑠 and outgoing link

from 𝑡 . There exists a weight setting for 𝐺 such that the DAG of the

induced ECMP-flow is identical to 𝐺 .

4.1 Uniform Capacities

We show that with uniform link capacities, applying LWO is suffi-
cient to obtain the optimal MLU (Theorem 4.2). This immediately
concludes the TE gap 𝑅∗ = LWO/Joint = 1.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

Theorem 4.2. Given a network and a list of demands D between

the same source and target nodes, if the capacity of all links are equal

(i.e. uniform) then LWO = OPT.

Proof. Assume all links have the capacity 𝐶 . We denote the
capacity of a minimum cut between 𝑠 and 𝑡 by cut(𝑠, 𝑡). Thus,
OPT ≥ D/cut(𝑠, 𝑡). By Menger’s theorem [24], there exists a set
of link-disjoint paths (corresponding to an acyclic maximum flow)
denoted by P from 𝑠 to 𝑡 such that 𝐶 · |P | = cut(𝑠, 𝑡). Therefore,
OPT ≥ 𝐷/(𝐶 · |P |). We refer to paths in P as basic paths.

We construct a ES-flow that is feasible for LWO, then we show
that the MLU under this flow is optimal, that is, LWO = OPT. Con-
sider the DAG𝐺 := ∪𝑃 ∈P𝑃 obtained by taking the union of all basic
paths in P. By applying Lemma 4.1 to 𝐺 , we obtain link weights
such that every path in P is a shortest path to 𝑡 . We set the weight
of every other link N \𝐺 to a number sufficiently large in order to
ensure only links of basic paths are on a shortest path to 𝑡 . Let F be
the ES-(𝑠, 𝑡)-flow in 𝐺 (splitting evenly over links of basic paths).

Next, we show that F assigns the same flow size 𝐷/|P| to every
link that belongs to any shortest path to 𝑡 . The aggregate ES-flow
at 𝑠 splits evenly over all the outgoing links of 𝑠 that are on a basic
path (i.e. links in 𝐺). Hence, the flow on each of these outgoing
links is of size D/|P|. We show by induction that the flow on
every other link is 𝐷/|P| as well. Consider the topologically sorted
ordering of nodes 𝑣1 = 𝑠, . . . , 𝑣𝑛 = 𝑡 in 𝐺 . Assume the load on each
outgoing links of every node 𝑣 𝑗 , 𝑗 < 𝑖 < 𝑛 is D/|P|. That is, the
load on each link incoming to 𝑣𝑖 is 𝐷/|P|. We show the same flow
size is assigned the outgoing links of 𝑣𝑖 . The number of incoming
links equals the number of outgoing links at 𝑣 , as otherwise some
basic paths share the same (incoming/outgoing) link of 𝑣𝑖 , which
contradicts the assumption they are link-disjoint. Therefore, each
outgoing link carries a flow of size 𝐷/|P| concluding our claim.

Thus, every link that belongs to a basic path (i.e. to 𝐺) carries a
portion of the aggregate flow of the size 𝐷/|P|, which implies the
maximum utilization in F is (𝐷/|P|)/𝐶 = 𝐷/(𝐶 · |P |) = OPT. □

Consider any maximum (𝑠, 𝑡)-flow 𝑓 ∗ and its decomposition into
set of paths P s.t.

∑
𝑃 ∈P 𝑐 (𝑝) = |𝑓 ∗ | (by flow decomposition theorem

in [25]). We provide upper bounds for the TE gap in the number of
paths in a flow decomposition and also in the number of links.

Theorem 4.3. Given the flow decomposition P of any maximum

(𝑠, 𝑡)-flow, the optimality gap for an optimal weight setting satisfies

𝑅LWO ≤ |P| ≤ |𝐸 |.

Proof. Let 𝑝max ∈ P be the path with the largest capacity in
the flow decomposition P and let 𝑐 (𝑝max) be its capacity, i.e., the
capacity of the weakest link on 𝑝max. Set the weight of every link in
𝑝max to 1 and the weight of every other link to 𝑛. Therefore, 𝑝max

is the unique shortest (𝑠, 𝑡)-path in N . The MLU under this weight
setting is 𝐷/𝑐 (𝑝max) and

LWO ≤ 𝐷

𝑐 (𝑝max)
=

|P | · 𝐷
|P | · 𝑐 (𝑝max)

≤ |P| · 𝑐 (𝑝max)∑
𝑃 ∈P 𝑐 (𝑝)

=
|P | · 𝐷
|𝑓 ∗ | ≤ |P| · OPT(P).

s

v1

v2

v3

t1
2

1
2

1
2

1
4

1
2

1
4

3
4

(a)

𝑒𝑐 (𝑡) = ∞
𝑒𝑐 (𝑣1) = 1

2
𝑒𝑐 (𝑣2) = 2 × 1

4
𝑒𝑐 (𝑣3) = 3

4
𝑒𝑐 ((𝑠, 𝑣1)) = 𝑒𝑐 (𝑣1) = 1

2
𝑒𝑐 ((𝑠, 𝑣2)) = 𝑒𝑐 (𝑣2) = 1

2
𝑒𝑐 ((𝑠, 𝑣3)) = 𝑒𝑐 (𝑣3) = 3

4
𝑒𝑐 (𝑠) = 3 × 𝑒𝑐 ((𝑠, 𝑣1)) = 3

2
|𝑓 ∗ | = 3

2 = 𝑒𝑐 (𝑠)

s

v1

v2

v3

v4

t

1

1
2

1
6

1
3

1
3

2
3

1
2

1

(b)

𝑒𝑐 (𝑡) = ∞
𝑒𝑐 (𝑣3) = 1

2
𝑒𝑐 (𝑣4) = 1
𝑒𝑐 (𝑣1) = 2 × 1

6 = 1
3

𝑒𝑐 (𝑣2) = 2 × 1
3 = 2

3
𝑒𝑐 ((𝑠, 𝑣1)) = 𝑒𝑐 (𝑣1) = 1

3
𝑒𝑐 ((𝑠, 𝑣2)) = 𝑒𝑐 (𝑣2) = 2

3
𝑒𝑐 (𝑠) = 2 × 𝑒𝑐 ((𝑠, 𝑣1)) = 2

3
|𝑓 ∗ | = 3

2 = 2.25 × 𝑒𝑐𝑡 (𝑠)

Figure 3: Two examples illustrating the effective capacity

of nodes and links from Definition 5.1. The label of each

link represents its capacity which for simplicity is chosen

to be also its usable capacity, i.e., the value assigned by a

maximum (𝑠, 𝑡)-flow 𝑓 ∗. In (3a), the effective capacity of the

node 𝑠 equals its usable capacity. In (3b), the effective capacity

of 𝑠 is less than half of its usable capacity.

It is known from the flow decomposition theorem that |P | ≤ |𝐸 |.
Thus, we conclude

𝑅LWO =
LWO
Joint

≤ LWO
OPT

≤ |P| ≤ |𝐸 |. □

Note that Theorem 4.3 refines Theorem 3.15 for sparse networks,
as it eliminates the logarithmic factor when |𝐸 | ∈ 𝑂 (𝑛).

4.2 General Networks

For networks on arbitrary graphs, arbitrary capacities, and single
source-target demands, we show that the gap ratio is bounded
above by a factor in 𝑂 (𝑛 log𝑛) (Corollary 4.4). This immediately
implies our lower bound in Theorem 3.15 is asymptotically tight.

In Section 5, we introduce the algorithm LWO-APX that approx-
imates the optimal weight setting within a factor in 𝑂 (𝑛 log𝑛) of
the optimal setting (Theorem 5.4). This bound implies

𝑅LWO =
LWO
Joint

≤ LWO
OPT

≤ LWO-APX
OPT

∈ 𝑂 (𝑛 log𝑛) .

Hence, the following corollary follows immediately.

Corollary 4.4. If all demands share the same source-target pair

and Joint can assign an arbitrary number of waypoints to any de-

mand (i.e.,𝑊 = 𝑛), then 𝑅∗ ∈ 𝑂 (𝑛 log𝑛).

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

5 APPROXIMATING OPTIMALWEIGHTS

We introduce an approximation algorithm for LWO (Algorithm 1)
that computes a weight setting for instances where all demands
are defined between the same source-target pair (𝑠, 𝑡). We fix an
acyclic maximum (𝑠, 𝑡)-flow denoted by 𝑓 ∗. The capacity of a link
may be arbitrarily larger than |𝑓 ∗ | (the size of the flow). To obtain
minimal capacities without decreasing the flow size, we redefine
the capacity of each link ℓ as 𝑐∗ (ℓ) = 𝑓 ∗ (ℓ), i.e., the fraction of the
flow through ℓ , and we refer to it as usable capacity. Next, we refine
the notion of usable capacity and define a notion of capacity for
nodes and links that is minimal for maximal ES-(𝑠, 𝑡)-flows.

Effective Capacity. Informally, the effective capacity (e-capacity)

of a node 𝑣 with respect to the target node 𝑡 , denoted by 𝑒𝑐𝑡 (𝑣), is
the size of the maximal ES-flow from 𝑣 to 𝑡 subject to 𝑐∗. Since the
flow splits evenly at 𝑣 , an outgoing link of 𝑣 having the smallest e-
capacity determines the size of the maximal ES-flow feasible from 𝑣 .
The e-capacity of a node 𝑣 is equal to the smallest e-capacity of
links in 𝑜𝑢𝑡𝐺 (𝑣) = {ℓ | ℓ = (𝑣, ∗)} times the out-degree of 𝑣 denoted
by 𝛿𝐺 (𝑣) = |𝑜𝑢𝑡𝐺 (𝑣) |. The e-capacity of a link ℓ = (∗, 𝑢) is bounded
by the e-capacity of 𝑢 and 𝑐∗ (ℓ), i.e., the size of the maximum (𝑠, 𝑡)-
flow through ℓ subject to the original capacities 𝑐 . We define the
notation 𝑒𝑐𝑡 formally as follows.

Definition 5.1. Assume a network 𝑁 = (𝐺, 𝑐), source-target pair
(𝑠, 𝑡), and an acyclic maximum (𝑠, 𝑡)-flow 𝑓 ∗ are given. Let 𝐺∗

be the acyclic subgraph of 𝐺 consisting of links with a positive
flow under 𝑓 ∗. Let 𝑐∗ (ℓ) = 𝑓 ∗ (ℓ) be the usable capacity for each
link ℓ . We define the effective capacity of all nodes and links w.r.t 𝑡
inductively. We define 𝑒𝑐𝑡 (𝑡) = ∞. Assume the effective capacity
of all outgoing links of a node 𝑣 ≠ 𝑡 is already determined. Then

• 𝑒𝑐𝑡 (𝑣) = 𝛿𝐺∗ (𝑣) ×minℓ′=(𝑣,∗) 𝑒𝑐𝑡 (ℓ ′),
• ∀ℓ = (∗, 𝑣) : 𝑒𝑐𝑡 (ℓ) = min{𝑐∗ (ℓ), 𝑒𝑐𝑡 (𝑣)}.

We use 𝑒𝑐 (.) in place of 𝑒𝑐𝑡 (.) when 𝑡 is clear from the con-
text. Definition 5.1 is also an algorithm that computes the size of
a ES-flow from every node to the target node 𝑡 . This algorithm is
embedded in Algorithm 1, which computes an approximately maxi-
mum ES-flow. Figure 3 illustrates the distinction between the usable
capacity of nodes and links, i.e., the size of the maximum (𝑠, 𝑡)-flow
feasible through them, and their e-capacity. In both examples, the
e-capacity of each link connected to 𝑡 equals its usable capacity.
The e-capacity of the remaining links and nodes are obtained in
a backward traversal starting from 𝑡 . Observe that in Figure 3b,
there are two choices at 𝑣1: splitting the flow evenly over its two
outgoing links yields the same e-capacity as not splitting and using
only the link with larger e-capacity. Therefore in such cases, we
break ties arbitrarily, e.g., by always splitting. In contrast, if we
split the flow evenly at 𝑣2 then the size of the maximum ES-flow
is limited to 2 × 1/4 = 1/2, while not splitting allows for a larger
ES-flow of size 2/3 from 𝑣2. Algorithm 1 selects a subset of outgoing
links at every node such that splitting the flow evenly over these
links yields an approximately optimal ES-flow.

Now we describe Algorithm 1 (LWO-APX), which employs Defi-
nition 5.1 for computing an approximately optimal weight setting.
The algorithm works in two stages. The first stage (Lines 5–10)
computes an ES-flow with a size at least ≈ |𝑓 ∗ |/𝑛 log𝑛. It begins

Algorithm 1: Algorithm LWO-APX

Input :directed network N , nodes 𝑠 and 𝑡
Output :weight setting 𝐸 ↦→ R+
// initialization

1 Let 𝐺∗ denote the subgraph of 𝐺 consisting of links ℓ with
positive flow 𝑐∗ (ℓ) = 𝑓 ∗ (ℓ) > 0 in an acyclic maximum
(𝑠, 𝑡)-flow 𝑓 ∗.

2 Let 𝑣1, . . . , 𝑣𝑛 , where 𝑣1 = 𝑡, 𝑣𝑛 = 𝑠 , be nodes of 𝐺∗ sorted in
the reverse topological ordering, and let 𝛿𝑖 = 𝛿𝐺∗ (𝑣𝑖)
denote the number of 𝑣𝑖 ’s outgoing links in 𝐺∗.

3 Initialize 𝑒𝑐 : 𝑉 ↦→ R+ for assigning effective capacities.
// maximizing the e-capacity of 𝑠

4 Set 𝑒𝑐 (𝑡) = ∞ ; // the e-capacity of 𝑡

5 for 𝑖 = 2 to 𝑖 = 𝑛 do // for each node 𝑣𝑖 ≠ 𝑡

6 Let ℓ1, . . . , ℓ𝛿𝑖 ; ℓ𝑗 ∈ 𝑜𝑢𝑡 (𝑣𝑖) be the outgoing links of 𝑣𝑖
sorted s.t. 𝑒𝑐 (ℓ1) ≥ · · · ≥ 𝑒𝑐 (ℓ𝛿𝑖).

7 Let 𝑗∗ = argmax1≤ 𝑗≤𝛿𝑖 { 𝑗 · 𝑒𝑐 (ℓ𝑗)}.
8 𝑒𝑐 (𝑣𝑖) = 𝑗∗ · 𝑒𝑐 (ℓ𝑗∗) ; // e-capacity of 𝑣𝑖

9 ∀ℓ ∈ 𝑖𝑛(𝑣𝑖) : 𝑒𝑐 (ℓ) = min{𝑐∗ (ℓ), 𝑒𝑐 (𝑣𝑖)}
//removing links of low e-capacity

10 𝐺∗ = 𝐺∗ \ {ℓ𝑗∗+1, . . . , ℓ𝛿𝑖 }
11 return the weight setting for 𝐺∗ from Lemma 4.1.

with computing an acyclic maximum (𝑠, 𝑡)-flow and its correspond-
ing DAG 𝐺∗. Then each iteration 𝑖 removes certain outgoing links
of 𝑣𝑖 from𝐺∗ to optimize the ES-flow from 𝑣𝑖 . Specifically, for each
node 𝑣𝑖 in the reverse topological ordering of nodes of𝐺∗, the algo-
rithm at Line 7 selects a subset of outgoing neighbors such that the
effective capacity of 𝑣𝑖 is (locally) maximized. Then it removes the
remaining outgoing links of 𝑣𝑖 from𝐺∗. Note that at each iteration,
the effective capacity of all outgoing links has been determined
in previous iterations. After all these iterations, 𝐺∗ reduces to a
possibly sparser DAG where the size of the ES-flow on this DAG
is within our approximation guarantee. The second stage (Line 11)
produces a weight setting that realizes the ES-flow computed in
the first stage.

5.1 Analysis

We first show that at the end of the 𝑖th iteration, the e-capacity
of 𝑣𝑖 may be smaller than the sum of children’s e-capacity by at
most a logarithmic factor. Equivalently, the 𝑖th iteration reduces the
size of the maximal ES-flow from 𝑣𝑖 to 𝑡 by a logarithmic factor of
its out-degree 𝛿𝐺∗ (𝑣𝑖). Intuitively, the algorithm takes the optimal
flow (with optimal flow-splits) and in |𝑉 | iterations transforms it
into a flow that splits evenly everywhere. Each iteration yields
an intermediate flow with one more even-splitting node than the
previous flow; this is the reason behind the capacity reduction.
The worst-case of this reduction occurs when e-capacities of the
outgoing links of 𝑣𝑖 constitute a harmonic series. The following
lemma and its proof formalize the idea.

Lemma 5.2. Consider the DAG 𝐺∗
of the maximum (𝑠, 𝑡)-flow

(Line 1.1). The total effective capacity of 𝑣𝑖 ’s outgoing links in 𝐺
∗
is

at most a logarithmic factor larger than 𝑣𝑖 ’s effective capacity. That

is,

∑
ℓ=(𝑣𝑖 ,∗) 𝑒𝑐 (ℓ) ≤ ⌈ln(𝛿𝐺∗ (𝑣𝑖))⌉ · 𝑒𝑐 (𝑣𝑖).

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

Proof. Consider the outgoing links of 𝑣𝑖 in the non-decreasing
order of their effective capacities at line 1.6. The algorithm at line 1.7
selects the first 𝑗∗ values in this ordering s.t. 𝑒𝑐 (𝑣𝑖) = 𝑗∗ · 𝑒𝑐 (ℓ𝑗∗) is
maximized. Thus, for each outgoing link at ℓ𝑗 , we have 𝑗 · 𝑒𝑐 (ℓ𝑗) ≤
𝑗∗ · 𝑒𝑐 (ℓ𝑗∗) and

𝑒𝑐 (ℓ𝑗) ≤ (1/ 𝑗) · 𝑗∗ · 𝑒𝑐 (ℓ𝑗∗) = (1/ 𝑗) · 𝑒𝑐 (𝑣𝑖). (5.1)

The total effective capacity of all outgoing links of 𝑣𝑖 is∑︁
1≤ 𝑗≤𝛿𝐺∗ (𝑣𝑖)

𝑒𝑐 (ℓ𝑗) ≤ 𝑒𝑐 (𝑣𝑖) ·
∑︁
1≤ 𝑗≤𝛿𝐺∗ (𝑣𝑖)

(1/ 𝑗) ≤ 𝑒𝑐 (𝑣𝑖) · ⌈ln(𝛿𝐺∗ (𝑣𝑖))⌉,

which follows from (5.1) and the fact
∑
1≤𝑦≤𝑧 ≈ ln(𝑧). □

The effective capacity of the source node determines the MLU
under the weight setting computed by Algorithm 1. We show that
the effective capacity of 𝑠 may be smaller than its usable capacity,
i.e. the size of the maximum (𝑠, 𝑡)-flow, by at most the factor 𝑛 log𝑛.
That is, we show 𝑐 (𝑠) ≤ 𝑛 log𝑛 · 𝑒𝑐 (𝑠), which implies the approxi-
mation factor 𝑛 log𝑛. Recall that 𝑒𝑐 (𝑢), the effective capacity at the
node 𝑢, is the size of the maximum ES-flow from 𝑢 to 𝑡 . Next, we
show that 𝑒𝑐 (𝑠) may be smaller than the usable capacity from 𝑠 to 𝑡
at most by the factor that depends on the number of nodes 𝑛.

Lemma 5.3. Let Δ∗
denote the largest splitting factor of the maxi-

mum (𝑠, 𝑡)-flow 𝑓 ∗ in N . Then,

|𝑓 ∗ | ≤ 𝑛 · ⌈ln(Δ∗)⌉ · 𝑒𝑐𝑡 (𝑠) .

Proof Idea. Recall that each iteration (Line 5) determines the e-
capacity of a node 𝑣𝑖 , which by Lemma 5.2 may be smaller than
the 𝑒𝑐 of 𝑣𝑖 ’s children by a logarithmic factor of their number. We
interpret each iteration (Line 5) as a process that reduces the usable
capacity at 𝑠 . Consider the reverse of this process where we undo
the 𝑖th iteration by switching from even-split to optimal split at 𝑣𝑖 .
Before the reverse process, 𝑣𝑖 splits its flow evenly its usable capac-
ity is 𝑒𝑐 (𝑣𝑖). Afterward, 𝑣𝑖 splits optimally and its usable capacity
is
∑
𝑢∈𝑜𝑢𝑡 (𝑣𝑖) 𝑒𝑐 (𝑢) ≥ 𝑒𝑐 (𝑣𝑖). We upper bound the impact of each

reversed iteration on 𝑠 (for each 𝑣𝑖) in a formal proof in Appendix A.
We conclude the approximation factor of LWO-APX as follows.

Theorem 5.4. The weight setting from Algorithm 1 induces a max-

imum ECMP-flow smaller than the maximum (𝑠, 𝑡)-flow (i.e. OPT)

by at most a factor in 𝑂 (𝑛 log𝑛) .

Proof. Assume a given TE-instanceI = (N ,D,𝑤∗) comprising
a network N , a single source-target demand list D, and a weight
setting𝑤∗ from Algorithm 1.

Let Δ∗ be the largest out-degree in N . Let LWO-APX(I) de-
note the MLU under the ECMP-flow induced by 𝑤∗. Recall that
OPT(I) = 𝐷/|𝑓 ∗ | is the MLU under the optimal (arbitrary split)
flow, where |𝑓 ∗ | is the size of the maximum (𝑠, 𝑡)-flow.

By the definition of effective capacity, the MLU under 𝑤∗ is
LWO-APX(I) = 𝐷/𝑒𝑐 (𝑠). Then from Lemma 5.3 and the fact
that Δ∗ < 𝑛, we obtain LWO-APX(I) = 𝐷/𝑒𝑐 (𝑠) ≤

𝐷

|𝑓 ∗ |/(𝑛⌈ln(Δ∗)⌉) =
𝐷 · 𝑛⌈ln(𝑛)⌉

|𝑓 ∗ | = 𝑛 · ⌈ln(𝑛)⌉ · OPT(I),

which concludes the claim. □

Algorithm 2: JOINT-Heur
Input :network N , demand list D
Output :weight and waypoint settings

1 Run HeurOSPF [11] and let 𝜔 be the weight setting result.
2 Run GreedyWPO using 𝜔 to obtain a waypoint setting 𝜋 .
3 Replace each demand𝜓 = (𝑠, 𝑡, 𝑑) ∈ D with two new

demands: (𝑠, 𝜋𝜓 , 𝑑) and (𝜋𝜓 , 𝑡, 𝑑), and let D ′ be the new
demand list.

4 Run HeurOSPF on D ′ to obtain a new weight setting 𝜔 ′.
5 return 𝜔 ′ and 𝜋 .

Algorithm 3:Waypoint Selection (GreedyWPO)
input :network instance (N ,D), weight setting 𝜔
output :waypoint setting 𝜋 : D ↦→ 𝑉

1 Let𝑈𝑚𝑖𝑛 be the MLU of the ECMP-flow for D induced by 𝜔 .
2 for each demand𝜓 = (𝑠, 𝑡, 𝑑) ∈ D in the descending order of

demand sizes do

3 for each node𝑤 ∈ 𝑉 do // improving MLU greedily
4 Let D ′ := D \ {𝜓 } ∪ {(𝑠,𝑤, 𝑑), (𝑤, 𝑡, 𝑑)}.
5 Let𝑈 be the MLU under D ′ and induced by 𝜔 .
6 If𝑈 < 𝑈min then set 𝜋𝜓 = 𝑤 and𝑈min = 𝑈 .

7 return 𝜋 .

6 ALGORITHM FOR JOINT

As the Joint problem is NP-hard, we propose a polynomial-time
algorithm that employs an adaptation of the local search algorithm
of Fortz and Thorup [11] as a subroutine (referred as HeurOSPF).
Given a general demand list (arbitrary source-target pairs) and a
general network instance I = (N ,D), Algorithm 2 computes a
weight setting and a waypoint setting by running the two opti-
mizations separately and iteratively. While it is not exactly a joint
optimization, it is a first attempt to approximate Joint. Our experi-
ments show that even such a simplistic heuristic can improve the
utilization beyond what is feasible with weight optimization.

7 EMPIRICAL GAP OBSERVATIONS

In §3, we provided bounds on worst cases of the gap (ratio) between
Joint and LWO. In this section, we observe the gap on a collection of
real network topologies with real and synthetic traffic demands [18].
Test Environment. All simulations were executed on anHPDL380
G9 with 2x Intel Xeons E5-2697V3 SR1XF with 2.6 GHz, 14 cores
each, and a total of 128 GB DDR4 RAM. The host machine was run-
ning Ubuntu 18.04.4 LTS. We implemented the proposed algorithms
in Python (3.7.10) [26] leveraging the libraries NetworkX (2.5.1) [27],
NetworKit (8.1) [28] Numpy (1.20.3) [29], and SciPy (1.6.3) [30]. To
solve the MIPs/LPs we used Gurobi (9.1.2) [31].
Data Sources. For our simulations, we used real-world traffic data
and topology from SNDLib [32–34], which is provided in a stan-
dardized XML file format. SNDLib provides a large set of data for
the Abilene, Géant and Germany50 topologies consisting of traf-
fic matrices in various granularity levels. Our second real-world
source is TopologyZoo [35, 36] which provides only topology data

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Cost266 Germany50 Giul39 Janos-US-CA Myren Pioro40 Renater2010 SwitchL3 Ta2 Zib54

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

. N
or

m
al

iz
ed

 L
in

k
U

ti
li

za
ti

on

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F G
re

ed
yW

ay
po

in
ts

Jo
in

tH
eu

r

In
v.

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

In
v.

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F G
re

ed
yW

ay
po

in
ts

Jo
in

tH
eu

r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F
G

re
.

Jo
in

tH
eu

r

In
v.

H
eu

rO
SP

F
G

re
.

Jo
in

tH
eu

r

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F
G

re
ed

yW
ay

po
in

ts
Jo

in
tH

eu
r

MCF Synthetic Demands

Figure 4: MLU statistics from different algorithms on the 10 largest capacitated non-tree topologies from TopologyZoo and

SNDLib. Demands are generated using theMCF Synthetic method.

Abilene
1

2

3

4

5

6

M
ax

. N
or

m
al

iz
ed

 L
in

k
U

ti
li

za
ti

on

U
ni

tW
ei

gh
ts

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F

IL
P

 W
ei

gh
ts G

re
ed

yW
ay

po
in

ts

IL
P

 W
ay

po
in

ts

Jo
in

tH
eu

r

IL
P

 J
oi

nt

MCF Synthetic Demands

Figure 5: ComparingMILP Results to Heuristics.

in GraphML format. We selected topologies with capacity infor-
mation and used the latest version of a topology if multiple ones
exist. We synthesize traffic demands using the maximal concurrent
multi-commodity flow (MCF) [18] as follows.

Demand generation. Due to the proprietary nature of ISPs and
backbones we could not procure real traffic data. We extracted the
traffic data from research repositories and synthesized traffic for
the evaluation of arbitrary topologies.

MCF Synthetic Demands. In all our experiments with non-real de-
mands, we generated demands using the maximal multi-commodity
flow (MCF) formulated in [18]. We randomly select 20% of connec-
tion pairs and scale the demand between those as such that the
objective MLU computed by the MCF routing is 1. The resulting
demands are further split into smaller sub-demands so that each

Abilene Germany50 Géant

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

M
ax

. N
or

m
al

iz
ed

 L
in

k
U

ti
li

za
ti

on

In
ve

rs
eC

ap
ac

it
y

H
eu

rO
SP

F G
re

ed
yW

ay
po

in
ts

Jo
in

tH
eu

r

In
v.

H
eu

rO
SP

F

G
re

ed
yW

ay
po

in
ts

Jo
in

tH
eu

r

In
v.

H
eu

rO
SP

F

G
re

ed
yW

ay
po

in
ts

Jo
in

tH
eu

r

Scaled Real Demands

Figure 6: MLU under real demands and SNDLib topologies.

source-target pair has multiple equal-size flows. The number of
flows per pair scales with the topology size, or precisely, by |𝐸 |/4.

7.1 Comparing the different Algorithms

We now present our empirical results on the previously described
real-world and synthetic data. Each algorithm is evaluated with 10
sets of demands on each of the selected topologies.
Small Networks. The MILP formulation of Joint is presented
in [18]. Due to its complexity, we computed the optimal solutions
using the MILP solver only on Abilene with 12 nodes and 30 links.
We derive formulations for LWO and LWO from the Joint’s MILP
separately: for LWO, we simply set𝑊 = 0; forWPO, given a weight
setting 𝜔 ′, we add one constraint for each link ℓ : 𝜔ℓ = 𝜔 ′(ℓ). We
obtained optimal solutions from each MILP on small examples and
results are depicted in Figure 5. The average MLU forWPO, LWO,
and Joint respectively is 1.17, 1.04, and 1.03.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Max. Normalized Link Utilization

Joint

Weights

M
od

el

Figure 7: Nanonet Experiments: Joint vs. LWO

Large Networks In Figure 4, we evaluated the heuristic algo-
rithms on all topologies from TopologyZoo and SNDLib, which
provide complete link capacity information. The average MLU of
the naive algorithm InverseCapacity is 2.74 which improves to 1.65
using HeurOSPF (from [11]) and further to 1.58 using our JOINT-
Heur. The running time of our JOINT-Heur is longer than that of
HeurOSPF by up up 3min in the largest topology with |𝑉 | = 65
nodes. The improvements from applying a second weight optimiza-
tion (steps 3 and 4) is negligible. The first two stages of JOINT-Heur
(steps 1 and 2) are already sufficient for most of evaluated instances,
and the plots are obtained only from the first two steps.
Real Demands. In Figure 6, we evaluated the gap reduction on real
demands from SNDLib. Note that for real traffic demands, all con-
nection pairs are active, though a huge skew can be observed. The
average MLU of 1.11 using the best LWO heuristic, i.e. HeurOSPF,
improves to 1.05 using our joint optimization.
Discussion. In all of the experiments, theMCF is𝑀𝐿𝑈 = 1 sincewe
scale all demand sizes. Figure 5 shows that the Joint MILP achieves
an average MLU of 1.03, but its complexity prevents employing it on
larger network instances. Our JOINT-Heur improves the average
MLU on nearly all evaluated topologies compared to the LWO
heuristic HeurOSPF. Particularly, the instances using real demands
(Figure 6) indicate the potential of optimization utilizing waypoints
on top of conventional LWO techniques. Here we obtained an
average MLU of 1.05. The overhead execution time due to waypoint
setting is negligible compared to the execution time of HeurOSPF.

7.2 Nanonet Implementation

To further verify our model, we performed a small investigation
in Nanonet [37], a virtualized network environment conceptually
based off Mininet. Nanonet simulates network nodes by creating
network namespaces in the Linux kernel and (virtual) links between
them. Shortest path routes are calculated directly byNanonet, which
also supports ECMP. To achieve better splitting, Layer-4 hash was
used by setting net.ipv6.fib_multipath_hash_policy=1 on all
(virtual) nodes. In our experiments, we use the TE-Instance 1 with
optimal solutions for LWO and Joint and measure the link utiliza-
tion to obtain the MLU. For the Joint experiment, additional routes,
possibly including a segment, are added to the sources. As perfect
splitting is not the case due to the hash functions even with an L4
hash, we add four additional (pseudo) nodes, each for one flow. The
flows all start at the same time and run for 300 seconds. For the
throughput evaluation we use nuttcp 6.1.2, with 32 streams per
source and limit the bandwidth to the total demand size. Thus, for

Weights, the rate is set to 40 MBit/s with 32 parallel streams, and
in case of Joint the rate is set to 4 times 10 MBit/s with 32 parallel
streams each. The results of 10 executions of each test are depicted
in Figure 7. The results at Joint are relatively constant and match
the expected normalized value of 1 closely, with some deviation due
to, e.g., Neighbor Discovery Protocol packets. However, Weight has
a wider range beyond the expected MLU of 2, caused by the hash
function, where the flows are not split perfectly across the equal
cost routes. More precisely, Joint in our 10 test executions has
MLU results of approximately ≈ 1.0138, while Weight has a range
from ≈ 2.1439 to ≈ 2.5219, with a median of ≈ 2.2704. For the latter,
parallel equal cost routes have a roughly correspondingly reduced
link utilization. We hence conclude that the expected results are
closely matched in Nanonet, with some deviation caused by the L4
hash function.

8 CONCLUSION

Motivated by the traffic engineering flexibilities introduced by seg-
ment routing architectures, we studied analytically and empiri-
cally the benefit of jointly optimizing link weights and waypoints
(mathematically modeled as an optimality gap) to improve network
utilization. We showed that already in relatively simple settings,
the joint optimization can help significantly compared to individ-
ual optimizations: the achievable maximum link utilization can
be improved by a factor linear in the number of nodes 𝑛, respec-
tively even Ω(𝑛 log𝑛) for dense networks. We gave an 𝑂 (𝑛 log𝑛)
approximation algorithm for link-weight optimization in a single
source-target setting, which also serves as an upper bound for our
optimality gap, rendering the gap asymptotically tight.

To evaluate the gap empirically, we presented both a mixed-
integer linear program formulation and an efficient heuristic for
joint waypoint and weight optimization. Our heuristic is scalable
and provides fair utilization benefits over prior work, evaluated
on various real-world topologies. It would be interesting to see an
analysis for heuristics such as ours that combine the two optimiza-
tion strategies sequentially. We leave open questions: how well a
sequential approach can approximate the optimal Joint solution in
practical instances? How may iterations and how many waypoints
would be sufficient to achieve the best outcome within a reasonable
runtime? We also validate our model setting in a proof-of-concept
experiment in a Mininet-like environment.

Overall, we see our work as a first step towards unifying the
two TE strategies, and we believe that it opens several interesting
avenues for future work. We assumed static traffic demands and
focused on the worst-case analysis of the loss if the two optimiza-
tions are not performed jointly. It would be interesting to explore
TE algorithms that react to shifts in the traffic demand and account
for reconfiguration costs.

ACKNOWLEDGMENTS

This research received funding from the Austrian Science Fund
(FWF), grant I 4800-N (ADVISE), a joint D-A-CH project with DFG
in Germany. We would also like to thank our shepherd Sanjay Rao
and the reviewers for their valuable feedback.

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES

[1] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellectual
history of programmable networks. ACM SIGCOMM Computer Communication

Review, 44(2):87–98, 2014.
[2] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing

OSPF weights. In INFOCOM, pages 519–528. IEEE Computer Society, 2000.
[3] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski, and Rob

Shakir. Segment routing architecture. In IETF Internet-Draft, 2017.
[4] Clarence Filsfils, Pierre Francois, Stefano Previdi, Bruno Decraene, Stephane

Litkowski, Martin Horneffer, Igor Milojevic, Rob Shakir, Saku Ytti, Wim Hen-
derickx, Jeff Tantsura, Sriganesh Kini, and Edward Crabbe. Segment routing
architecture. In Segment Routing Use Cases, IETF Internet-Draft, 2014.

[5] Clarence Filsfils, Stefano Previdi, John Leddy, S. Matsushima, and D. Voyer. IPv6
Segment Routing Header (SRH). Internet-Draft draft-ietf-6man-segment-routing-
header-14, Internet Engineering Task Force, June 2018. Work in Progress.

[6] Pier Luigi Ventre, Stefano Salsano, Marco Polverini, Antonio Cianfrani, Ahmed
Abdelsalam, Clarence Filsfils, Pablo Camarillo, and François Clad. Segment
routing: A comprehensive survey of research activities, standardization efforts,
and implementation results. IEEE Commun. Surv. Tutorials, 23(1):182–221, 2021.

[7] Renaud Hartert. Fast and scalable optimization for segment routing. PhD thesis,
UCLouvain, 2018.

[8] FranÁois Aubry. Models and Algorithms for Network Optimization with Segment

Routing. PhD thesis, UCLouvain, 2020.
[9] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi. Experimental

demonstration of segment routing. Journal of Lightwave Technology, 34(1):205–
212, 2016.

[10] Randeep Bhatia, Fang Hao, Murali Kodialam, and TV Lakshman. Optimized
network traffic engineering using segment routing. In 2015 IEEE Conference on

Computer Communications (INFOCOM), pages 657–665. IEEE, 2015.
[11] Bernard Fortz and Mikkel Thorup. Increasing Internet Capacity Using Local

Search. Computational Optimization and Applications, 29(1):13–48, 2004.
[12] J. Moy. Ospf version 2. Technical report, April 1998.
[13] C. Hopps. Analysis of an equal-cost multi-path algorithm. rfc 2992. Technical

report, April 2000.
[14] Advait Abhay Dixit, Pawan Prakash, and Ramana Rao Kompella. On the efficacy

of fine-grained traffic splitting protocolsin data center networks. In SIGCOMM,
pages 430–431. ACM, 2011.

[15] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with
equal-cost-multipath: An algorithmic perspective. IEEE/ACM Transactions on

Networking, 25(2):779–792, 2017.
[16] Cisco. Configuring ospf. Technical report, April 1997.
[17] Michal Pióro, Áron Szentesi, János Harmatos, Alpár Jüttner, Piotr Gajowniczek,

and Stanislaw Kozdrowski. On open shortest path first related network optimi-
sation problems. Perform. Evaluation, 48(1/4):201–223, 2002.

[18] Thomas Fenz, Klaus-Tycho Förster, Mahmoud Parham, Stefan Schmid, and Niko-
laus Süß. Traffic engineering with joint link weight and segment optimization.
September 2021. https://whatif-tools.net/segment-routing.

[19] Xipeng Xiao, Alan Hannan, Brook Bailey, and Lionel M. Ni. Traffic engineering
with MPLS in the internet. IEEE Netw., 14(2):28–33, 2000.

[20] Sugam Agarwal, Murali S. Kodialam, and T. V. Lakshman. Traffic engineering in
software defined networks. In INFOCOM, pages 2211–2219. IEEE, 2013.

[21] Randeep Bhatia, Fang Hao, Murali S. Kodialam, and T. V. Lakshman. Optimized
network traffic engineering using segment routing. In INFOCOM, pages 657–665.
IEEE, 2015.

[22] Eduardo Moreno, Alejandra Beghelli, and Filippo Cugini. Traffic engineering in
segment routing networks. Computer Networks, 114:23–31, 2017.

[23] François Aubry, Stefano Vissicchio, Olivier Bonaventure, and Yves Deville. Ro-
bustly disjoint paths with segment routing. In CoNEXT, pages 204–216. ACM,
2018.

[24] Frank Göring. Short proof of menger’s theorem. Discret. Math., 219(1-3):295–296,
2000.

[25] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. 1993.
[26] Python 3.7.10, Last Accessed: 2021-06-28. https://www.python.org/downloads/

release/python-3710/.
[27] Networkx 2.5.1, Last Accessed: 2021-06-28. networkx.github.io/documentation/

networkx-2.5/.
[28] Networkit 8.1, Last Accessed: 2021-06-28. https://networkit.github.io/.
[29] Numpy 1.20.3, Last Accessed: 2021-06-28. https://numpy.org/devdocs/release/1.

20.3-notes.html.
[30] Scipy 1.6.3, Last Accessed: 2021-06-28. https://docs.scipy.org/doc/scipy/reference/

release.1.6.3.html.
[31] Gurobi optimizer 9.1.2, Last Accessed: 2021-06-28. https://support.gurobi.com/

hc/en-us/articles/360060235871-Gurobi-9-1-2-released.
[32] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski.

Sndlib 1.0 - survivable network design library. Networks, 55(3):276–286, 2010.
[33] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski.

Sndlib 1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[34] Sndlib, Last Accessed: 2021-01-05. http://sndlib.zib.de/home.action?show=/docu.
formats.gml.action.

[35] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Alistair Bowden, and
Matthew Roughan. The internet topology zoo. IEEE J. Sel. Areas Commun.,
29(9):1765–1775, 2011.

[36] Topology zoo, Last Accessed: 2021-01-05. http://www.topology-zoo.org/dataset.
html.

[37] David LeBrun. Virtual networks testing framework (nanonet), Last Accessed:
2021-06-28. https://github.com/segment-routing/nanonet.

https://whatif-tools.net/segment-routing
https://www.python.org/downloads/release/python-3710/
https://www.python.org/downloads/release/python-3710/
networkx.github.io/documentation/networkx-2.5/
networkx.github.io/documentation/networkx-2.5/
https://networkit.github.io/
https://numpy.org/devdocs/release/1.20.3-notes.html
https://numpy.org/devdocs/release/1.20.3-notes.html
https://docs.scipy.org/doc/scipy/reference/release.1.6.3.html
https://docs.scipy.org/doc/scipy/reference/release.1.6.3.html
https://support.gurobi.com/hc/en-us/articles/360060235871-Gurobi-9-1-2-released
https://support.gurobi.com/hc/en-us/articles/360060235871-Gurobi-9-1-2-released
http://sndlib.zib.de/home.action?show=/docu.formats.gml.action
http://sndlib.zib.de/home.action?show=/docu.formats.gml.action
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
https://github.com/segment-routing/nanonet

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Mahmoud Parham, Thomas Fenz, Nikolaus Süss, Klaus-Tycho Foerster, and Stefan Schmid

A DEFERRED PROOFS

Proof of Lemma 3.11. We set the weight 𝑚 to each pair of
links (𝑣𝑖 ,𝑤 𝑗) and (𝑤 𝑗 , 𝑣𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑚, and the weight 1 to every
other link. We assign two waypoints to each demand (𝑠, 𝑡, 1/ 𝑗) ∈ D
such that its flow is routed along a link (𝑣𝑖 ,𝑤 𝑗) which has the
matching capacity 1/ 𝑗 . Specifically, for the 𝑖th demand of size 1/ 𝑗 ,
we set 𝑣𝑖 ,𝑤 𝑗 as waypoints, to be visited in the same order. Under
these weights, the only shortest path to 𝑣𝑖 is 𝑠, 𝑣2, . . . , 𝑣𝑖 with a cost
at most𝑚, as any alternative path has a weight larger than 2𝑚. The
shortest path between each pair of waypoints 𝑣𝑖 and𝑤 𝑗 is the link
between them. Each node𝑤 𝑗 receives one flow of size 1/ 𝑗 via each
incoming link, which is then rerouted along the only shortest path
to 𝑡 of capacity 𝐷 . Thus, all capacities are respected and the MLU
under this weight and waypoint setting is 1. □

Proof of Lemma 3.12. We show the maximum ES-flow from
𝑠 to 𝑡 is 2. Let N denote the network in Figure 2b (Instance 2) and
N ′ denote the network in Figure 2a. Consider the sub-network
N𝑖 ⊂ N induced by the node set {𝑣𝑖 } ∪ {𝑤 𝑗 } 𝑗 in N . Recall that
each link (𝑣𝑖 ,𝑤 𝑗), 1 ≤ 𝑗 ≤ 𝑚, has the capacity 1/ 𝑗 ∈ 𝐻𝑚 , which
is also the size of the maximum ES-flow feasible through the link.
Observe that from the perspective of 𝑣𝑖 and the source node 𝑠 inN ′,
networks N𝑖 and N ′ are indistinguishable. Then, applying Lemma
3.10 toN𝑖 implies the size of every maximum even-split (𝑣𝑖 , 𝑡)-flow
𝑓𝑖 inN𝑖 is |𝑓𝑖 | = 1. Then, the size of the maximum ES-flow from 𝑣𝑚
to 𝑡 is 1. However, this is not the case for 𝑣𝑖′ , 𝑖 ′ < 𝑚, because of the
additional link (𝑣𝑖′, 𝑣𝑖′+1).

We show that at maximum, two units of ES-flow can be deliv-
ered from each 𝑣𝑖′ including 𝑣1 = 𝑠 . From 𝑣𝑚−1, the sub-network
N𝑚−1 can deliver 1 unit of ES-flow to 𝑡 . Another unit of ES-flow
can be delivered via the link (𝑣𝑚−1, 𝑣𝑚). Therefore, the size of the
maximum even-split (𝑣𝑚−1, 𝑡)-flow is 2, which is also the maximum
feasible quantity via the link (𝑣𝑚−2, 𝑣𝑚−1). At the node 𝑣𝑚−2, the
sub-network N𝑚−2 can deliver 1 unit in addition to 2 units via
the link (𝑣𝑚−2, 𝑣𝑚−1). Since the flow splits evenly, the size of the
maximum (𝑣𝑚−2, 𝑡)-ES-flow is 2. Repeating a similar argument for
nodes 𝑣𝑚−3, . . . , 𝑣1 implies the size 2 for the maximum (𝑠, 𝑡)-ES-
flow. Hence, satisfying all demands requires an ES-flow larger than
the maximum (feasible) ES-flow by the factor (𝑚 ln𝑚)/2. Applying
Lemma 3.11 yields 𝑅LWO = LWO/1 = (𝑚 ln𝑚)/2 ∈ Ω(𝑛 log𝑛). □

Proof of Lemma 3.13. We set the weight 𝑚 to each pair of
links (𝑣𝑖 ,𝑤 𝑗) and (𝑤 𝑗 , 𝑣𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑚, and the weight 1 to every
other link. We assign two waypoints to each demand, such that
its flow is routed along the link (𝑣𝑖 ,𝑤 𝑗) that has a matching capac-
ity. Specifically, for the 𝑗th demand of size 1/(𝑚 − 𝑖 + 1), we set
nodes 𝑣𝑖 ,𝑤 𝑗 as waypoints to be visited in the same order. Under
these weights, the only shortest path to 𝑣𝑖 is 𝑠, 𝑣2, . . . , 𝑣𝑖 with a cost
at most 𝑚, as any alternative path has a weight larger than 2𝑚.
The shortest path between each pair of waypoints 𝑣𝑖 and𝑤 𝑗 is the
link between them. Each node 𝑤 𝑗 receives𝑚 flows of harmonic
sizes, which is then routed along the unique shortest path to 𝑡 with
capacity 𝐷 , i.e., 𝑤 𝑗 , . . . ,𝑤𝑚 . Thus, no link is overloaded and the
MLU is 1 under this weight and waypoint settings. □

Proof of Lemma 3.14. In each of the given weight setting
cases, we show thatWPO cannot utilize a large part of the available
capacity (unless𝑊 ≥ 𝑚), while Joint can utilize all of this capacity

using only two waypoints and an appropriate weight setting. The
basic idea in all cases is as follows. Limited to𝑊 = 𝑐 · 𝑛 waypoints
for a constant 𝑐 . e.g. 𝑐 = 1/3, WPO distributes the load 𝐷 (i.e. total
demand size) over≈ 𝑛/3 of nodes 𝑣𝑖 (Figure 2b and 2c). Hence,WPO
manages to distribute the load over a number of parts𝑊 = 𝑛/3,
each part having a size ≈ 𝐷/𝑊 , implying the claim.

Next, we give our formal proof based off the aforementioned idea.
We observe the optimal MLU inWPO on the instance I4 (Figure 2c)
and under each assumed weight setting separately.
Arbitrary Weights. For any 𝜖 < 1/2, set the weight 𝜖 for links
(𝑠,𝑤1), (𝑤1, 𝑣𝑖) and (𝑣𝑖 ,𝑤𝑖), 1 ≤ 𝑖 ≤ 𝑚, and the weight 1 for every
other link. Under this weight setting, the shortest path from 𝑠 to
every other node starts with the link (𝑠,𝑤1). Therefore, in any
waypoint setting, the link (𝑠,𝑤1) receives the entire load 𝐷 , and
WPO = 𝐷/(1/𝑚) = 𝐷 ·𝑚 ≥ 𝑚2 ln𝑚.
UniformWeights. Assume w.l.o.g. the weight of every link is 1.
In this setting, for any node 𝑣𝑖 ∉ {𝑠, 𝑣2}, all links (𝑠,𝑤 𝑗) are on
shortest paths from 𝑠 to 𝑣𝑖 . However, by inserting waypoints, flows
can be routed away from these links. The shortest path from 𝑣𝑖
to 𝑣𝑖+1 is the link (𝑣𝑖 , 𝑣𝑖+1). Hence, WPO may route a flow to a
node 𝑣𝑘 , 𝑘 ≤ 𝑊 + 1, via the path 𝑠, 𝑣2, . . . , 𝑣𝑘 , using 𝑘 − 1 ≤ 𝑊

waypoints: 𝑣2, . . . , 𝑣𝑘 . From 𝑣𝑘 ,WPO may split flows optimally at
this node using one additional waypoint which is a node𝑤 𝑗 . The
capacity of each link emanating from 𝑣𝑘 is 1/(𝑚 −𝑘 + 1). Therefore
the maximum (arbitrary-split) flow feasible from 𝑣𝑘 to 𝑡 is at most
𝑚/(𝑚 −𝑘 + 1) < 𝑚/(𝑚 −𝑊). We refer to the latter as the available
capacity at 𝑣𝑘 .

Hence, using up to𝑊 = 𝑐 · 𝑛 < 𝑚 waypoints in an optimal
waypoint setting for 𝑐 ≤ 1/3, WPO may distribute the set of flows
(of total size 𝐷 =𝑚 log𝑚) over nodes 𝑣1, . . . , 𝑣𝑊 proportionally to
their available capacities in 1, . . . ,𝑚/(𝑚−𝑊 +1), before forwarding
it to 𝑡 via the upper (horizontal) path. Therefore, the size of the
maximum (𝑠, 𝑡)-ES-flow via at most 𝑊 waypoints (per flow) is
at most𝑊 ·𝑚/(𝑚 −𝑊 + 1), and

WPO ≥ 𝑚 · ln𝑚
𝑊 ·𝑚/(𝑚 −𝑊 + 1) =

(𝑚 −𝑊 + 1) · ln𝑚
𝑊

∈ Ω(𝑛 log𝑛
𝑊

),

since (𝑚 −𝑊) ≥ (𝑛/2 − 𝑛/3) ∈ Ω(𝑛).
Inverse of Capacities. In this case, the weight of each link equals
the reciprocal of its capacity. That is, the weight of every link
(𝑣𝑖 , 𝑣𝑖+1) is 1/𝐷 , and every other links has the weight 1. Similarly
to the construction in Section 3.2, and replace the two links (𝑠, 𝑣2)
and (𝑣2, 𝑣3) with 𝐷 (parallel) paths each comprising two new links
with the capacity 1. As a result, the cost of the shortest path from 𝑠

to 𝑣𝑖 , 𝑖 ≥ 3 is larger than 2, which makes the path through 𝑤 𝑗 (of
cost 2) a shortest path to nodes 𝑣𝑖 , 𝑖 ≥ 3, overloading links (𝑠,𝑤 𝑗).
It is not difficult to see that an argument analogously as in the case
of unit weights follows from here and that 𝑅WPO ∈ Ω(𝑛 log𝑛/𝑊).
Optimal Weights.We show Lemma 3.14.ii for TE-Instance I3.
By Lemma 3.12, a maximum of 2 ES-flow units is feasible from
any 𝑣𝑖 , 𝑖 < 𝑚 to 𝑡 . We set link weights realizing such optimal ES-
flow. Let 𝜀 = 1/(2(𝑚 + 1)). Consider the weight setting:

• the weight 2𝜀 to the link (𝑠,𝑤1),
• the weight 𝜀 to the link (𝑣2,𝑤1),
• the weight 𝜀 to links (𝑣𝑖 , 𝑣𝑖+1), (𝑤𝑖 ,𝑤𝑖+1), (𝑤1, 𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑚,
• and the weight 1 (or larger) to every other link.

Traffic Engineering with Joint Link Weight and Segment Optimization CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Under this setting, both of the unit-capacity paths 𝑠,𝑤1,𝑤2, . . . , 𝑡
and 𝑠, 𝑣2,𝑤1,𝑤2, . . . , 𝑡 are shortest paths from 𝑠 to 𝑡 with the equal
cost (𝑚 + 1) · 𝜀 = 1/2. Via these two paths, 2 units of flow can split
equally at 𝑠 and arrive at 𝑡 without overloading any link, implying
the weight setting is optimal for LWO (Lemma 3.12).

Observe that for any node 𝑢 ∉ {𝑠, 𝑣2, 𝑣3}, the link (𝑠,𝑤1) is
always on a shortest path from 𝑠 to 𝑢, and at least half of the flow
from 𝑠 to 𝑢 traverses through this link. In general, for any node
𝑢 ∉ {𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑖+2}, the link (𝑣𝑖 ,𝑤1) is always on a shortest path
from 𝑣𝑖 to𝑢, and at least half of a flow from 𝑣𝑖 to𝑢 traverses through
this link (the half flow is the case only for the flow to 𝑣𝑖+3).

Therefore, by setting nodes 𝑣2 or 𝑣3 as the first waypoint, WPO
can distribute the entire load𝐷 equally on nodes {𝑠, 𝑣2, 𝑣3}. Each ad-
ditional waypoint increases extend of the reach two more 𝑣𝑖 nodes.
In general, using 𝑘 ≤ 𝑊 waypoints 𝑣2, 𝑣4, . . . , 𝑣2𝑘 for a demand,
its flow reaches the node 𝑣2𝑘 , and then takes the link (𝑣2𝑘 ,𝑤1) to-
wards 𝑡 . Hence, we can distribute the total load equally over 2𝑘
nodes {𝑠, . . . , 𝑣2𝑘 }, to be then delivered to 𝑡 via the (upward) link
connected to 𝑤1. Thus, under an optimal waypoint setting, the
aggregate flow splits into 2𝑘 + 1 equal-size subset of unit-size flows,
and the load on each link (𝑣𝑖 ,𝑤1) is 𝐷/(2𝑘 + 1) ≥ 𝐷/(2𝑊 + 1).
Since the capacity of links connected to𝑤1 is 1, the maximum link
utilization is at least𝑚 ln(𝑚)/(2(𝑊 + 1)) ∈ Ω(𝑛 log𝑛/𝑊), which
concludes Lemma 3.14.ii.

Since Joint = 1 due to Lemma 3.13, in all the assumed weight
settings, 𝑅WPO = WPO/1 ∈ Ω(𝑛 log𝑛/𝑊). □

Proof of Theorem 3.15. Let I3, I4 and I5 denote, respec-
tively, TE-instances 3, 4 and 5. Let N3, N4 and N5 denote their
respective network instances. Recall that N5 contains N3 and N4
as sub-networks. Any (𝑠, 𝑡)-flow in N5 first traverses through the
sub-network N3 and then through N4 before reaching its target 𝑡 .
Moreover, the flow can traverse only in one direction between
the two sub-networks, that is, via the connecting link (𝑡3, 𝑠4) (see
Instance 5). Hence, the optimal weight setting for I5 consists of
two separate optimal weight settings for the two sub-instances.
Therefore, by Lemma 3.12, the gap 𝑅LWO under the optimal weight
setting is 𝑅LWO (I5) ≥

max{𝑅LWO (I3), 𝑅LWO (I4)} ≥ 𝑅LWO (I3) ∈ Ω(𝑛 log𝑛/𝑊) .
Similarly, for the gap 𝑅WPO under an optimal waypoint setting,
we have 𝑅WPO (I5) ≥ max{𝑅WPO (I3), 𝑅WPO (I4)}. If the given
weight setting is arbitrary, uniform, or inverse of capacities, then by
Lemma 3.14.i, 𝑅WPO (I5) ≥ 𝑅WPO (I4) ∈ Ω(𝑛 log𝑛/𝑊). Otherwise,
the given weight setting is the optimal one from LWO, in which case
Lemma 3.14.ii implies 𝑅WPO (I5) ≥ 𝑅WPO (I3) ∈ Ω(𝑛 log𝑛/𝑊). By
Definition 3.3, the instance I5 implies the TE gap

𝑅∗ ≥ min{𝑅LWO (I5), 𝑅WPO (I5} ∈ Ω(𝑛 log𝑛/𝑊) . □

Proof of Lemma 5.3. Consider all nodes sorted in the reverse
topological ordering of the DAG 𝐺∗ (Line 1.2). We define a succes-
sion of capacity assignments 𝑐1, . . . , 𝑐𝑛 as follows. We let 𝑐𝑛 = 𝑐 (the
original capacity assignment). Under the 𝑖th capacity assignment
for 2 ≤ 𝑖 ≤ 𝑛, the capacity of each link ℓ ∈ 𝑜𝑢𝑡 (𝑣 𝑗), 1 ≤ 𝑗 ≤ 𝑛, is

𝑐𝑖 (ℓ) =
{
minℓ′∈𝑜𝑢𝑡 (𝑣𝑗) 𝑒𝑐 (ℓ ′) for 𝑗 > 𝑖,

𝑐 (ℓ) for 𝑗 ≤ 𝑖 .

That is, if 𝑗 < 𝑖 then the 𝑐𝑖 capacity of every outgoing link of 𝑣 𝑗
equals the smallest e-capacity of these links. Else, 𝑗 ≥ 𝑖 and all
these links have their original capacities. Let 𝑓 𝑖 be the maximum
(𝑠, 𝑡)-flow in the network (𝐺∗, 𝑐𝑖). Note that 𝑓 𝑖 splits optimally at
nodes 𝑣1, . . . , 𝑣𝑖 , and it splits evenly at nodes 𝑣𝑖+1, . . . , 𝑣𝑛 . Hence, 𝑓 1
splits evenly at every node, which implies |𝑓 1 | = 𝑒𝑐 (𝑠). Moreover,
𝑓 𝑛 splits optimally at every node and |𝑓 𝑛 | = |𝑓 ∗ |. Trivially, the
maximum flow does not decrease when link capacities increase.
Therefore, these flows satisfy

𝑒𝑐 (𝑠) = |𝑓 1 | ≤ · · · ≤ |𝑓 𝑛 | = |𝑓 ∗ |. (A.1)

Next, we bound the increase in the maximum flow between con-
secutive flows 𝑓 𝑖 and 𝑓 𝑖−1. Recall that every flow in 𝑓 1, . . . , 𝑓 𝑖−1

splits evenly at 𝑣𝑖 , and every flow in 𝑓 𝑖 , . . . , 𝑓 𝑛 splits optimally at 𝑣𝑖 .
Intuitively, the increase of flow specified by |𝑓 𝑖 | − |𝑓 𝑖−1 | is due to
switching to the optimal splitting at 𝑣𝑖 , i.e., due to the increase of the
flow passing through 𝑣𝑖 . For flows that split evenly at 𝑣𝑖 , we have
𝑓 𝑗 (𝑣𝑖) ≥ 𝑒𝑐 (𝑣𝑖), 1 ≤ 𝑗 ≤ 𝑖 − 1, and for flows that split optimally
at 𝑣𝑖 , we have 𝑓 𝑗 (𝑣𝑖) ≤

∑
ℓ∈𝑜𝑢𝑡 (𝑣𝑖) 𝑒𝑐 (ℓ), 𝑖 ≤ 𝑗 ≤ 𝑛. Therefore,

|𝑓 𝑖 | − |𝑓 𝑖−1 | ≤
∑︁
ℓ∈𝑜𝑢𝑡 (𝑣𝑖)

𝑒𝑐 (ℓ) − 𝑒𝑐 (𝑣𝑖) ≤ ⌈ln(Δ𝑖)⌉ · 𝑒𝑐 (𝑣𝑖) .

If 𝑒𝑐 (𝑣𝑖) ≤ 𝑒𝑐 (𝑠) then the increase in the maximum flow is

|𝑓 𝑖 | − |𝑓 𝑖−1 | ≤ ⌈ln(Δ𝑖)⌉ · 𝑒𝑐 (𝑠). (A.2)

Else, 𝑒𝑐 (𝑣𝑖) > 𝑒𝑐 (𝑠). Observe that in 𝑓 1, the portion of themaximum
(𝑠, 𝑡)-flow that passes through 𝑣𝑖 , that is 𝑓 1 (𝑣𝑖), satisfies

𝑓 1 (𝑣𝑖) = min{𝑒𝑐𝑣𝑖 (𝑠), 𝑒𝑐𝑡 (𝑣𝑖)}. (A.3)

That is, the maximum (𝑠, 𝑡)-flow passing through 𝑣𝑖 under 𝑐𝑖 equals
the smaller of the two effective capacities, one between 𝑠 and 𝑣𝑖 ,
and the other between 𝑣𝑖 and 𝑡 .

By definition, 𝑓 1 (𝑣) ≤ |𝑓 1 | = 𝑒𝑐𝑡 (𝑠), which extends (A.3) to

𝑓 1 (𝑣𝑖) = min{𝑒𝑐𝑣𝑖 (𝑠), 𝑒𝑐𝑡 (𝑣𝑖)} ≤ 𝑒𝑐𝑡 (𝑠) . (A.4)

The assumption 𝑒𝑐𝑡 (𝑣𝑖) > 𝑒𝑐𝑡 (𝑠) simplifies (A.4) to

𝑓 1 (𝑣𝑖) = 𝑒𝑐𝑣𝑖 (𝑠) ≤ 𝑒𝑐𝑡 (𝑠) . (A.5)

Since each flow 𝑓 1, . . . , 𝑓 𝑖 splits evenly at every node 𝑠, . . . , 𝑣𝑖+1,
they are constrained by the e-capacity between 𝑠 and 𝑣𝑖 , i.e., the
portion of each such flow through 𝑣𝑖 is at most 𝑒𝑐𝑣𝑖 (𝑠). That is,
𝑓 𝑗 (𝑣𝑖) ≤ 𝑒𝑐𝑣𝑖 (𝑠) for 1 ≤ 𝑗 ≤ 𝑖 . From (A.1) and (A.5), we obtain

𝑒𝑐𝑣𝑖 (𝑠) = 𝑓 1 (𝑣𝑖) ≤ · · · ≤ 𝑓 𝑖 (𝑣𝑖) ≤ 𝑒𝑐𝑣𝑖 (𝑠),
which implies 𝑓 1 (𝑣𝑖) = · · · = 𝑓 𝑖 (𝑣𝑖) = 𝑒𝑐𝑣𝑖 (𝑠).

Therefore, in the case where 𝑒𝑐 (𝑣𝑖) > 𝑒𝑐 (𝑠), we have
|𝑓 𝑖 | − |𝑓 𝑖−1 | = 𝑓 𝑖 (𝑣𝑖) − 𝑓 𝑖−1 (𝑣𝑖) = 0. (A.6)

We sum up the increase between consecutive pairs of flows, and by
applying (A.2) and (A.6), we obtain∑︁

1<𝑖≤𝑛
(|𝑓 𝑖 | − |𝑓 𝑖−1 |) = |𝑓 𝑛 | − |𝑓 1 | ≤

∑︁
1<𝑖≤𝑛

⌈ln(Δ𝑖)⌉ · 𝑒𝑐 (𝑠)

≤ 𝑛 · ⌈ln(Δ)⌉ · 𝑒𝑐 (𝑠), (A.7)

which implies the claim since |𝑓 1 | = 𝑒𝑐 (𝑠) and 𝑓 𝑛 = 𝑓 ∗. □

	Abstract
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Related Work

	2 Model and Problem Definition
	2.1 Problem Definition

	3 Optimality Gaps
	3.1 Optimizing with Link Weights
	3.2 Optimizing with Waypoints
	3.3 Bounding the TE Gap
	3.4 The Special Case of Uniform Capacities
	3.5 Amplifying the TE Gap

	4 Upper Bounding the Gap
	4.1 Uniform Capacities
	4.2 General Networks

	5 Approximating Optimal Weights
	5.1 Analysis

	6 Algorithm for Joint
	7 Empirical Gap Observations
	7.1 Comparing the different Algorithms
	7.2 Nanonet Implementation

	8 Conclusion
	Acknowledgments
	References
	A Deferred Proofs

