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1 INTRODUCTION
Many distributed systems today rely on some kind of overlay network connecting the communicating

nodes or “peers” of an application using logical links: each link corresponds to a path, potentially

through many physical links, in the underlying network. The most prominent example are overlay

networks over the Internet which allow to route messages according to logical addresses rather

than IP addresses, introducing great flexibilities. Well-known overlay networks include Chord [59],

Pastry [53], Tapestry [62], CAN [48], Kademlia [42], Viceroy [48], Koorde [28], SkipNet [23], among

many others [4, 34, 43]. More recently, overlays are also used by content distribution providers such

as Akamai [24], or in crypto-currency infrastructures (e.g., Bitcoin [47]), to improve scalability.

Overlay networks are often fairly transient and dynamic, i.e., nodes join and leave frequently.

They hence require mechanisms to support changing memberships. Reasons for such dynamic

membership include, e.g., the limited time window during which users are interested in contents
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shared in a peer-to-peer network, changing popularity of contents, diurnal patterns, failures, etc.

Peer-to-peer systems are particularly dynamic as they are designed for open membership and are

self-organizing. In general, with an increasing scale, distributed systems are likely to become more

dynamic and have to deal with nodes continuously entering and leaving the system.

Besides efficiency, fault-tolerance is arguably one of the most important requirements of large-

scale overlay networks. Overlay topologies are usually maintained by the nodes (a.k.a. peers)

themselves. Therefore, distributed algorithms are needed to maintain the overlay network and

support joining, leaving, and routing between the nodes. These distributed algorithms should

also be scalable, given the large size of many overlay networks. Furthermore, such algorithms

cannot rely on the assumption that all peers leave the network gracefully, e.g., execute a pre-

defined “leave protocol” before departure. Rather, many peers are likely to leave unexpectedly (e.g.,

crash). Furthermore, topological changes may also happen due to attacks: the larger and hence

more popular the overlay network, the more attractive it also becomes for attackers. For example,

adversarial nodes may join and leave the network strategically [54], to occupy strategic positions

in the overlay or eclipse other nodes. Malicious nodes may further disconnect other nodes by

overloading them with requests (denial-of-service attack).

It is hence difficult in practice to rely on certain invariants and assumptions on what can and what

cannot happen during the (possibly very long) lifetime of an overlay. Accordingly, it is important

that a distributed overlay network be able to automatically recover from unexpected or even

arbitrary situations. This recovery should also be quick: once in an illegal state, the overlay network

may be more vulnerable to further changes or attacks.

This motivates the study of self-stabilizing overlay networks. Self-stabilzation is a very powerful

concept in fault-tolerance: self-stabilizing algorithms guarantee that in the absence of external influ-

ences, they reconverge to a desirable state from any initial state (known as the convergence property),

and then preserves this state (known as the closure property). The notion of self-stabilization was

first coined by E.W. Dijkstra in 1974 [12]. Leslie Lamport, in his ACM PODC 1983 keynote address,

acknowledged self-stabilization as one of the most brillant concepts introduced by Dijkstra [35].

In general, the design of self-stabilizing algorithms is fairly well-understood today. Since Dijk-

stra’s paper, self-stabilization has been studied in many contexts, including graph theory problems,

termination detection, clock synchronization, and fault containment [13]. In the context of commu-

nication networks, many self-stabilizing algorithms exist, from spanning tree construction [46]

to software-defined control [10]. In fact, already in the late 1980s, very powerful results have

been obtained on how any synchronous, not fault-tolerant local network algorithm can be trans-

formed into a very robust, self-stabilizing algorithm which performs well both in synchronous

and asynchronous environments [5, 6, 36]. However, while these transformations are attractive

to strengthen the robustness of local algorithms on a given network topology, e.g., for designing

self-stabilizing spanning trees, they are not applicable, or only applicable at high costs, in overlay

overlay networks where the topology is subject to change and optimization itself. Indeed, many

decentralized overlay networks (including well-known examples like Chord) are not self-stabilizing,

in the sense that the proposed protocols only manage to recover the network from a restricted

class of illegal states [1, 3, 59].

Informally, the self-stabilizing overlay network design problem is the following:

(1) An adversary can manipulate the peers’ neighborhood (and hence topology) information

arbitrarily. In particular, it can remove and add arbitrary nodes and links.

(2) As soon as the adversary stops manipulating the overlay topology, say at some unknown

time 𝑡0, the self-stabilization protocols will ensure that eventually, and in the absence of

further adversarial changes, a desired topology is reached.
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As any self-stabilizing algorithm, a topologically self-stabilizing algorithm must guarantee

convergence and closure properties: by local neighborhood changes (i.e., by creating, forwarding,

and deleting links with neighboring nodes), the nodes will eventually form an overlay topology

with desirable properties (e.g., polylogarithmic degree and diameter) from any initial topology. The

system will also stay in a desirable configuration provided that no further external topological

changes occur.

We also note the basic fact that in order for a distributed self-stabilizing algorithm to recover

any connected topology, the initial topology must at least be weakly connected. A directed graph

𝐺 = (𝑉 , 𝐸) is weakly connected, if the undirected version of 𝐺 , namely 𝐺 ′ = (𝑉 , 𝐸 ′) is connected,
i.e., for two nodes 𝑢, 𝑣 ∈ 𝑉 there is a path from 𝑢 to 𝑣 in 𝐺 ′.

In this paper, we present a survey on distributed algorithms for maintaining overlay networks. In

contrast to the vast existing literature on overlay network designs and algorithms (e.g. [37, 41, 50]),

our focus is on self-stabilizing algorithms. In Section 2, we first present a generic model which is

useful to design and analyze topologically self-stabilizing algorithms. In Section 3, we discuss the

basic primitives of manipulating neighborhoods while preserving connectivity, and discuss their

application in the design of self-stabilizing algorithms. Section 4 presents self-stabilizing algorithms

for a basic line topology, and we extend our study to metric graphs in Section 5. We discuss scalable

topologies and in particular, expander graphs, in Section 6. We survey additional relevant aspects

related to monotonic searchability and node departures in Section 7. In Section 8, we conclude and

identify open problems.

2 A BASIC MODEL OF TOPOLOGICAL SELF-STABILIZATION
Let us introduce the basic and standard model for self-stabilizing overlay networks. The overlay

network is represented as a directed graph𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 |. We assume that the set of nodes

is static as otherwise a termination of the self-stabilization process may not be reached (this has

been shown in [7]). Each peer in the system is represented by a node 𝑣 ∈ 𝑉 . Each node 𝑣 ∈ 𝑉 can

be identified by its unique reference or its unique identifier 𝑣 .𝑖𝑑 ∈ N (called ID). Additionally, each

node 𝑣 maintains local protocol-based variables and has a channel 𝑣 .𝐶ℎ, which is a system-based

variable that contains incoming messages. The message capacity of a channel is unbounded and

messages never get lost. If a node 𝑢 knows the reference of some other node 𝑣 , then 𝑢 can send a

message𝑚 to 𝑣 by putting𝑚 into 𝑣 .𝐶ℎ.

We distinguish between two different types of actions: The first type is used for standard proce-

dures and has the form ⟨𝑙𝑎𝑏𝑒𝑙⟩(⟨𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠⟩) : ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩, where 𝑙𝑎𝑏𝑒𝑙 is the name of that action,

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 defines the information needed for the execution of this action, and 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 defines

the statements that are executed when calling that action. It may be called locally or remotely, i.e.,

every message that is sent to a node has the form ⟨𝑙𝑎𝑏𝑒𝑙⟩(⟨𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠⟩). The second action type

has the form ⟨𝑙𝑎𝑏𝑒𝑙⟩ : (⟨𝑔𝑢𝑎𝑟𝑑⟩) −→ ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩, where 𝑙𝑎𝑏𝑒𝑙 and 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 are defined as above

and 𝑔𝑢𝑎𝑟𝑑 is a predicate over local variables. An action for some node 𝑢 may only be executed if its

guard is 𝑡𝑟𝑢𝑒 or if there is a message in 𝑢.𝐶ℎ that requests to call the action. In both cases, we call

the action enabled. An action whose guard is simply 𝑡𝑟𝑢𝑒 is executed periodically. When a node 𝑢

processes a message𝑚, then𝑚 is removed from 𝑢.𝐶ℎ.

We define the system state to be an assignment of a value to every node’s variables and messages

to each channel. A computation is an infinite sequence of system states, where the state 𝑠𝑖+1 can be

reached from its previous state 𝑠𝑖 by executing an action that is enabled in 𝑠𝑖 . We call the first state

of a given computation the initial state. We assume fair message receipt, meaning that every message

of the form ⟨𝑙𝑎𝑏𝑒𝑙⟩(⟨𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠⟩) that is contained in some channel, is eventually processed.

Furthermore, we assume weakly fair action execution, meaning that if an action is enabled in all

but finitely many states of a computation, then this action is executed infinitely often. We place
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no bounds on message propagation delay or relative node execution speed, i.e., we allow for fully

asynchronous computations and non-FIFO message delivery. A self-stabilizing protocol does not

manipulate node identifiers and thus only operates on them in compare-store-send mode. That

is, we are only allowed to compare node IDs to each other, store them in a node’s local memory,

or send them in a message. Note that we compute the hash value of a node’s identifier in some

protocols, but this does not manipulate the ID itself.

We are interested in the formation and maintenance of a certain graph topology that connects the

nodes. As it is standard, we assume that there are no corrupted IDs in the initial state of the system,

i.e., node IDs are read-only. Note that we are not able to repair initially corrupted node IDs within

the scope of this model, as we do not consider the usage of failure detectors. Thus we can assume

that node IDs are always correct in all states, as our protocol is compare-store-send. Nevertheless,

node channels may contain an arbitrary amount of messages containing false information in initial

states: We call these messages corrupted. We say the system is in a legitimate (stable) state, if the

nodes and the edges form the desired graph topology and there are no corrupted messages in the

system. We are now ready to define what it means for a protocol to be self-stabilizing:

Definition 2.1 (Self-stabilization). A protocol is self-stabilizing if it satisfies the following two

properties:

• Convergence: Starting from an arbitrary system state, the protocol is guaranteed to arrive

at a legitimate state.

• Closure: Starting from a legitimate state, the protocol remains in legitimate states thereafter.

There is a directed edge (𝑢, 𝑣) ∈ 𝐸, if 𝑢 stores the reference of 𝑣 in its local memory or if there is

a message in 𝑢.𝐶ℎ carrying the reference of 𝑣 . In the former case, we call that edge explicit and in

the latter case we call that edge implicit. In order for our distributed algorithms to work, we require

the directed graph 𝐺 containing all explicit and implicit edges to stay at least weakly connected at

every point in time. Once there are multiple weakly connected components in𝐺 , these components

cannot be connected to each other anymore as it has been shown in [44] for compare-store-send

protocols. For a graph that contains multiple weakly connected components, our protocol converts

each of these components to our desired topology.

In general, the following performance metrics are most relevant in topological self-stabilization:

(1) Convergence Time: Assuming a synchronous environment (or assuming an upper bound on

the message transmission per link), the distributed convergence time measures how many

(parallel) communication rounds are required until the final topology is reached.

(2) Work: The work measures how many edges are inserted, changed, or removed in total, during

the covergence process.

3 FROM CONNECTIVITY PRIMITIVES TO SELF-STABILIZING ALGORITHMS
Before designing distributed algorithms to maintain and repair topologies, we need to answer

a most fundamental question: how can nodes manipulate their neighborhoods locally, without

risking to lose connectivity? And more generally: which primitives exist that allow to iteratively

and locally change a graph, such that it eventually reaches its desired final state? Such connectivity

primitive operations are a prerequisite for the self-stabilizing convergence.

The identification of such primitives however does not yet answer the question how a distributed

self-stabilizing algorithm can actually use them. In the following, we hence first discuss the universal

primitives for reliable connectivity, and then discuss their use in algorithms.
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3.1 Universal Primitives for Reliable Connectivity
Universal connectivity primitives are local graph operations which allow us to transform any

topology into any other topology. While we focus on feasibility in the following, we will later use

these primitives to design topologically self-stabilizing algorithms.

Let us first define the notion of links (𝑢, 𝑣). Links can either be explicit or implicit. An explicit

link (𝑢, 𝑣) (in the following depicted as solid line) means that𝑢 knows 𝑣 , i.e.,𝑢 stores a reference of 𝑣

(e.g., 𝑣 ’s IP address). An implicit link (𝑢, 𝑣) (depicted as dashed line) means that a message including

𝑣 ’s reference is currently in transit to 𝑢 (from some arbitrary sender). We are often interested in the

union of the two kinds of links.

As discussed above, a first most fundamental principle in the design of distributed self-stabilizing

algorithms is that links can never be deleted:

Rule 1.1. During the execution of a topologically self-stabilizing algorithm, weak connectivity must

always be preserved. In particular, a pointer (i.e., information about a peer) can never be deleted.

If a link is removed, it may happen that this link is the only link connecting two otherwise

disconnected components. Clearly, once disconnected, connectivity can never be established again.
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Introduce:

Forward:

Merge:

Invert:

Fig. 1.1. Basic connectivity primitives (solid : explicit edges dashed : implicit edges).

We next identify four basic primitives which preserve connectivity (cf. Figure 1.1): Introduce,

Forward, Merge, Invert.

(1) Introduce: Assume node 𝑢 has a pointer to nodes 𝑣 and𝑤 : there are two directed links (𝑢, 𝑣)
and (𝑢,𝑤). Then, 𝑢 can introduce𝑤 to 𝑣 by sending the pointer to𝑤 to 𝑣 .

(2) Forward: Assume node 𝑢 has a pointer to nodes 𝑣 and 𝑤 , i.e., (𝑢, 𝑣) and (𝑢,𝑤). Then, 𝑢
forwards the reference to𝑤 to 𝑣 and removes the reference of𝑤 from its local memory.

(3) Merge: If 𝑢 has two pointers to 𝑣 , i.e., (𝑢, 𝑣) and (𝑢, 𝑣), then 𝑢 can merge the two.

(4) Invert: If 𝑢 is connected to 𝑣 , it can invert the link (𝑢, 𝑣) to (𝑣,𝑢) by forwarding a pointer to

itself to 𝑣 , and delete the reference to 𝑣 .

It is easy to see that these primitives indeed preserve weak connectivity. In fact one can show

that the Introduce, Forward, and Merge operations even preserve strong connectivity. We also

note that we need a compare operation to implement the merge operation: namely, we need to be

able to test whether two references point to the same node.
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These operations turn out to be very powerful. In fact, three of them are sufficient to transform

any weakly connected graph into any strongly connected graph. In other words, they are weakly

universal:

Theorem 3.1. The three primitives Introduce, Forward, and Merge are weakly universal: they

are sufficient to turn any weakly connected graph 𝐺 = (𝑉 , 𝐸) into any strongly connected graph

𝐺 ′ = (𝑉 , 𝐸 ′).

We just provide intuition for this theorem and refer to [50] for more details. Essentially, the proof

proceeds in two stages, from 𝐺 = (𝑉 , 𝐸) to a complete graph (the clique), and from the clique to

𝐺 ′ = (𝑉 , 𝐸 ′). In the first stage, if in each communication round, each node introduces its neighbors

to each other as well as itself to its neighbors, we reach a clique after 𝑂 (log𝑛) communication

rounds. Due to weak connectivity, it follows that for any two nodes 𝑣 and𝑤 , there is a path from

𝑣 to𝑤 (ignoring link directions). For the second stage, assume𝐺 = (𝑉 , 𝐸) is a clique. Then using

Forward and Merge operations, we can transform𝐺 into𝐺 ′ as follows (without removing edges in

𝐺 ′). Let (𝑢,𝑤) be an arbitrary edge which needs to be removed, i.e., (𝑢,𝑤) ∉ 𝐸 ′. Since𝐺 ′ = (𝑉 , 𝐸 ′)
is strongly connected, there is a shortest directed path from 𝑢 to𝑤 in 𝐺 ′. Let 𝑣 be the next node
along this path. Now node 𝑢 can forward (𝑢,𝑤) to 𝑣 , i.e., (𝑢,𝑤) becomes (𝑣,𝑤). This will reduce
the distance between an unused node pair in 𝐺 ′ by 1, and since the maximal distance is 𝑛 − 1, the
distance of a superfluous edge can be reduced at most 𝑛 − 1 many times before it merges with an

edge in 𝐺 ′. Thus, we eventually obtain 𝐺 ′.
All four primitives together are even universal: they are sufficient to transform any weakly

connected graph into any weakly connected graph.

Theorem 3.2. The four primitives Introduce, Forward, Merge, and Invert are universal: they

are sufficient to turn any weakly connected graph 𝐺 = (𝑉 , 𝐸) into any weakly connected graph

𝐺 ′ = (𝑉 , 𝐸 ′).

The intuition for this theorem is as follows. Let 𝐺 ′′ = (𝑉 , 𝐸 ′′) be the graph in which for each

edge (𝑢, 𝑣) ∈ 𝐸 ′, both edges (𝑢, 𝑣) and (𝑣,𝑢) are in 𝐸 ′′. Note that 𝐺 ′′ is strongly connected. Now,

according to Theorem 3.1, it is possible to transform any 𝐺 to 𝐺 ′′. So in order to transform 𝐺 ′′ to
𝐺 ′, we need the Invert primitive, to remove undesired edges: we invert any undesired edge (𝑢, 𝑣)
to (𝑣,𝑢) and then merge it with (𝑣,𝑢).
Interestingly, the primitives are not only sufficient but also necessary.

Theorem 3.3. The four primitives Introduce, Forward, Merge, and Invert are also necessary.

The reason is that Introduce is the only primitive which generates an edge, Forward is the

only primitive which separates a node pair, Merge is the only primitive which removes an edge,

and Inversion is the only primitive rendering a node unreachable (as one can see in Figure 1.1

we cannot go from 𝑢 to 𝑣 anymore once we inverted the explicit edge (𝑢, 𝑣) into the implicit edge

(𝑣,𝑢)).

3.2 From Connectivity Primitives to Self-Stabilizing Algorithms
Universal primitives allow us to transform any weakly-connected graph 𝐺 into any weakly-

connected graph 𝐺 ′. However, the mere existence or feasibility of such transformations is often not

interesting in practice, if there do not exist efficient distributed algorithms to find a transformation.

Before we show how to derive distributed algorithms, we introduce some fundamental concepts

and provide some additional insights into how connectivity can be maintained. A central require-

ment in topologically self-stabilizing systems is monotonic reachability: if 𝑣 is reachable from 𝑢 at

time 𝑡 , using explicit or implicit edges, then, if no further failures or errors occur and given a static
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node set, 𝑣 is also reachable from 𝑢 at any time 𝑡 ′ > 𝑡 . The following theorem can easily be proved

by induction, as long as there are no references to non-existing nodes in the system.

Theorem 3.4. The Introduce, Forward, and Merge operations fulfill monotonic reachability.

Remarks:

(1) There is also the concept of monotonic searchability: if 𝑢 can send a message at time 𝑡 that is

successfully delivered to 𝑣 according to some routing protocol R, then any further message

generated at 𝑢 at time 𝑡 ′ > 𝑡 with 𝑣 as its destination is successfully delivered. Monotonic

reachability is necessary to implement monotonic searchability, it is not sufficient. We will

later (in Section 7) discuss how to realize also monotonic searchability.

(2) One particularly annoying challenge in the design of self-stabilizing algorithms is due to the

fact that there may still be corrupted messages in transit in the system. Such messages can

threaten the correctness of an algorithm later. In particular, corrupted messages may violate

the closure property: although initially in a legal state, the system may move to an illegal

state. The set of legal states is hence only a subset of the “correct states”.

As it has already been stated by Theorem 3.1, the primitives Introduce, Forward and Merge

not only fulfill monotonic reachability but are also weakly universal, so applying these can turn

any weakly connected graph into a strongly connected one. This is sufficient for most topologies

in practice because usually each node should be allowed to send messages to any other node. It

is however not clear on the first glance how to progress from any illegal state to a legitimate one

using these primitives. Therefore we need mechanisms to ensure the convergence of the system. A

universal approach for this could be to combine a mechanism that allows nodes to find out in finite

time if the system is in an illegal state with the transitive closure framework (see Section 6.3). On

the positive side, being able to check if the system is in an illegal state is usually possible, allowing

the creation of a clique in order to “reset” the system as it is demonstrated in the transitive closure

framework. However, in general this is very inefficient because the amount of work for each node

can grow linear in the size of the network. Therefore, researchers came up with more efficient

protocols tailored to more specific topologies.

4 TOPOLOGICALLY SELF-STABILIZING LINEARIZATION
Many topologically self-stabilizing protocols rely on some basic Linearization algorithm [19, 26, 52].

Using linearization, one can establish an ordering of nodes legitimate states. In this section we first

present the idea of linearization based on a self-stabilizing protocol for a sorted list [45]. We call

that protocol BuildList for the remainder of this survey. Afterwards we explore a protocol for a de

Bruijn graph that relies on the linearization technique.

4.1 Linearization Protocol
Before we can describe the actions of BuildList, we need to define the variables for a node 𝑢:

A pointer 𝑢.𝑙𝑒 𝑓 𝑡 storing 𝑢’s closest left neighbor and a pointer 𝑢.𝑟𝑖𝑔ℎ𝑡 storing 𝑢’s closest right

neighbor. The idea of BuildList is that each node always wants to keep its closest left and right

neighbors (based on local information only) and delegate all remaining outgoing connections using

the Forward primitive.

More formally, BuildList consists of two actions Timeout and Linearize, where Timeout is

executed periodically at each node, and Linearize can be called locally or remotely.

In Timeout, a node 𝑢 first performs a consistency check on its variables 𝑢.𝑙𝑒 𝑓 𝑡 and 𝑢.𝑟𝑖𝑔ℎ𝑡 : It

may happen that in initial states 𝑢.𝑙𝑒 𝑓 𝑡 > 𝑢 (or 𝑢.𝑟𝑖𝑔ℎ𝑡 < 𝑢). If that is the case then 𝑢 resets the

node assignment to 𝑢.𝑙𝑒 𝑓 𝑡 (or 𝑢.𝑟𝑖𝑔ℎ𝑡 ) and locally calls Linearize(𝑤 ) for the removed node 𝑤 .

Furthermore 𝑢 introduces itself to 𝑢.𝑙𝑒 𝑓 𝑡 and 𝑢.𝑟𝑖𝑔ℎ𝑡 via the Introduce primitive in Timeout.
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When processing a Linearize(𝑤 ) message at 𝑢 with𝑤 < 𝑢, then 𝑢 first compares the identifier

of𝑤 with its own identifier and the identifier of 𝑢.𝑙𝑒 𝑓 𝑡 . Node 𝑢 distinguishes between the following

two cases:

(i) 𝑤 < 𝑢.𝑙𝑒 𝑓 𝑡 : This case leads to 𝑢 forwarding𝑤 to 𝑢.𝑙𝑒 𝑓 𝑡 by calling Linearize(𝑤 ) on 𝑢.𝑙𝑒 𝑓 𝑡 .

(ii) 𝑢.𝑙𝑒 𝑓 𝑡 < 𝑤 < 𝑢: In this case 𝑢 replaces 𝑢.𝑙𝑒 𝑓 𝑡 by𝑤 and forwards the old value of 𝑢.𝑙𝑒 𝑓 𝑡 to𝑤

via a Linearize call.

We proceed analogously at node 𝑢 in case𝑤 > 𝑢, this time considering 𝑢.𝑟𝑖𝑔ℎ𝑡 instead of 𝑢.𝑙𝑒 𝑓 𝑡 .

Consider Figure 1.2 for a visualization of the different cases for Linearize.

u w u w

u w u w

w u w u

w u w u

u.right

u.right

u.right

u.right

u.left u.left

u.left

u.left

Right Linearization:

Left Linearization:

Fig. 1.2. Different cases when calling Linearize(𝑤) at node 𝑢.

Using the above actions, one can show that BuildList satisfies convergence and closure, culmi-

nating in the following theorem:

Theorem 4.1. BuildList is self-stabilizing, i.e.,

(i) BuildList transforms any weakly connected graph 𝐺 = (𝑉 , 𝐸) into a sorted list after 𝑂 (𝑛)
rounds (Convergence) and

(ii) if the explicit edges in 𝐺 already form a sorted list, then they are preserved at any point in time

(Closure).

We provide some intuition for the proof: To show convergence, consider a pair of nodes (𝑢, 𝑣)
with 𝑢 < 𝑣 that is adjacent in legitimate states. As the graph 𝐺 is weakly connected, there exists

an undirected path 𝑃 between 𝑢 and 𝑣 . Consider the potential function Φ = 𝑣𝑟 − 𝑣𝑙 , where 𝑣𝑙 is
the process with minimum identifier in 𝑃 and 𝑣𝑟 the process with maximum identifier in 𝑃 . One

can show that Φ monotonically decreases over time until Φ = 𝑣 − 𝑢 corresponding to (𝑢, 𝑣) being
directly connected, which implies convergence. The bound on the convergence time stems from the
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fact that an implicit edge to some node 𝑣 has to be delegated along the whole list in a worst-case

scenario: In case the list is already fully built with only one edge missing, there are no shortcut

edges for an implicit edge in order to reach its target, so it has to traverse the whole list.

In order to show closure, we can argue that an explicit edge (𝑢, 𝑣) is only forwarded, if 𝑢 gets

to know a closer neighboring process than 𝑣 . But this is not possible as processes already form a

sorted list, so closure holds.

4.2 The Linearized de Bruijn Graph
Linearization has been used as a basis for several other self-stabilizing topologies. In this section

we provide an example for this by examining the linearized de Bruijn graph from [51].

Consider the standard de Bruijn graph:

Definition 4.2. Let 𝑑 ∈ N. The standard (𝑑-dimensional) de Bruijn graph consists of nodes having

labels (𝑥1, . . . , 𝑥𝑑 ) ∈ {0, 1}𝑑 and edges (𝑥1, . . . , 𝑥𝑑 ) → ( 𝑗, 𝑥1, . . . , 𝑥𝑑−1) for all 𝑗 ∈ {0, 1}.

One can route from a source node to a destination node in 𝑂 (log𝑛) hops via bitshifting if the
network consists of 𝑛 nodes.

In order to construct a self-stabilizing protocol for a de Bruijn graph, one can use the linearized

de Bruijn network (first introduced in [43]) to emulate the classical de Bruijn graph. The idea is

to let each real process 𝑣 emulate 2 additional virtual processes 𝑣0, 𝑣1, resulting in the process 𝑣

representing 3 nodes 𝑣, 𝑣0 and 𝑣1. Using a uniform pseudorandom hash function ℎ : N → [0, 1),
we project the identifiers of each real process 𝑣 onto the [0, 1)-interval. Afterwards we define the
identifiers of the virtual nodes by assigning

ℎ (𝑣)
2

to 𝑣0 and
ℎ (𝑣)+1

2
to 𝑣1. A legitimate state of the

system is then defined as the sorted list consisting of all real and virtual nodes ordered by their

identifiers in [0, 1). It has been shown in [43] that such a topology is able to emulate the standard

de Bruijn graph, i.e., routing paths in the linearized de Bruijn network are of length 𝑂 (log𝑛) w.h.p.
In order to construct a self-stabilizing protocol BuildDeBruijn for the linearized de Bruijn

network we let each real and virtual process run the BuildList protocol from Section 4.1. It is easy

to see that BuildList converts the graph𝐺 ′ = (𝑉 ′, 𝐸 ′) with𝑉 ′ = {𝑣, 𝑣0, 𝑣1 | 𝑣 ∈ 𝑉 } into a sorted list
if 𝐺 ′ is weakly connected initially. Unfortunately this is not necessarily the case for initial states,

even if 𝐺 = (𝑉 , 𝐸) is weakly connected as shown in Figure 1.3.

v w

G=(V,E): G‘=(V‘,E‘):

v0 v1v w0 w1w

Fig. 1.3. Possible initial state for 𝐺 ′ leaving the node𝑤 isolated.

In order to eventually reach a state where𝐺 ′ is weakly connected, the authors of [51] introduced
the probing technique. The idea is to let each node 𝑣 periodically check if it is in the same connected

component as its virtual nodes 𝑣0 and 𝑣1. If this is not the case, then 𝑣 generates a connection to

𝑣0 and 𝑣1 respectively by locally calling Linearize(𝑣0) and Linearize(𝑣1) respectively. To check
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if a connection to 𝑣0 has to be established, each real process 𝑣 does the following: It periodically

sends out a probe along the sorted list to the left. That probe is forwarded along virtual nodes in the

sorted list, until it reaches a real node𝑤 .𝑤 then forwards the probe to its virtual node𝑤0. From

this point on we forward the probe to the right in the sorted list until it reaches 𝑣0 or it gets stuck

or overruns 𝑣0. In the first case we know that 𝑣 and 𝑣0 are in the same connected component. If one

of the other two cases arises, 𝑣 initiates a Linearize(𝑣0) call. The same approach is used in order

to check if 𝑣 and 𝑣1 are in the same component. Note that the number of hops for each probe is

expected to be𝑂 (1) in legitimate states. When combining the BuildList protocol with the probing

approach, one can show the following theorem:

Theorem 4.3. BuildDeBruijn is self-stabilizing, i.e.,

(i) BuildDeBruijn transforms any weakly connected graph 𝐺 = (𝑉 , 𝐸) into a linearized de Bruijn
network after 𝑂 (𝑛) rounds (Convergence) and

(ii) if the explicit edges in𝐺 already form a linearized de Bruijn network, then they are preserved at

any point in time (Closure).

Following a probing approach similar to the one described above, one can realize a self-stabilizing

protocol for the general de Bruijn graph (the 𝑞-ary, 𝑑-dimensional de Bruijn graph), as it has been

shown in [16]. Compared to the standard (𝑑-dimensional) de Bruijn graph (Definition 4.2), the label

of a node may now consist of sequences of values 𝑗 ∈ {0, . . . , 𝑞} instead of bits.

5 SELF-STABILIZING METRICAL GRAPHS
Linearization is not only a building block for more general and scalable self-stabilizing networks,

as we will discuss them later in this paper, it is also a a good basis for building another important

family of graph topologies: metric graphs.

Definition 5.1. Given a set𝑀 , a distance function 𝑑 : 𝑀2 → R is a metric if for all 𝑥,𝑦, 𝑧 ∈ 𝑀
(i) 𝑑 (𝑥,𝑦) ≥ 0,

(ii) 𝑑 (𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦,

(iii) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥) and
(iv) 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧).
In the following, we explore graphs that can efficiently be described by a metric, with the focus

on networks for geometrical scenarios. Such networks are relevant for example in the area of

wireless ad-hoc networks. In particular, in this section we will show that the linearization technique

discussed in the previous section can serve as a basis for graphs based on 1-dimensional as well as

circular metrics (cf Section 5.1), as well as tree metrics (cf Section 5.4). However, we will also show

that when assuming that nodes only know the metric function but not the topology (line, ring, etc.)

that should be formed, it is not possible to design self-stabilizing algorithms solely based on local

information at nodes (cf Section 5.2). We therefore introduce another technique in order to build

arbitrary graphs for arbitrary metrics (cf Section 5.3).

5.1 Line and Circular Metrics
Consider a line metric as an embedding of the nodes into the one-dimensional space, i.e., we can

define 𝑑 by 𝑑 (𝑢, 𝑣) = |𝑢.𝑖𝑑 − 𝑣 .𝑖𝑑 | for any two nodes 𝑢, 𝑣 ∈ 𝑉 . It is easy to see that one can use the

BuildList protocol from Section 4.1 to converge to a graph that satisfies the line metric.

A simple extension of BuildList would be to let processes form a sorted cycle. For this to work,

we have to establish an additional connection between the process with minimal identifier and the

process with maximal identifier. We distinguish between list edges and cycle edges. List edges are

treated by the BuildList protocol, for cycle edges we introduce the following additional actions:
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(i) Upon activation, if a node 𝑣 does not have a left (or right) list neighbor, it creates a cycle edge

to itself and delegates it to 𝑣 .𝑙𝑒 𝑓 𝑡 (or 𝑣 .𝑟𝑖𝑔ℎ𝑡 ).

(ii) If a node 𝑣 has a cycle edge to a node𝑤 with 𝑣 < 𝑤 (or𝑤 < 𝑣) and 𝑣 .𝑙𝑒 𝑓 𝑡 ≠⊥ (or 𝑣 .𝑟𝑖𝑔ℎ𝑡 ≠⊥),
then 𝑣 delegates the cycle edge to 𝑣 .𝑙𝑒 𝑓 𝑡 (or 𝑣 .𝑟𝑖𝑔ℎ𝑡 ).

(iii) If node 𝑣 has a cycle edge to node 𝑤 that cannot be delegated via action (𝑖𝑖), then upon

activation 𝑣 introduces itself to𝑤 , generating the implicit cycle edge (𝑤, 𝑣).
(iv) If node 𝑣 has a (explicit) cycle edge to node𝑤 and receives another (implicit) cycle edge to

some node𝑤 ′ ≠ 𝑤 , then 𝑣 keeps the edge for which covers the larger distance w.r.t. to the

metric function. The other edge, say (𝑤, 𝑣 ′), is removed and replaced by two implicit list

edges (𝑣, 𝑣 ′) and (𝑤, 𝑣 ′).
Consider Figure 1.4 for a visualization of these rules.

v v

(i)

v‘ w v‘ w

(ii)

vv

(iii)

w
...

v w
...

v

(iv)

v vw‘ w‘ ww
... .........

Fig. 1.4. Illustration for the actions of BuildCycle. Red edges denote cycle edges, black edges denote list

edges.

One can show that this extension of BuildList (call it BuildCycle) is self-stabilizing:

Theorem 5.2. BuildCycle is self-stabilizing, i.e.,

(i) BuildCycle transforms any weakly connected graph 𝐺 = (𝑉 , 𝐸) into a sorted cycle after 𝑂 (𝑛)
rounds (Convergence) and

(ii) if the explicit edges in 𝐺 already form a sorted cycle, then they are preserved at any point in

time (Closure).

Self-stabilizing protocols that make use of a sorted cycle can be found for example in [20, 30, 32].

5.2 Challenges of Local Probing
Although the local probing approach proves useful for many scenarios, it has its limits as we

will outline in this section. Consider nodes 𝑣1, . . . , 𝑣𝑛 and imagine we are given a cycle metric

𝑑𝐶 : 𝑉 2 → R+ with 𝑑𝐶 (𝑣𝑖 , 𝑣 𝑗 ) = 1 with 𝑗 = 𝑖 + 1 mod 𝑛 for all 𝑖 ∈ {1, . . . , 𝑛} (cf Figure 1.5(a)). A
cycle graph reflects the metric 𝑑𝐶 , which would be a 1-spanner.

If nodes only know the metric function 𝑑𝐶 and we are given a sorted list initially, then it is

impossible using only local probing to reach a sorted cycle. This is because any implicit edge
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Fig. 1.5. (a) Illustration of the cycle metric. (b) Initial graph for which we cannot locally distinguish between

a line and a circular metric.

generated by any node has minimum distance regarding 𝑑𝐶 and thus is immediately merged

with the corresponding explicit edge. Therefore we cannot generate an implicit edge (𝑣,𝑤) (cf.
Figure 1.5(b)) which would be necessary to establish the cycle.

As a consequence it follows that any protocol must be either non-oblivious (in the sense that the

protocol knows something about the graph topology) or non-local (in the sense that requests are

processed without local evidence of a violation of the metric) in order to stabilize a 𝑘-spanner of

the desired topology for any constant 𝑘 .

An example for a non-oblivious strategy would be the BuildCycle protocol from Section 5.1. An

example for a non-local strategy is the probing approach from Section 4.2 that is used to stabilize

the linearized de Bruijn graph. We generalize this approach in the next section.

5.3 General Metrics with Global Probing
We next discuss non-local strategies that can be used in order to stabilize any arbitrary given metric

given via a distance function 𝑑𝑀 : 𝑉 2 → R. The first strategy makes use of probing: At each node 𝑢

we periodically generate a probing request that is handled in two phases:

(1) Follow a random sequence of nodes 𝑣1, 𝑣2, . . . that lie on a shortest path to 𝑢 (i.e., 𝑑𝑀 (𝑣𝑖 , 𝑖) +
𝑑𝑀 (𝑣𝑖 , 𝑣𝑖+1) = 𝑑 (𝑣𝑖+1, 𝑢)) up to a node 𝑣𝑘 , for which we cannot delegate the request any

further.

(2) From 𝑣𝑘 we delegate the request to a random neighbor𝑤𝑘 and follow a random shortest path

back to 𝑢. If a node 𝑤 is encountered that does not have a neighbor lying on the shortest

path to 𝑢, create the edge (𝑤,𝑢).
This strategy suffices to detect edges that are contained in the desired topology, but are still

missing in the overlay.

A different approach has been discussed in [20]: The idea is to let nodes form a sorted cycle

via the previously presented BuildCycle protocol. Furthermore each node 𝑣 maintains a pointer

𝑣 .𝑡𝑒𝑠𝑡 to some node in 𝑉 . Via delegation these pointers constantly traverse the cycle in a common

direction. The actual construction of the metric is then done by each node 𝑣 periodically: Using 𝑑𝑀 ,

𝑣 checks if the edge (𝑣, 𝑣 .𝑡𝑒𝑠𝑡) should be added to the graph. Also 𝑣 checks, for each of its outgoing

edges, whether it can be removed from the graph. One can show that this algorithm is able to

stabilize any arbitrary metric.

5.4 Special Metrics with Local Probing
There exist special metrics for which we can construct self-stabilizing protocols based on local

probing only. Consider a tree metric 𝑑𝑇 : 𝑉 2 → R+ that assigns a weight to each possible edge in the
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overlay. The following protocol BuildMST from [22] is able to maintain a minimum spanning tree,

i.e., a connected graph𝑀𝑆𝑇 = (𝑉 , 𝐸), for which the sum of the edge weights

∑
𝑒∈𝐸 𝑑𝑇 (𝑒) is minimum.

For nodes 𝑢, 𝑣,𝑤 define 𝑢 ≺ (𝑣,𝑤) as a shorthand for (𝑑𝑇 (𝑖, 𝑣) < 𝑑𝑇 (𝑣,𝑤)) ∧ (𝑑𝑇 (𝑢,𝑤) < 𝑑𝑇 (𝑣,𝑤)).
This means that 𝑢 is closer to both 𝑣 and𝑤 with respect to 𝑑𝑇 , and hence that the𝑀𝑆𝑇 should not

contain the edge (𝑣,𝑤) in order to connect 𝑢, 𝑣 and𝑤 . BuildMST works as follows: Let each node

𝑣 maintain a set 𝑁𝑣 ⊆ 𝑉 that stores the neighboring nodes of 𝑣 in the𝑀𝑆𝑇 . Upon activation a node

𝑣 ∈ 𝑉 performs the following actions for each of its current neighbors𝑤 ∈ 𝑁𝑣 : It checks whether

there is a node 𝑢 ∈ 𝑁𝑣 for which 𝑢 ≺ (𝑣,𝑤) holds. If such a node exists then 𝑣 delegates 𝑤 to 𝑢

and removes𝑤 from 𝑁𝑣 . Otherwise 𝑣 introduces itself to𝑤 by sending its reference to𝑤 . Consider

Figure 1.6 for a visualization of these rules.

u v

w

(a)

7

6

11 11

6

u v

w

(b)

7

6

11
7

6
6

Fig. 1.6. An exmaple of the protocol’s execution. The black edges indicate the distances between the nodes

with respect to 𝑑𝑇 . Red edges denote the overlay’s edges. In this example, 𝑣 first delegates𝑤 to 𝑢 and then

introduces itself to 𝑢

Using a potential function, one can show that BuildMST satisfies convergence and closure, i.e.,

BuildMST is self-stabilizing:

Theorem 5.3. Given a weakly connected graph 𝐺 = (𝑉 , 𝐸) and a tree metric 𝑑𝑇 : 𝑉 2 → R+.
BuildMST is self-stabilizing, i.e.:

(i) BuildMST eventually transforms 𝐺 into a minimum spanning tree after 𝑂 (𝑛2) rounds (Conver-
gence) and

(ii) if the explicit edges in𝐺 already form a minimum spanning tree, then they are preserved at any

point in time (Closure).

The proof works similar to the one for the line metric: Let 𝐺𝑠 be the directed graph containing

all explicit and implicit edges when the system is in state 𝑠 . Then we define the potential of 𝐺𝑠 to

be the weight of the minimum spanning tree that can be constructed from all edges in 𝐺𝑠 when

ignoring their direction. It can be shown that this potential decreases monotonically throughout

time. As the weight of the (globally) optimal minimum spanning tree, i.e., the minimum spanning

tree that considers all possible edges between nodes, is a lower bound for the potential function, it

is clear that the potential cannot decrease indefinitely.

5.5 Euclidean Metrics
Instead of identifying processes via their identifier, we identify processes 𝑣 via their geographical

position in this section, i.e., 𝑣 = (𝑣𝑥 , 𝑣𝑦) ∈ R2. We first define the Delaunay graph:
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Definition 5.4. The Delaunay graph 𝐺 = (𝑉 , 𝐸) consists of nodes 𝑉 ∈ R2 and edges 𝐸, where

(𝑣,𝑤) ∈ 𝐸 if there exists a circle 𝐶 through 𝑣 and𝑤 such that no other node is within 𝐶 .

Note that if (𝑣,𝑤) ∈ 𝐸, then other nodes are allowed to lie on the border of the circle 𝐶 going

through 𝑣 and𝑤 (see Figure 1.7).

u

v

u

v

(a) (b)

Fig. 1.7. (a) Example scenario, where (𝑢, 𝑣) ∉ 𝐸 due to the fact that any cycle going through 𝑢 and 𝑣 contains

at least one of the two inner nodes inside of it. (b) Scenario where (𝑢, 𝑣) ∈ 𝐸.

Denote the Euclidean distance between 𝑣 and 𝑤 by | |𝑣,𝑤 | | =
√
(𝑣𝑥 −𝑤𝑥 )2 + (𝑣𝑦 −𝑤𝑦)2. One

can easily verify that the Euclidean distance is a metric. The underlying metric for the Delaunay

graph is the Delaunay triangulation, which is an approximation of the Euclidean metric with the

advantage of being locally checkable. In more details, the length of any shortest path between any

two nodes 𝑢, 𝑣 ∈ 𝑉 in the Delaunay graph is at most 1.998 · | |𝑢, 𝑣 | | as it has been shown in [61].

Each node 𝑢 has a variable 𝑢.𝑁 ⊆ 𝑉 that consists of 𝑢’s current neighbors. Similar to BuildList,

BuildDelaunay consists of two actions Timeout and Introduce, where Timeout is executed

periodically at each node and Introduce can be called locally or remotely. Introduce is used

in the same manner as Linearize in BuildList, i.e., we use Introduce to forward nodes in the

Delaunay graph until they reach their correct neighbor.

In Timeout node 𝑢 performs the following three actions:

(i) 𝑢 checks for each of its neighbors 𝑣 ∈ 𝑢.𝑁 , if (𝑢, 𝑣) belongs to the Delaunay graph from 𝑢’s

local point of view, i.e., if there exists a circle 𝐶 going through 𝑢 and 𝑣 that does not contain

any other node out of 𝑢.𝑁 . If not, then 𝑢 removes 𝑣 from 𝑢.𝑁 and locally calls Introduce(𝑣).

(ii) 𝑢 introduces itself to its neighbors in 𝑢.𝑁 by calling Introduce(𝑢) on them.

(iii) Let 𝑣1, . . . , 𝑣𝑘 ∈ 𝑁 be 𝑢’s neighbors ordered in clockwise direction. Node 𝑢 introduces 𝑣𝑖 to

𝑣𝑖+1 and vice versa, if the angle ∢𝑣𝑖𝑢𝑣𝑖+1 is smaller 180
◦
.

Consider Figure 1.8(a) for a visualization of the actions (𝑖𝑖) and (𝑖𝑖𝑖) of Timeout.
Upon receipt of an Introduce(𝑣) message, node 𝑢 does the following: It first checks whether

the edge (𝑢, 𝑣) is contained in the Delaunay graph with node set 𝑢.𝑁 ∪ {𝑢, 𝑣} and adds 𝑣 to 𝑢.𝑁

if that is the case. If not, then 𝑢 determines a node out of 𝑢.𝑁 to forward 𝑣 to in the following

way: 𝑢 first determines the nodes 𝑤,𝑤 ′ ∈ 𝑢.𝑁 with minimal angle to 𝑣 in clockwise direction

and counterclockwise direction respectively (see Figure 1.8(b)). Then 𝑢 forwards 𝑣 to the node

𝑤 ′′ ∈ {𝑤,𝑤 ′} that minimizes | |𝑤 ′′, 𝑣 | | by calling Introduce(𝑣) on𝑤 ′′.
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Fig. 1.8. (a) Visualization of the actions (𝑖𝑖) and (𝑖𝑖𝑖) of Timeout. Observe that 𝑢 does not introduce 𝑣 and𝑤

to each other, as the angle ∢𝑣𝑢𝑤 > 180
◦
. (b) Example for node 𝑢 determining the node𝑤 ∈ 𝑢.𝑁 to forward 𝑣

to. The implicit edge (𝑤, 𝑣) is generated as 𝑢 calls Introduce(𝑣) on𝑤 .

One can show that BuildDelaunay satisfies convergence and closure, i.e., BuildDelaunay is

self-stabilizing:

Theorem 5.5. Given a weakly connected graph 𝐺 = (𝑉 , 𝐸) with a set of processes 𝑉 ∈ R2.
BuildDelaunay is self-stabilizing, i.e.,

(i) BuildDelaunay eventually transforms 𝐺 into a Delaunay graph after 𝑂 (𝑛3) rounds (Conver-
gence) and

(ii) if the explicit edges in 𝐺 already form a Delaunay graph, then they are preserved at any point

in time (Closure).

To show convergence, one can use a potential function. Observe that an implicit edge (𝑢, 𝑣)
is either transformed into an explicit edge at 𝑢, or is forwarded to a node 𝑤 ∈ 𝑢.𝑁 such that

the edge gets shorted w.r.t. the Euclidean distance. Now consider the potential Φ that counts the

number of nodes𝑤 ∉ 𝑢.𝑁 that should be contained in 𝑢.𝑁 in legitimate states. One can show that

Φ monotonically decreases until Φ = 0, which yields convergence.

Closure can be shown by arguing that each implicit edge is being merged with an explicit one in

legitimate states, because an implicit edge cannot be transformed into an explicit edge that does

not belong to the Delaunay graph.

BuildDelaunay can be applied in higher-dimensional scenarios as well, i.e., in a 𝑑-dimensional

scenario we consider balls of dimension 𝑑 instead of two-dimensional circles.

A protocol for self-stabilizing quadtrees has been proposed in [15]. The protocol makes use

of a space-filling curve to obtain an ordering ≺ of all processes. Given this ordering ≺, we can
apply BuildList to let all processes form a sorted list. Using the established list edges, we use

a probing approach similar to the one presented in Section 4.2 to generate additional edges that

guarantee that the diameter of the quadtree is𝑂 (log𝑛), given that Euclidean distance between any

two processes is large enough. Same as for the Delaunay graph, the protocol can be generalized to

higher dimensions, such that self-stabilizing octtrees can be realized.
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6 SELF-STABILIZING EXPANDERS
A most attractive family of networks are networks based on expander graph topologies. Expander

graphs are sparse graphs with strong connectivity properties that protect the network from dis-

connecting when nodes shut down. More formally, if 𝑘 nodes got shut down (for example by an

adversarial attack), then at most 𝑂 (𝑘) nodes get disconnected from the network. Expander graphs

are known to enable efficient communication at low cost, and can be highly scalable. They hence

come with many applications, from overlays [2] to datacenter interconnects [60]. In the following,

we review the design of a self-stabilizing network based on skip graphs. Subsequently, we discuss

the design of self-stabilizing random graphs. We conclude by discussing a powerful and general

framework to design self-stabilizing networks.

6.1 Self-Stabilizing Skip Graphs
The first self-stabilizing and scalable overlay network was SKIP+ [25], a self-stabilizing variant of

the skip graph family [2, 23]. Similarly to the original skip graphs, SKIP+ features a polylogarithmic

degree and diameter. However, in constrast to the original skip graph versions, SKIP+ contains
additional edges which enable local detectability: only with these edges it can be ensured that at

least one node will always notice, locally, if the overall network is not in the desired state yet.

SKIP+ distinguishes between stable edges and temporary edges. Similarly to the linearization

example above, temporary edges will travel through the topology (i.e., they are forwarded), and

eventually merge or stabilize. Node 𝑣 considers an edge (𝑣,𝑤) to be temporary if from 𝑣 ’s point

of view (𝑣,𝑤) does not belong to SKIP+ and so 𝑣 will try to forward it to some of its neighbors

for which the edge would be more relevant. If on the other hand (𝑣,𝑤) belongs to SKIP+ from 𝑣 ’s

point of view, then 𝑣 considers (𝑣,𝑤) to be a stable edge and will make sure that the connection is

bidirected, i.e., it will propose (𝑤, 𝑣) to𝑤 .

As many self-stabilizing algorithms, the self-stabilizing protocol for SKIP+ is very simple: the

nodes in SKIP+ continuously must execute three rules.

(1) Rule 1: Create Reverse Edges and Introduce Stable Edges. This rule makes sure that a

directed edge becomes a bidirected edge, introducing the nodes to each other. Also, stable

edges are created where needed.

(2) Rule 2: Forward Temporary Edges. This rule is used for forwarding temporary edges to

neighboring nodes. Eventually, the edges will stabilize or merge.

(3) Rule 3: Introduce All and Linearize. The rule has two parts. It performs some kind of local

transitive closure, where nodes introduce all their neighbors to each other. Moreover, the

rule is responsible for sorting neighboring nodes according to their identifiers. (In a skip

graph, nodes are ordered on each level, facilitating search operations.)

The three rules are continuously checked and executed in parallel by all nodes. However, while

the algorithm itself is simple, its analysis is non-trivial. In a nutshell, the stabilization proof is

based on the observation that the execution of the algorithm can be divided into phases in which

certain properties (milestones) are achieved. In particular, the execution can be thought of being

divided into a bottom-up and a top-down phase. The bottom-up phase (i.e., from skip graph level 0

upwards), connected components for increasingly larger prefixes are formed in the identifier space.

This will be accomplished by Rule 1 (where new nodes in the range of a node are discovered and

where ranges may be refined) and Rule 3 (where an efficient variation of a local transitive closure is

performed). Once the connected components are formed, in the second phase of the algorithm (the

division into phases is a purely analytical one) will form a sorted list out of each prefix component.

This is accomplished in a top-down fashion by merging the two already sorted subcomponents

into a sorted larger component until all nodes in the bottom level form a sorted list.
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Jacob et al. [25] show the following result.

Theorem 6.1. SKIP+ is self-stabilizing, i.e.,
(i) SKIP+ transforms any weakly connected graph 𝐺 = (𝑉 , 𝐸) into a skip graph after 𝑂 (log2 𝑛)

rounds (Convergence) and

(ii) if the explicit edges in𝐺 already form a skip graph, then they are preserved at any point in time

(Closure).

A single join event (i.e., a new node connects to an arbitrary node in the system) or leave event (i.e., a

node just leaves without prior notice) can be handled with polylogarithmic work.

An improved version of the self-stabilizing SKIP+ graph is HSKIP+ [17] which reduces the

stabilization time in practice and needs less work for single join or leave events.

6.2 Self-Stabilizing Random Graphs
Another attractive family of overlay topologies are random graphs. Random graphs are known to

enable efficient communication, and are also used in other contexts, such as datacenter networks [58]

and also serve as models for social networks and in particular small-world networks [29]. A self-

stabilizing small-world network has been proposed in [30]. The topology consist of a sorted ring

with additional shortcuts, i.e., each node has a long-range link to a random node in the system.
1

Similar to the probing approach for the linearized de Bruijn graph, in this algorithm, each node

periodically sends out probes to ensure that the network is connected through non-long-range links.

Long-range links are maintained through a technique called Move and Forget adapted from [11]: As

time proceeds, a node 𝑣 may forget its long-range link with a certain probability that is increasing

over time. Node 𝑣 periodically asks its long-range link 𝑣 .𝑙𝑟𝑙 for its direct ring neighbors 𝑙 and 𝑟 .

Once 𝑣 forgets the long-range link, it sets 𝑣 .𝑙𝑟𝑙 to either 𝑙 or 𝑟 , each with probability 1/2.
A special technique to let a topology converge to some random graph that is an expander has

been proposed in [39, 40]. Expander graphs can be constructed by a series of edge flips in regular

undirected graphs. The authors introduce the 𝑘-Flipper transformation rule, which considers a

given path of length 𝑘 + 2 and interchanges the end vertices of the path. It can be shown that the

continuous use of the 1-Flipper transformation on a 𝑑-regular graph 𝐺0 constructs all connected

𝑑-regular graphs with the same probability. For 𝑑 ∈ 𝜔 (1) a random connected 𝑑-regular graph is a

Θ(𝑑)-expander graph asymptotically almost surely, i.e., with probability 𝑝 ≥ 1 − 𝑜 (1).
A generalization of the 1-Flipper rule achieves the following result, which informally states that

within a polynomial number of edge flips one is able to construct a random 𝑑-regular connected

graph that is a Θ(𝑑)-expander.

Theorem 6.2 ([39]). If we choose 𝑑 ∈ Ω(log𝑛) applying O(𝑑𝑛) random Θ(𝑑2𝑛2 log 1/𝜀)-Flipper
operations transforms any given 𝑑-regular connected graph into a connected 𝑑-regular graph with

expansion Θ(𝑑) with high probability.

A different rule called “Flip" for edge flipping has been introduced in [27]: one such operation

replaces the edges (𝑖, 𝑗) and (𝑘, 𝑙) by edges (𝑖, 𝑘) and ( 𝑗, 𝑙), if and only if 𝑖 and 𝑙 are adjacent to each

other. Starting from a connected graph, it has been shown that this Flip operation defines a Markov

chain on all connected graphs, i.e., we can construct any connected graph𝐺 ′ when starting with

the connected graph𝐺 by a series of Flip operations. Finally, it has been shown in [14] that the Flip

Markov chain is rapidly mixing for regular graphs.

1
Note that depending on the probability distribution of these long-range links, the random graph may or may not be an

expander.
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6.3 Transitive Closure Framework
A framework to derive self-stabilizing algorithms for any desired topology is the Transitive Closure

Framework (TCF) [9]. The idea of the framework is as follows: Each node periodically receives

its 2-neighborhood and locally checks if it is in a legitimate state. If there exists a node in the

network, for which this is not the case, then it becomes a detector and spreads the event that

the system is in an illegitimate state through the network. This leads to every node eventually

becoming a detector. Detectors expand their neighborhood to eventually contain all nodes in 𝑉 .

Thus the system eventually reaches a clique. Once the clique has been generated, each node is able

to compute its correct set of neighbors within one round, using the Forward primitive to delegate

edges not needed by a node until the edge is merged at some node (recall that we are not allowed

to simply delete an edge as connectivity may be lost this way).

The following bound on the runtime of TCF has been shown in [9]:

Theorem 6.3 ([9]). The Transitive Closure Framework is self-stabilizing, i.e.,

(i) it transforms any weakly connected graph 𝐺 = (𝑉 , 𝐸) into any locally-checkable family of

overlay networks in at most 𝐷 (𝑛) + log𝑛 + 1 rounds, where 𝐷 (𝑛) is the maximum distance

between a non-detector node and its closest detector (Convergence) and

(ii) if the explicit edges in 𝐺 already form the desired topology, then they are preserved at any point

in time (Closure).

One may confer that 𝐷 (𝑛) may become quite large when considering any initial state. However,

the authors of [9] showed for a wide variety of overlay networks that 𝐷 (𝑛) and the diameter of the

network in a legitimate state are asymptotically identical. For example, this leads to a𝑂 (log𝑛)-time

self-stabilizing algorithm for the SKIP+ graph, which is optimal, as any self-stabilizing algorithm

needs time of at least the diameter of the network in legitimate states.

Another framework for generating different families of graphs is Avatar [8], which also has

the advantage that the degree of nodes increases only by a polylogarithmic factor in expectation

during stabilization.

7 OTHER ASPECTS
There are several specific aspects in topological self-stabilization which have received special

attention. For example, besides supporting joins and leaves, overlay networks also need to provide

fast search. Another important aspect is how to support special leave operations, beyond simple

crashes. In the following, we discuss these two aspects in more detail.

7.1 Monotonic Searchability
Consider the sorted list from Section 4.1 and assume a node 𝑣 wants to send a packet 𝑃 to the

node with identifier 𝑖𝑑 ∈ N. Before it can do that, 𝑣 first has to search for the reference of the node

with id 𝑡 in the sorted list. This is done by 𝑣 generating a Search(𝑣, 𝑖𝑑) request that is forwarded

along the list until it terminates, i.e., it either arrives at the desired node, or the underlying routing

algorithm concludes that the request cannot be forwarded anymore. Upon termination the result

of the request is directly sent back to 𝑣 (this is why the request has to contain 𝑣 ’s reference). A

trivial routing algorithm would be to just forward Search(𝑣, 𝑖𝑑) at each node 𝑢 via either 𝑢.𝑙𝑒 𝑓 𝑡 or

𝑢.𝑟𝑖𝑔ℎ𝑡 , depending on which of these node’s ids are closer to 𝑖𝑑 (Algorithm 1).

A desired property for Search requests is to guarantee liveness, i.e., to guarantee that each

Search request eventually terminates. One can easily see that the above algorithm for the sorted

list trivially satisfies liveness. More involved strategies have to be considered if we also want to

guarantee safety properties. Regarding Search requests, monotonic searchability is considered as

an important property:
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Algorithm 1 Routing Algorithm for the Sorted List

1: procedure Search(𝑣, 𝑠𝑖𝑑) ⊲ Executed by node 𝑢

2: if 𝑢.𝑖𝑑 = 𝑠𝑖𝑑 then
3: “Success", terminate

4: if 𝑢.𝑙𝑒 𝑓 𝑡 < 𝑠𝑖𝑑 < 𝑢.𝑖𝑑 or 𝑢.𝑖𝑑 < 𝑠𝑖𝑑 < 𝑢.𝑟𝑖𝑔ℎ𝑡 then
5: “Failure", terminate ⊲ Guarantees liveness

6: if 𝑠𝑖𝑑 < 𝑢.𝑖𝑑 then
7: 𝑢.𝑙𝑒 𝑓 𝑡 ← Search(𝑣, 𝑠𝑖𝑑)

8: else
9: 𝑢.𝑟𝑖𝑔ℎ𝑡 ← Search(𝑣, 𝑠𝑖𝑑)

Definition 7.1 ([57]). A self-stabilizing protocol satisfies monotonic searchability according to

some routing protocol R, if it holds for any pair of nodes 𝑣,𝑤 that once a Search(𝑣,𝑤 .𝑖𝑑) request

(that is routed according to R) initiated at time 𝑡 succeeds, any Search(𝑣,𝑤 .𝑖𝑑) request initiated at

time 𝑡 ′ > 𝑡 will succeed.

Protocols that satisfy monotonic searchability have the advantage to be able to provide guarantees

on Search requests even while the recovery process is going on. Due to the modification of edges

by the self-stabilizing protocol, realizing monotonic searchability is a non-trivial problem: One can

see that the above routing algorithm for the sorted list does not satisfy monotonic searchability.

Consider Figure 1.9 for an example.

u w

u.right
Time t:

xv

u w

u.right

Time t‘>t:

xv

Search(u,x.id)

Search(u,x.id)

???

Fig. 1.9. Example illustrating why the trivial routing algorithm for the sorted list fails to guarantee monotonic

searchability. At time 𝑡 the search request is able to reach the target node 𝑥 , but this cannot be guaranteed

anymore after 𝑢 performed Linearize at time 𝑡 ′ > 𝑡 and the search request arrives at 𝑣 before the reference of

𝑤 indicated by the implicit edge (𝑣,𝑤).

Research on monotonic searchability was initated in [56] where the authors came up with a

protocol for the sorted list that satisfies monotonic searchability. The idea is that nodes are allowed

to have multiple left and right neighbors while the system recovers. An edge (𝑢,𝑤) that should be
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forwarded to some node 𝑣 is not directly forwarded but only removed from 𝑢’s local storage after

𝑣 has acknowledged the implicit edge to𝑤 . The authors showed that this extension still leads to

the system converging to a sorted list. Furthermore, when using a appropriate routing protocol,

monotonic searchability can be shown as well.

Research on monotonic searchability culminated in a generic approach that can be applied to a

wide range of self-stabilizing protocols such that monotonic searchability is guaranteed [57]. Along

with a generic search protocol, the approach introduces a new set of primitives for manipulating

edges that allow the safer delegation of edges than the primitives described in Section 3.1, while

still being provably universal. The cost that one pays when applying that protocol is that Search

requests may traverse up to Ω(𝑛) hops until termination when searching for non-existent nodes in

the system.

In order to avoid the above costs, one can still ask if there are protocols for specific topologies

that satisfy monotonic searchability. Recently the authors of [38] presented a specialized protocol

in order to guarantee monotonic searchability in the perfect skip graph. The perfect skip graph is

the deterministic version of the skip graph and has the advantage over the SKIP+ graph that it can

be built in a self-stabilizing manner using a probing approach, without having to rely on additional

edges to enable local checkability.

Last but not least we note that the protocol for the self-stabilizing quadtree from [15] has been

constructed in a way such that monotonic searchability can be guaranteed trivially.

Whether there are even more efficient topology-specific protocols remains an open problem.

7.2 Node Departures
Another challenging task arises when studying node departures, i.e., when nodes are allowed to

leave the system. In an ideal scenario nodes may just leave the system, as we then rely on the

self-stabilizing protocol to stabilize the system again. This approach however is flawed for two

reasons: First, if the expansion of the topology is not high enough (consider for example the sorted

list), then a leaving node may disconnect the overlay, implying that stabilization to a sorted list is

not possible. The second reason is that even if the expansion of the topology is high, it is still not

guaranteed to be high in illegitimate states, but only in legitimate states. Thus, leaving nodes may

still be able to disconnect the overlay.

In topological self-stabilization, node departures have been first studied in [18], where nodes

are either staying (the process wants to remain in the system) or leaving (the process wants to be

excluded from the system). Leaving nodes are allowed to enter the state exit or sleep. A process

that is in state exit is gone, i.e., it does not execute any actions anymore. If a process is in state

sleep, it does not execute any action until another process invokes an action on it via a message.

Processes that are neither in states exit or sleep are called awake. The challenge is to stabilize the

system to a legitimate state with the following properties:

(i) Every staying process is awake.

(ii) Every leaving process is either in state exit or permanently in state sleep.
(iii) All staying processes form a weakly connected component.

The authors of [18] introduced the following problems:

• Finite Departure Problem (FDP): Eventually reach a legitimate state in case that only the

state exit is available.
• Finite Sleep Problem (FSP): Eventually reach a legitimate state in case that only the state

sleep is available.

An important (negative) result is that the FDP cannot be solved by local control protocols.

Instead one has to make use of oracles:
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Theorem 7.2. Any self-stabilizing solution for the FDP has to rely on an oracle.

On the positive side however, the FSP can actually be solved by local control protocols.

Research on node departures culminated in an universal protocol for the FDP [33] that can be

applied to a wide range of self-stabilizing protocols. As already mentioned above, this is of great

importance even if the expansion of the topology in legitimate states is high.

Recently it has been shown that when considering a new interconnection model based on relays,

the FDP can be solved even without relying on an oracle [55].

8 CONCLUSION AND OPEN QUESTIONS
This paper presented an overview of the state-of-the-art techniques to design self-stabilizing overlay

networks: overlays which are highly fault-tolerant in the sense that they reconfigure to reach a

desirable state, in a distributed manner, from arbitrary initial states. In particular, we proceeded in

a bottom-up manner, starting with basic connectivity primitives, then studying algorithms for the

fundamental linearization problem, moving to more general geometric graphs, and finally reaching

scalable networks based on skip graphs and random graphs.

While today we have a fairly good understanding of the design of algorithms for self-stabilizing

networks, a number of important problems remain open. In the following, we discuss some of them.

• Upper and Lower Bounds on Work: The main focus in existing literature on the design

of self-stabilizing topologies is on the feasibility and correctness of distributed algorithms.

While we have presented some results on the runtime of self-stabilizing algorithms in this

paper, particularly little is known today (with some exceptions [25],[31]) about the work

required for topological self-stabilization. Results on upper and lower bounds on the work of

self-stabilizing algorithms for different overlay topologies, will be very interesting.

• Transient Behavior: We also lack a good understanding of the achievable transient prop-

erties, during convergence. For example, while self-stabilizing networks such as SKIP+ are
scalable in the sense that they rely on graphs providing a polylogarithmic degree and diameter,

scalability may not be ensured during convergence: during convergence, the degree of a node

may temporarily raise significantly, far beyond the maximum initial or final node degree. A

major open question hence regards the design of algorithms which also provide scalability

during convergence. To give another example, consider the diameter: it may be desirable that

the diameter never significantly increases during convergence. At the same time, we also note

that for some specific problems, such as linearization, achieving, e.g., convergence without

increasing degrees, is simple, and an interesting avenue for future research is to investigate

to which extent such results can be generalized.

• Locality: While a self-stabilizing algorithm by definition will re-establish a desired property

from any initial configuration, it is desirable that the parallel convergence time as well as

the overall work is proportional to “how far” the initial topology is from the desired one.

We currently lack a general theoretical understanding of what can and cannot be achieved

in terms of such local properties. We also lack a deep understanding of how the “distance”

between initial and desired topology can be defined generally; it may also depend on the

application.

• Churn Tolerance: We currently lack insights into the rate of joins and leaves an over-

lay network can tolerate. Indeed, while there exists work on overlays which are “churn-

tolerant” [21, 34, 49], this line of research has been largely independent of research on

self-stabilizing algorithms. Bringing these two fields together may lead to very interesting

and relevant research insights.
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