
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks
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Trend
Data-Centric Applications
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Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  

a critical infrastructure

of our digital society.
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The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers
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Root Cause
Fixed and Demand-Oblivious Topology
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How to interconnect?



Root Cause
Fixed and Demand-Oblivious Topology

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Our Vision
Flexible and Demand-Aware Topologies
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Our Vision
Flexible and Demand-Aware Topologies
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Self-Adjusting

Networks

new
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Our Motivation
Much Structure in the Demand
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My hypothesis: can be 

exploited.

Empirical studies: 
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Microsoft

traffic bursty over time
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Facebook

Time (seconds)

traffic matrices sparse and skewed



Sounds Crazy? 
Emerging Enabling
Technology.
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H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics



Enabler
Novel Reconfigurable Optical Switches
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⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our last year’s ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror



The Big Picture
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The Big Picture
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Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

Our goal: Develop the 

theoretical foundations

of demand-aware, self-

adjusting networks.



Unique Position
Demand-Aware, Self-Adjusting Systems
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Everywhere, but mainly 
in software

Our focus: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems



Question 1:

How to Quantify 
such “Structure” 
in the Demand?
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Intuition
Which demand has more structure?
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⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU
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Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs



Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 



bursty uniform
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Our Methodology

Complexity Map

14

No structure

bursty & skewed
skewed

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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temporal complexity

14

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Different 

structures!

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.



Further Reading

ACM SIGMETRICS 2020



Question 2:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

15

A first insight: entropy of the demand.



Models and Connection to 
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More structure: lower routing cost



Models and Connection to 
Datastructures & Coding

Oblivious networks
(worst-case traffic)

More structure: lower routing cost



Models and Connection to 
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

More structure: lower routing cost



Models and Connection to 
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost



Models and Connection to 
Datastructures & Coding

More structure: lower routing cost

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)



Traditional BST
(Worst-case coding)

Models and Connection to 
Datastructures & Coding

More structure: lower routing cost
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Traditional BST
(Worst-case coding)

Models and Connection to 
Datastructures & Coding

Traditional networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than 

an analogy!entropy
rate

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First result: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 

entropy
rate

entropylog n
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Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better? 

⇢ DAN for △=2

⇀ Set of lines and cycles



Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better? 

⇢ DAN for △=2

⇀ Set of lines and cycles

How
hard?



Related Problem

Virtual Network 
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem

Virtual Network 
Embedding Problem (VNEP)

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!
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⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree 

⇀ helper nodes

Static

Entropy Upper Bound



Intuition of Algorithm

Demand graph: Demand-aware network:

Ego-trees for 

large nodes



ERL=Ω(HΔ(Y|X))

Entropy Lower Bound



Dynamic Algorithm

Dynamic



Further Reading

TON 2016, DISC 2017, 

CCR 2019, INFOCOM 2019 



⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

It is more complicated…

6 hops 1 hop
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⇀ Self-adjusting networks may be really useful to serve large 
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It is more complicated…
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

It is more complicated…

vs

6 hops 1 hop

bandwidth 

tax!

latency 

tax!

67



Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed

⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Indeed, it is more complicated than that…

Challenge: Traffic Diversity

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

68



Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Opera (NSDI‘20), 
Sirius
(SIGCOMM‘20)

e.g., FireFly
(SIGCOMM‘14), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
BCube
(SIGCOMM‘09), 
Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Rack Interconnect

1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

Optical Switches
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Rack Interconnect

1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

…

S1 S2 Sk

76



Rotor switch: periodic matchings (demand-oblivious)

time

M1 M2 M3 M1 M2 M3

Si:

Details: Switch Types
Periodic Switch (aka Rotor Switch)

77



Demand-aware switch: optimized matchings

Si:

Details: Switch Types
Demand-Aware Switch

time

M1 M3 M2M2M1 M1

78



Static switches: combine for optimized static topology

S1:

Details: Switch Types
Static Switch

M1 M2 M3

S2: S3:

e.g, tree, expander

79



Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ but slower
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Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ but slower

Compared to static networks: latency tax!

low tax high tax

81



Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves    

bandwidth along links

Good for low latency!

⇀ no need to wait for 

reconfigurable links

⇀ compared to dynamic: 

bandwidth tax (multi-hop)
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Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves    

bandwidth along links

Good for low latency!

⇀ no need to wait for 

reconfigurable links

⇀ compared to dynamic: 

bandwidth tax (multi-hop)

bandwidth 

tax

latency 

tax

83



First Observations

⇢ Observation 1: Different topologies provide

different tradeoffs. 

⇢ Observation 2: Different traffic requires different 

topology types. 

⇢ Observation 3: A mismatch of demand and topology 

can increase flow completion times.

⇀ bad idea: serving mice flows on Rotor topology
⇀ bad idea: serving elephant flows on static topology

84



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious
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aware

Dynamic

Rotor
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Static

Topology 85
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aware
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Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static? 

Bad idea! Bandwidth tax.  

?

89



Cerberus:

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

Our system Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022
90



⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution
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Cerberus
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Optical Switches
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Cerberus
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Scheduling: Small flows go via static switches…
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Cerberus
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Scheduling: … medium flows via rotor switches…
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Cerberus
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Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 99



Throughput Analysis

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…
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Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible.

Metric: throughput

of a demand matrix…

101



Throughput Analysis
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Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible.

Metric: throughput
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Throughput of network 𝜃∗:
worst case 𝑇
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Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

Worst demand matrix for static

and rotor: permutation. Best 

case for demand-aware! 
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⇒
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Completion Time

Data mining workload

⇢ Demand completion time: How long does 

it take to serve a demand matrix?

⇢ Also useful in analysis: throughput can be computed more 

easily via demand completion time. 
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Conclusion

⇢ Diverse traffic requires 

diverse technologies

⇢ Cerberus aims to assign

traffic to its best topology
⇀ Depending on flow size

⇢ Many challenges

⇀ Impact on routing and congestion control

⇀ Sensitivity analysis

⇀ Prototyping

Thank you!
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http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website
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