
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks
Stefan Schmid

Acknowledgements:

Trend
Data-Centric Applications

1

Datacenters (“hyper-scale”)

Traffic
Growth

S
o
u
r
c
e
:

F
a
c
e
b
o
o
k

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers

[
1
]

S
o
u
r
c
e
:

M
i
c
r
o
s
o
f
t
,

2
0
1
9

G
b
p
s
/
€

Time

Root Cause
Fixed and Demand-Oblivious Topology

3

How to interconnect?

Root Cause
Fixed and Demand-Oblivious Topology

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

3

Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores

actual traffic:

frustrating!

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

3

Our Vision
Flexible and Demand-Aware Topologies

4

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

Our Motivation
Much Structure in the Demand

5

My hypothesis: can be

exploited.

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

Sounds Crazy?
Emerging Enabling
Technology.

6

H2020:

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council:

“Photons are the new

Electrons.”
Photonics

Enabler
Novel Reconfigurable Optical Switches

7

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times

⇀ From our last year’s ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3

Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

The Big Picture

8

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

The Big Picture

8

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

Our goal: Develop the

theoretical foundations

of demand-aware, self-

adjusting networks.

Unique Position
Demand-Aware, Self-Adjusting Systems

9

Everywhere, but mainly
in software

Our focus:
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

Question 1:

How to Quantify
such “Structure”
in the Demand?

10

11

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

11

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

12

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

12

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

Our Methodology

Complexity Map

14

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

14

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

No structure

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

14

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

Different

structures!

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

Further Reading

ACM SIGMETRICS 2020

Question 2:

Given This Structure,
What Can Be Achieved?
Metrics and Algorithms?

15

A first insight: entropy of the demand.

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

More structure: lower routing cost

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

Traditional BST
(Worst-case coding)

Models and Connection to
Datastructures & Coding

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

entropy
rate

entropylog n

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

Traditional BST
(Worst-case coding)

Models and Connection to
Datastructures & Coding

Traditional networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than

an analogy!entropy
rate

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

First result:

Demand-aware networks

of asymptotically

optimal route lengths.

entropy
rate

entropylog n

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

2

1

3 4

5

6

7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

1

2

3 4

5

6

7

1

3 4

5

6

7

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

2

1

3 4

5

6

7

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

2

Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better?

⇢ DAN for △=2

⇀ Set of lines and cycles

Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better?

⇢ DAN for △=2

⇀ Set of lines and cycles

How
hard?

Related Problem

Virtual Network
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

cost 5

Bad!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

cost 1

Good!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

1 2 3 4 5 6 7

Huffman tree:
“ego-tree”

Algorithm: Idea

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

Entropy Upper Bound

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree

⇀ helper nodes

Entropy Upper Bound

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree

⇀ helper nodes

Entropy Upper Bound

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree

⇀ helper nodes

Static

Entropy Upper Bound

Intuition of Algorithm

Demand graph: Demand-aware network:

Ego-trees for

large nodes

ERL=Ω(HΔ(Y|X))

Entropy Lower Bound

Dynamic Algorithm

Dynamic

Further Reading

TON 2016, DISC 2017,

CCR 2019, INFOCOM 2019

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

It is more complicated…

6 hops 1 hop

vs

64

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

It is more complicated…

6 hops 1 hop

vs

bandwidth

tax!

65

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

It is more complicated…

6 hops 1 hop

vs

bandwidth

tax!

66

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

It is more complicated…

vs

6 hops 1 hop

bandwidth

tax!

latency

tax!

67

Diverse patterns:

⇀ Shuffling/Hadoop:

all-to-all

⇀ All-reduce/ML: ring or

tree traffic patterns
⇀ Elephant flows

⇀ Query traffic: skewed

⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

⇀ ML is bandwidth hungry,

small flows are latency-

sensitive

Indeed, it is more complicated than that…

Challenge: Traffic Diversity

Shuffling

All-to-All

ML

Large flows

Delay
sensitive

Telemetry
/ control

68

Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

69

Static

Demand-
oblivious

Demand-
aware

Dynamic

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

70

Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Opera (NSDI‘20),
Sirius
(SIGCOMM‘20)

e.g., FireFly
(SIGCOMM‘14),
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
BCube
(SIGCOMM‘09),
Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

71

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

72

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

73

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

As always in CS:

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

74

Rack Interconnect

1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

Optical Switches

75

Rack Interconnect

1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

…

S1 S2 Sk

76

Rotor switch: periodic matchings (demand-oblivious)

time

M1 M2 M3 M1 M2 M3

Si:

Details: Switch Types
Periodic Switch (aka Rotor Switch)

77

Demand-aware switch: optimized matchings

Si:

Details: Switch Types
Demand-Aware Switch

time

M1 M3 M2M2M1 M1

78

Static switches: combine for optimized static topology

S1:

Details: Switch Types
Static Switch

M1 M2 M3

S2: S3:

e.g, tree, expander

79

Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ but slower

80

Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ but slower

Compared to static networks: latency tax!

low tax high tax

81

Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves

bandwidth along links

Good for low latency!

⇀ no need to wait for

reconfigurable links

⇀ compared to dynamic:

bandwidth tax (multi-hop)

82

Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves

bandwidth along links

Good for low latency!

⇀ no need to wait for

reconfigurable links

⇀ compared to dynamic:

bandwidth tax (multi-hop)

bandwidth

tax

latency

tax

83

First Observations

⇢ Observation 1: Different topologies provide

different tradeoffs.

⇢ Observation 2: Different traffic requires different

topology types.

⇢ Observation 3: A mismatch of demand and topology

can increase flow completion times.

⇀ bad idea: serving mice flows on Rotor topology
⇀ bad idea: serving elephant flows on static topology

84

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology 85

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

?

86

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

Bad idea! Latency tax.

?

87

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

?

88

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

Bad idea! Bandwidth tax.

?

89

Cerberus:

Shuffling ML

Delay
sensitive

Telemetry
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

Our system Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022
90

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

91

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

92

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

93

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

94

Cerberus

1 2 3 4 5 6 7 8

Optical Switches

95

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

96

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: Small flows go via static switches…

97

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … medium flows via rotor switches…

98

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 99

Throughput Analysis

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…

100

Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible.

Metric: throughput

of a demand matrix…

101

Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

⇒

Throughput of network 𝜃∗:
worst case 𝑇

102

Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

Worst demand matrix for static

and rotor: permutation. Best

case for demand-aware!

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

⇒

103

Completion Time

Data mining workload

⇢ Demand completion time: How long does

it take to serve a demand matrix?

⇢ Also useful in analysis: throughput can be computed more

easily via demand completion time.

104

Conclusion

⇢ Diverse traffic requires

diverse technologies

⇢ Cerberus aims to assign

traffic to its best topology
⇀ Depending on flow size

⇢ Many challenges

⇀ Impact on routing and congestion control

⇀ Sensitivity analysis

⇀ Prototyping

Thank you!

105

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

Static DAN Static OptimalityOverview: Models

Dynamic DAN
Robust DAN

Concurrent DANs

Further Reading

On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS, Boston, Massachusetts, USA, June 2020.

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Dynamically Optimal Self-Adjusting Single-Source Tree Networks
Chen Avin, Kaushik Mondal, and Stefan Schmid.
14th Latin American Theoretical Informatics Symposium (LATIN), University of Sao Paulo, Sao Paulo, Brazil, May 2020.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.

Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Selected

References

Bonus Material

Hogwarts Stair

Bonus Material

Golden Gate Zipper

Bonus Material

In HPC

