Disconnected cooperation in resilient networks and

the algorithmic challenges of local fast re-routing
Stefan Schmid @ Workshop on Distributed Algorithms on Realistic Network Models (PODC’21)

um mm

Disconnected cooperation in resilient networks and

the algorithmic challenges of local fast re-routing
Stefan Schmid @ Workshop on Distributed Algorithms on Realistic Network Models (PODC’21)

Il!%ll lllli | l%ilﬁ IIHH il il!!i! H!hi Hi l

ST it

nm mm

Communication Networks

Critical infrastructure of digital society

* Popularity of datacentric applications: health,
business, entertainment, social networking,
Al/ML, etc.

* Evident during ongoing pandemic: online
learning, online conferences, etc.

Y EL
|

* Much traffic especially to, from, and inside
datacenters NE

Facebook datacenter

Increasingly stringent dependability requirements!

Requirements vs Reality

Entire countries disconnected...

Data Centre » Networks

Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 40() SHARE Y

Last Friday, someone in Google fat-thumbed a border gateway protocol
(BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory “leaked” a big route
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated
as transit.

... 1000s passengers stranded...

British Airways' latest Total Inability To
Support Upwardness of Planes*
caused by Amadeus system outage

Stuck on the ground awaiting a load sheet? Here's
why

By Gareth Corfield 19 Jul 2018 at 11:16 109(] SHARE ¥

... even 911 services affected!

Officials: Human error to blame in Minn. 911
outage

According to a press release, CenturyLink told department of public safety that
human error by an employee of a third party vendor was to blame for the outage

Aug 16,2018

Duluth News Tribune

SAINT PAUL, Minn. — The Minnesota Department of Public Safety Emergency Communication Networks division
was told by its 911 provider that an Aug. 1 outage was caused by human error.

Many outages due to human error!

(Misconfigurations, not attacks...)

Even Tech-Savvy Companies Struggle

(D ithu We discovered a misconfiguration on this pair of switches that caused what's called a
N gsom sLcoone bridge loop” in the network.

A network change was [...] executed incorrectly [...] more “stuck” volumes amazon
and added more requests to the re-mirroring storm. webservices

Go D dd Service outage was due to a series of internal network events that corrupted
44dj.con
' router data tables.

Experienced a network connectivity issue [...] interrupted the airline's unlted ?g;;‘
flight departures, airport processing and reservations systems A]l‘llnes KOO

Also here: due to human errors.

No Surprise: Networks Are Complex

Manual, device-centric

network configurations
(CLI, LANmanager)

500-router network: typically
>1 million lines of configuration

Un-evolved best practices
(tcodump, traceroute - from the 1990s)

Complex, leaky, low-level interfaces
(VLANSs, Spanning Tree, Routing)

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

X Y

8 |lc D G H
£ | e
i O A B E F
Gl G2 PL P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

Cluster with services that X Y Cluster with services that should

should be globally reachable. be accessible only internally.
<
O :
© :
o :
© :
Q .

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X Y
8 N
€ g
O C D G H
£ L e
i O A B E F
Gl G2 PL P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X andY block what is

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X and Y block what is

and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)
Gl GZ Pl P2

o
hd
c
) .
P9 :
{If link (G,X) fails and traffic from G is rerouted via Y

H H
MmN NN RN N RN N E N N E N N E N N E N N E NN EE N EEEEEEEEEEEE AN AN AN AN EEE AN AN AN AN AN AN AN AN AN AN AN AN EEEEEEEEEEEEEEEEEEEEE 5

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

We’'re Falling Behind the Curve:
Increasing Complexity, Software from the 90s

. Anecdote Wall Street bank: outage of a datacenter

. Lost revenue measured in 1 mio$S/min
. Quickly, an emergency team was assembled with
experts in compute, storage and networking:

. The compute team: reams of logs, written experiments to
reproduce and isolate the error

. The storage team: system logs were affected, workaround
programs.

. “All the networking team had were two tools invented

over twenty years ago to merely test end-to-end
connectivity. Neither tool could reveal problems with the
switches, the congestion experienced.”

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

Traditional Networks

control
plane
data
plane

Distributed algorithms:
upon link failure, reconverge
to shortest paths

Software-Defined Networks (SDN)

- Remote Controller P

il i1

control
plane

Centralized algorithms:
upon link failure, push new
forwarding rules

Faster and more controlled reaction:

a reason for Google’s move to SDN!

Software-Defined Networks (SDN)

— Remote Controller P

=it 1 |

Centralized algorithms:
upon link failure, push new
forwarding rules

S Faster and more controlled reaction:

a reason for Google’s move to SDN!

routing
restoration

-
-
2021-Yiglep shot taken from “Lemmings” |
designed and developed by DMA Design i 1

Failover: Control Plane vs Data Plane

* Slower reaction in the control plane than in the data plane

VS

Minister of Education Teacher in the Classroom

Approaches for Failover

/ In Control Plane \

e Distributed
recomputation of
shortest paths (“re-
convergence”)

* Centralized
recomputation of paths
(SDN)

* Link-reversal algorithms

(e.g., Gafni et al.)
= /

VS

/ In Data Plane \

e Static forwarding table

* Rules pre-installed before
failures are known

_ /

Approaches for Failover

recomputation of
shortest paths (“re-
convergence”)

Centralized

recomputation of paths

(SDN)

Link-reversal algorithms

(e.g., Gafni et al.)

/

VS

e Static forwarding table

* Rules pre-installed before
failures are known

_ /

The FRR Problem
/Phase 1: Rule installation\

71

_ /

The FRR Problem
/Phase 1: Rule installation\

H— B

%

== [p—==

The FRR Problem

/Phase 1: Rule installation\

H— B

%

== [p—==

mase 2: Failures and routinh

==

71

_ /

The FRR Problem

/Phase 1: Rule installation\

H— B

\ \
== ==
\

mase 2: Failures and routinh

==

71

Without coordination!

The FRR Problem

Default route

O
o

[o]

* Pre-installed local-fast failover rules

— Can depend on local failures and, e.g., destination,
inport, source

* At runtime, rules are just “executed”

Advantage: no need to wait
for reconvergence.

Credits: Klaus-Tycho Forster

The FRR Problem

Good alternative
under 1 failure!

* Pre-installed local-fast failover rules

— Can depend on local failures and, e.g., destination,
inport, source

* At runtime, rules are just “executed”

Advantage: no need to wait
for reconvergence.

Pre-installed
failover rule

Credits: Klaus-Tycho Forster

The FRR Problem

Good alternative
under 1 failure!

* Pre-installed local-fast failover rules

— Can depend on local failures and, e.g., destination,
inport, source

e At runtime, rules are just “executed”

Advantage: no need to wait

for reconvergence.

Does not see 2nd
failure...

Credits: Klaus-Tycho Forster

The FRR Problem

Can get complex under
multiple failures..

* Pre-installed local-fast failover rules

— Can depend on local failures and, e.g., destination,
inport, source

* At runtime, rules are just “executed”

Advantage: no need to wait
for reconvergence.

Requires inport
matching!

Credits: Klaus-Tycho Forster

The FRR Problem

With global
knowledge: simpler!

* Pre-installed local-fast failover rules

— Can depend on local failures and, e.g., destination,
inport, source

* At runtime, rules are just “executed”

Advantage: no need to wait
for reconvergence.

Credits: Klaus-Tycho Forster

What information is locally available in a
switch for handling a packet?

Credits: Marco Chiesa

Locally Available Information:
The Forwarding Table: Match -> Action

Credits: Marco Chiesa

Locally Available Information:
The Packet Header

table ﬁ;

match action

Credits: Marco Chiesa

Locally Available Information:
The Inport of the Received Packet

&

"J_ int2

ng
table #

match action
int3

Credits: Marco Chiesa

Locally Available Information:
The Outgoing Port Depends on Failed Links

bss
F int2
ng
table #

match action
int3

Credits: Marco Chiesa

Raises an Interesting Question

a A

Can we pre-install local fast failover rules
which ensure reachability under multiple
failures? In particular: How many failures can
be tolerated by static forwarding tables?

\)

Remark: Traditional Approach LFA

e Traditionally: forwarding along shortest paths
Example 1:

* Loop-Free Alternative (LFA): failover to
alternative neighbor, from there shortest path

Example 1:

« If (s,v) fails, s can failover to u

* u has shortest path to t that does not go
through (s,v) again

* WORKS: can protect (s,v)

Initial Path === '>
LFAFRR

Remark: Traditional Approach LFA

Initial Path === -)
LFAFRR
e Traditionally: forwarding along shortest paths non-LFAFRR

Example 2:

* Loop-Free Alternative (LFA): failover to
can’t use it!

alternative neighbor, from there shortest path

Example 2:
* If (s,t) fails, s can only try to failover to v

 However, when v’s shortest route to t goes
along s again: loop
 DOES NOT WORK: Cannot protect (s,t)

Remark: Traditional Approach LFA

Initial Path === -)
LFAFRR
e Traditionally: forwarding along shortest paths non-LFAFRR

Example 2:

* Loop-Free Alternative (LFA): failover to
can’t use it!

alternative neighbor, from there shortest path

Example 2:
* If (s,t) fails, s can only try to failover to v

 However, when v’s shortest route to t goes
along s again: loop
 DOES NOT WORK: Cannot protect (s,t)

Even though loop-free alternative path exists, an LFA algorithm

cannot use it. Protection ratio of LFA depends on topology.

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

So: How many failures can be tolerated by
static forwarding tables?

/ N\
N

N

If we partition the network,
there is not much to do

The connectivity k of a network N: the minimum
number of link deletions that partitions N

/ N\
N

&
- 8x.

The connectivity of this
network is four

Credits: Marco Chiesa

Resilience Criteria

a N

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

\)

a N

Perfect resilience

Any source s can always reach any
destination t as long as the

unterlying network is physically
connected.

\ /

Can this be achieved? Assume undirected link failures.

Resilience Criteria

Ideal resilience

Given a k-connected graphs, we

can tolerate any k-1 link failures.

-

Perfect resilience

destination t as long as the

unterlying network is physically
connected.

"

Any source s can always reach any

N

/

Can this be achieved? Assume undirected link failures.

Spectrum of Models

.

intO# - " St
orwarding

L'{ tabld™ = I

he_adiL match action

Recall our switch model:

int3

Achievable resilience depnds on what can be matched:

Packet
header
rewriting

Per- Incoming Probabilistic
Per source

destination port forwarding

Credits: Marco Chiesa

Spectrum of Models

e
into B int2
Forwardi

ng
w N s
he_adiL match action

Recall our switch model:

Can carry global information,

Achievable resilience depnd but often undeswablg

Per- Incoming Probabilistic 0
Per source header

destination port forwarding

rewriting

Credits: Marco Chiesa

Per-destination routing cannot cope

with even one link failure

Packet
header Resiliency
rewriting

N - Pre-computed
S o failover path

Per- Incoming | Probabilistic
Per source

destination port forwarding

Without matching inport:
e sends back — /oop!

Can we achieve k — 1 resiliency in k-connected graph here?

Packet
header Resiliency
rewriting

X X X ?

Per- Incoming | Probabilistic

. . Per source)
destination port forwarding

Credits: Marco Chiesa

Can we achieve k — 1 resiliency in k-connected graph here?

Packet
header Resiliency
rewriting

Per- Incoming | Probabilistic

. . Per source)
destination port forwarding

X X X Yes

k disjoint paths: try

e one after the other,
routing back to

source each time.

Credits: Marco Chiesa

Can we achieve k — 1 resiliency in k-connected graph here?

Packet
header Resiliency
rewriting

X X ?

Per- Incoming | Probabilistic

. . Per source)
destination port forwarding

What about this scenario?

Practically important. From now
on called “ideal resilience”.

ldeal Resilience: Example 2-dim Torus?

FTiss
IELELECEL
[Bl E f m= e
—~0 08—
e

Ideal Resilience: Example 2-dim Torus?

R

ldea: Decomposition into Hamilton Cycles

Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

w15t Hamilton cycle

26

ldea: Decomposition into Hamilton Cycles

Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

w15t Hamilton cycle
mmmmm 2 nd Hamilton cycle

26

ldea: Decomposition into Hamilton Cycles

Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

Can route in both directions:
4-arc-disjoint HCs

26

ldea: Decomposition into Hamilton Cycles

Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:

* go along 1st directed HC, if
hit failure, reverse direction

* if again failure switch to
2nd HC, if again failure
reverse direction

* No more failures possible!

26

ldeal Resilience with Hamilton Cycles

a

(&

~
Chiesa et al.: if k-connected graph has k arc

disjoint Hamilton Cycles, k-1 resilient routing
can be constructed! y

What about graphs which cannot be
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017.

Ideal Resilience in General k-Connected Graphs

Use directed trees (i.e. arborescences) instead
of Hamilton cycles
— Arc-disjoint, spanning, and rooted at destination

Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:
. Idea: route towards root on one arborescence

« After failure: change arborescence (e.g. in circular
fashion)

* Incoming port defines current arborescence
e After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

Ideal Resilience in General k-Connected Graphs

Use directed trees (i.e. arborescences) instead
of Hamilton cycles

Arc-disjoint, spanning, and rooted at destination

Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

Idea: route towards root on one arborescence

After failure: change arborescence (e.g. in circular
fashion)

Incoming port defines current arborescence
After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

/ N\
N

N

Credits: Marco Chiesa

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

/\

v/\

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

N\
N/

®
o’ e

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

/\
N A

W7 N\

Credits: Marco Chiesa

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

/\
N A

W7 N

Credits: Marco Chiesa

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

/\
N A

W7 N

Credits: Marco Chiesa

General technique: routing along the same tree

7N\

Credits: Marco Chiesa

When a failed link is hit...

7N

... how do we choose the next arborescence?

27N

But how do we choose the next arborescence?

Circular-arborescence routing:
* compute an order of the arborescences
e switch to the next arborescence when hitting a failed link

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order

Zx—) Intuition: each single
failure may affect
A\ / two arborescences

Credits: Marco Chiesa

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order

Intuition: each single
failure may affect
two arborescences

Go along arborescence 1
to destination...

Z

Credits: Marco Chiesa

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order
Intuition: each single
Go along arborescence 2 to failure m ay affect
destination...
/ two arborescences
M / \

Credits: Marco Chiesa

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order

Intuition: each single
failure may affect
two arborescences

Go along arborescence 3 to
destination...

Z

Credits: Marco Chiesa

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order

Intuition: each single
failure may affect
two arborescences

Go along arborescence 4 to
destination...

Z
x

/

Credits: Marco Chiesa

Circular arborescence-routing is (k/2-1)-resilient

Arborescence order

A
N

7 N\

Intuition: each single
failure may affect
two arborescences

All k=4 arborescences used
(2 failures disconnected
affected all four):
LOOP!

Credits: Marco Chiesa

An Alternative Algorithm: Bouncing Arborescence

Bouncing-arborescence algorithm:
e Reroute on the tree that shares the failed link

This algorithm is 1-resilient.

Bouncing-Arborescence is 1-Resilient

A\ / A

7 N\

Bouncing-Arborescence is 1-Resilient

/ A

7 N\

>

Bouncing-Arborescence is 1-Resilient

(again!)...
A\

7
LOOP! = =

A

7"\t

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:
— When bounce get to the destination
— Without hitting any other failures
>
"
M // \
X—

Credits: Marco Chiesa

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:
— When bounce get to the destination
— Without hitting any other failures
— (3,1) is not well-bouncing S
"
v / %\
X—

Credits: Marco Chiesa

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:

— When bounce get to the destination
— Without hitting any other failures
>

— (3,1) is not well-bouncing

— (1,3) is well-bouncing <1

N I
v /8\

Credits: Marco Chiesa

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:
— When bounce get to the destination
— Without hitting any other failures
— (3,1) is not well-bouncing S
— (1,3) is well-bouncing
"
* Define good arborescence:
— every failed arc is well-bouncing \/ / \
X—

Credits: Marco Chiesa

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:
— When bounce get to the destination
— Without hitting any other failures
— (3,1) is not well-bouncing S
— (1,3) is well-bouncing
A\ /
 Define good arborescence: /

— every failed arc is well-bouncing V / K\
X—

— Red is not a good arborescence

Credits: Marco Chiesa

ldea: Bounce on ,,Good Arborescences”

* Define well-bouncing arc:
— When bounce get to the destination
— Without hitting any other failures
— (3,1) is not well-bouncing S
— (1,3) is well-bouncing
A\ /
 Define good arborescence: /

— every failed arc is well-bouncing V / \
®—

— Red is not a good arborescence
— Blue is a good arboresence <

Credits: Marco Chiesa

|deas

* One can show that there is always a good arborescence

 Antempting idea:

— route on an arborescence X until a failed link is hit:
* if Xisagood arborescence, bounce!
* otherwise, route circular

 Too good to be true:
— The “goodness” of an arborescence depends on the actual set of failed links!
— How do we know a arborescence is good?

Credits: Marco Chiesa

Resilience Criteria

-

Ideal resilience

-

Given a k-connected graphs, we
can tolerate any k-1 link failures.

N

/

Perfect resilience

Any source s can always reach any

destination t as long as the

unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.

Resilience Criteria

Perfect resilience is impossible to
achieve in general.

Relevant Neighbors

Routing table of node i: matches in-ports of i to
out-ports of i

— ...depending on the incident failures

But not all neighbors are relevant: only if
potentially required to reach destination!

— Without local failures: just v,, v for i, since
v, does not give extra connectivity

S

U1

/

\“‘Uz

\ <

?

U3

s

Relevant Neighbors

Routing table of node i: matches in-ports of i to
out-ports of i

— ...depending on the incident failures - Ny,
U2

But not all neighbors are relevant: only if \\x
potentially required to reach destination!

— Without local failures: just v,, v for i, since ()
v, does not give extra connectivity /
— With additional failures v, becomes
relevant, since v; might be only choice to S
reach destination t
* Note: v, is unaware of these non-incident failures!

High-level definition of relevant: From the local view-point of the node i, a relevant neighbor
might be only neighbor to reach destination (without taking a detour over a current neighbor).

How to Achieve Perfect Resilience?

* Necessary: need to try all

relevant neighbors vy
— Here, if local link to v, broken: 2
v, and v \y \
1 Us
 That s, if packet /

— comes from v;3: eventually try v,
— comes from v;: eventually try v,

Impossibility: On Planar Graphs

Some observations:

* Additional failures only add relevant neighbors to nodes

 Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
e Ifall neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Impossibility: On Planar Graphs

Some observations:

* Additional failures only add relevant neighbors to nodes

* Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
« If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

All neighbors of all nodes are
relevant (even without failures).

So we must fix a
permutation for node 1.

Considered node 1 will not
see any local failures.

Impossibility: On Planar Graphs

Some observations:

* Additional failures only add relevant neighbors to nodes

 Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
* Ifall neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Proof idea, with three cases:

* |f the dashed links fail (non-local to
node 1), in any forwarding pattern,
packets will be stuck in one of the blue
loops...

e ..eventhoughthereis at least one
remaining path to the target

Go through all possible

permutations @1 and give a) b)
counter example.

Impossibility: On Planar Graphs

Arriving on
inport 5,
forwarded
to 2.

EQ node 1 Possible cyclic permutations: when a packet arrives from 2,

5-S2 implies due to cyclic permutation, it can only be forwarded to either
(5,2,3,4) (b) 3 or 4. Leads to /loops in scenarios (b) (4 goes to 5, 2 can only
(5,2,4,3) (a) go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Impossibility: On Planar Graphs

Arriving on
inport 5,
forwarded
to 3.

Possible cyclic permutations: when a packet then

For node 1: 1] For node 1. arrives on port 4, it can only be forwarded to either 2

5->2 implies || 5->3 implies . : :

5.2.3,4) (b) || (53.4.2) () or 5. Leads to /oops in scenarios (a) (2 will goto 5, 5

(5.2,4,3) (a) 1l 5.3,2,9) (c) can only goto 1 and 3 only to 2) and (c) (5 goes to 3, 4
goes to 5, rest degree-2), respectively.

Impossibility: On Planar Graphs

Arriving on
inport 5,
forwarded
to 4.

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to /oops in
scenarios (c) and (b), respectively.

Impossibility: On Planar Graphs

Link needed:

otherwise 5 would

not be relevant!

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to /oops in
scenarios (c) and (b), respectively.

A Pity: Planar Graphs Are Important

* Internet Topology Zoo and
Rocketfuel topologies
— 88% of the graphs are planar

MPLS Reachability Analysis & Visualization Tool

)

Liberec

Initial header:
Route res

Final hea y
Max link failures: | ‘ * fradec | ;
Description: | S ——)| 4 : L Hpadec_K ralove

Options + Czechia

[RunValidaton]

Result +

Ceske_Budejovice:

A Pity: Planar Graphs Are Important

* Internet Topology Zoo and
Rocketfuel topologies

— 88% of the graphs are planar
— However:

MPLS Reachability Analysis & Visualization Tool

Model

Almost a third (32%) belong to the family
of cactus graphs

Roughly half of the graphs (49%) are
outerplanar

... and they work ©

Fi
Max lini
Description:

Options

[RunValidaton]

Result

T

Ceske_Budejovice:

Czechia

)

Liberec

Hradec_Kralove

Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:
* Via geometric routing, well studied in sensor networks etc.

Embed graph in the plane s.t. all nodes are on the outer face

— Note: If alink | belongs to the outer face of a planar graph G, it also belongs to the outer face for all
subgraphs of G

Apply right-hand rule to forwarding (skipping failures)

— Ensures packets use only the links of the outer face and do not change the direction despite failures

Strategy traverses all nodes on the outer face

Also works for any graph which is outerplanar without the source (e.g., K4)

Some Observations

K 5, K 3,3: no perfect resilience

Perfect resiliency on graph G -> any subgraph G’ of G also
allows for perfect resiliency

— Idea: Take routing on G, fail edges to create G’,
routing must still work

Contraction works as well, by a simulation argument
— A bit technical

Combined: Perfect resilience on graph G -> any minor G’
of G as well

— Butsince K _5, K 3,3 not: non-planar graphs not
perfectly resilient

o=
10

What we know about perfect resilience

Possible:
* Onall outerplanar graphs [right-hand rule]

* On every graph that is outerplanar without the
destination (e.g. non-outerplanar planar K_4)

Impossible:

* Onsome planar graphs
* Every non-planar graph v

* Perfect resilience must hold on minors

Foerster et al. On the Feasibility of Perfect Resilience
with Local Fast Failover. SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS), 2021.

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

Congestion-Aware FRR

A most simple network:
the clique

Congestion-Aware FRR

A most simple network:
the clique

Assume we can
match source.

Congestion-Aware FRR

Traffic demand:
{1,2,3}->t

Congestion-Aware FRR

Traffic demand:
{1,2,3}->t

Assume single destination
(incast scenario).

Congestion-Aware FRR

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:
{1,2,3}->t

Failover table:
2 flow 1->t: 3,4,5,...

=

Failover table:
[3 flow 1->t: 4,5, ...

&

Don‘ttry 2 or 1:
loop! So go along
a permutation!

Preinstalled failover rules
for red flow

Congestion-Aware FRR

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:

{1,2,3}->t
Failover table:
t Z flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...
| |
! 1
! |
! |
! 1
! 1
! 1
! 1
| ' Failover table:
3 flow 1->t: 4,5, ...

flow 2->t: 4,5, ...
flow 3->t: 4,5, ...
Preinstalled failover rules

for red, blue and green flows

Congestion-Aware FRR

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:

{1,2,3}->t
Failover table:
t 2 flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...
| |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
| ' Failover table:
3 flow 1->t: 4,5, ...

flow 2->t: 4,5, ...
flow 3->t: 4,5, ...
Preinstalled failover rules

for red, blue and green flows

Congestion-Aware FRR

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...

=

Failover table:
flow 1->t: 4,5, ...
flow 2->t: 4,5,...
flow 3->t: 4,5, ...

Finally, t is reached!

Congestion-Aware FRR

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...

Max load is 3 ®

Failover table:
flow 1->t: 4,5,...
flow 2->t: 4,5,...
flow 3->t: 4,5, ...

Congestion-Aware FRR ...ccrche

flow 1->t: 2,3,4,5,...
Traffic demand:

{1,2,3}->t -
x \\ Failover table:

flow 1->t: 5,...
flow 2->t: 3,4,5,...

A better solution:
load 2 ©

Failover table:

flow 1->t: 4,5,...
flow 2->t: 4,5,...
flow 3->t: 4,5, ...

Congestion-Aware FRR ...ccrche

flow 1->t: 2,3,4,5,...

Traffic demand:
{1,2,3}->t
Failover table:

flow 1->t: 5,...
flow 2->t: 3,4,5,...

/Observation: we can\
represent failover
tables as a matrix.

To load balance:
prefixes of rows

\should be different!/

Failover table:

flow 1->t: 4,5, ...
flow 2->t: 4,5,...
flow 3->t: 4,5, ...

Failover Matrix Representation

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:

{1,2,3}->t
Failover table:
t flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...
Matrix: \
1
source 1: 2,3,4,5 I
1
source 2:3,4,5,1 I
|
source 3:4,5,1,2 |
| Failover table:
flow 1->t: 4,5, ...
5 flow 2->t: 4,5,...

flow 3->t: 4,5, ...

Failover Matrix Representation

Failover table:
flow 1->t: 2,3,4,5,...

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 3,4,5,...
flow 2->t: 3,4,5,...

=

Matrix:

source 1: 2,3,4,5
source 2:3,4,5,1
source 3:4,5,1,2

Failover table:

Problem: failing link (3,t) will 5 :::OW ;-T 32
ow 2->t: 4,5,...
affect all three rerouted flows... flow 3->t: 4,5,...

In general: easy to create high
load on node 4, as failures can
be ,reused”.

What Are Good Failover Matrices?

 The matrices should be Latin squares: each node appears exactly once on
each row and each column. No repetitions implies loop-freedom.

e Latin squares property gives high resilience, but is not sufficient for
minimizing load.

Challenging Example: Incast

Traffic demand:
{1,2,3,4,5}->t

In the following, consider
all-to-one demand pattern.

A Bad Matrix for Load

Src 1: 2 3 4 5
Src 2: 3 4 5 1
Src 3: 4 5 1 2
Src 4: 5 1 2 3
Src 5: 1 2 3 4

A Bad Matrix for Load

Src 1: 2 3 4 5

Src 2: 3 4 5 1

Src 3: 4 5 1 2 Failing (1,1), (2,t), (3,1),
. (4,t), gives load 4 on

Src 4: 2 1 2 3 node 5/ link (5,t).

Src 5: 1 2 3 4

If the adversary fails the / first links to destination d (thatis, {(v,t),i=1,...,1}),
then / sources will route through (v, ,t). Load / for / failures. Can we do better?

Good Failover Matrices?

* To bring the flow from a source i to a
node X, need to fail all links in
corresponding row

— Worst case: all to destination X
e The same for each other flow/row X
which should reach X i X
X
X
X

Good Failover Matrices?

* To bring the flow from a source i to a
node X, need to fail all links in
corresponding row

— Worst case: all to destination

e The same for each other flow/row

which should reach X i X

* Adversary will try to reuse link X

failures: good matrices have prefixes
with little overlap (resp. large X

number of unigue nodes)

Connection to Block Designs

A closely related problem: generating block designs

— and its geometric counterpart, generating projective planes of high order
Using symmetric balanced incomplete block designs (BIBDs)

Gives a latin failover matrix M with intersection properties representing
a failover scheme that is optimal up to a constant factor

Also used in the context disconnected cooperation, e.g.:

— @G. Malewicz, A. Russell, and A. A. Shvartsman. Distributed Scheduling for
Disconnected Cooperation. Distributed Computing, 18(6), 2005.

Overview of Results

Good news: Theory of local algorithms without
communication: symmetric block design theory.

a N

Bad news (counting argument): High load unavoidable even
in well-connected residual networks: a price of locality.
Given L failures, load at least VL, although network still highly
connected (n-L connected). E.g., L=n/2, load could be 2 still,

_ but due to locality at least Vn. -

Borokhovich et al. Load-Optimal Local Fast
Rerouting for Dense Networks. IEEE/ACM
Transactions on Networking (TON), 2018.

Randomized Failover

e Recall: deterministic lower bound of VL for L failures, although load could
be O(1) for L<L/2. A large price of locality.

* So what about randomized approaches?

The Power of Randomization

3-Permutations Intervals Shared-Permutations
Rule Set | Destination + Hop Destination Destination + Hop
Resilience O(n) ©(n/ log n) ©(n)
Congestion | O(log® n - loglog n) | O(log n - log log n) O(+/log n)

* While deterministic algorithms can at best achieve a polynomial load,
randomized algorithms can achieve a polylogarithmic load.

* Even when just matching the destination.

— Losing a log n factor in resilience. Bankhamer et al. Local Fast Rerouting with
. . Low Congestion: A Randomized Approach.
— Matching also the hop count can overcome this. S TR i o]l G e mate o
Network Protocols (ICNP), 2019.

Benefits in Datacenter Networks

Bankhamer et al. Randomized Local Fast
Rerouting for Datacenter Networks with
Almost Optimal Congestion. DISC, 2021.

..........................

oooooooooooooooooooooooo

oooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo

What About Path Length and Stretch?

* Sofar:ignored the length of the failover routes —
— Hamilton cycles are particularly bad |

— The heights of general arborescences may be lower -4 — 8 —8—

- ‘@ — Two different t-rooted arc-disjoint

* |dea (so far heuristic):

— Postprocess the arborescences to lower
their heights

spanning arborescence decompositions,
Tland T2

@—@ — The mean path length of T1 is higher than

that of T2

Foerster et al. Improved Fast Rerouting Using Postprocessing (Best Paper Award).
38th International Symposium on Reliable Distributed Systems (SRDS), 2019.

Swapping Operations Which Maintain Decomposition

e/ e e e
¥ Kl ¥ P
(V1o @ (01 oo @
- ,V' PR P
) : 3 y : ¥
Before swapping After swapping

@

Before swapping After swapping

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

Roadmap

A Brief History of Resilient Networking
Algorithms for Local Fast Re-Routing (FRR)

Accounting for Congestion

Accounting for Network Policy

An example with
header rewriting.

Case Study: MPLS Networks

* Widely deployed networks by Internet Service Providers (ISPs)

* Often used for traffic engineering
— Avoid congestion by going non-shortest paths

* Allows for header re-writing upon failures
— Header based on stack of labels

How (MPLS) Networks Work

Forwarding based on top label of label stack

Vq Vv, V3 Vy

/\ \ \ Default routing of
two flows

Vs Ve A Vg

How (MPLS) Networks Work

* Forwarding based on top label of label stack

flow 1

Default routing of
two flows

flow 2

How (MPLS) Networks Work

: Forward‘.’ ,a

3 V, out,
in, ' ‘/l \ > Default routing of
two flows

> V; — Vg i Out,

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

in,

_ }W»Vz* V3 -V, g OUL ,

in, 4/1 T \ Default routing of
two flows

Vs —» Vg —— V; —— Vg i OUt,

* For failover: push and pop label

in,
%
-> AV —} v out
in, W i V230|11 h v o P> outs One failure: push 30:
A/'som 21‘\ route around (v,,v,)

Vs —» Vo mp V; — Vg i OUL,

31|11
3121

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

in, W T ‘ Default routing of

two flows

If (v,,v;) failed,
push 30 and
forward to v,.

d pop label

in O

1 0 12
Vv VvV \Y) out .
Normal 23‘\"0”1 | 3 =g V4 ' One failure: push 30:
SWwWa
P /o/'aom 21‘ m route around (v,,v;)

Vs —» Vo mp V; — Vg i OUL,

31|11
3121

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

1
2 12

in 10
L g ¢
Vv, mlp V, V; = V, o OUL,

in, W 2 Default routing of
T \ two flows
T2V \What about multiple link failures?
push
forward to v,.
* For pop label

in O

1 0 12
Vv VvV \Y) out .
Normal 23‘\"0”1 | 3 =g V4 ! One failure: push 30:
SWa
P /o('wm 21‘ m route around (v,,v;)

Vs — Vo - V; Vg - Out,

31|11
3121

2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

|n1 10
%N

in. W Y1 . v k Y3 ' Va - outy One failure: push 30:
2 Miﬁlii 54\ route around (v,,vs)

Vs — Vg V; — Vg i Out,

31]11

nE push 30 53
in 10 180 5 Two failures:

21 .
_ V, /> Vs —]> V, @ out, first push 30: route
In, *% Po 22 around (v,,V,)
[30]11 1 2,V3
40|30]21 ”n

Push recursively 40:.

oo Vs mallp V malpp V o Vo o OUL,
30111 3111 route around (v,,vg)
30|21 31|21

2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

|n1 10
: v1—> v2—\> A —} V, - out;
T VAN

One failure: push 30:

Vg — Vg Vo — Vg But masking links one-by-
giéi one can be inefficient:
in (v5,v3,Vg) could be shortcut
B to (v5,Vg)
7'v8/
G e

40(30(21

Push recursively 40:.
Vs il Vo mallp V; ml VS*OU'E y
30111 3111 route around (v,,vg)
30|21 31021

mZ 4|0|30|11 1‘f 22 O around (VZ,V3)
21

2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!

push 30:

: — > T One failure:
|n2 ' ﬂwlll 11‘“
30121 21
Ve - Vg v, . V. But masking links one-by-
giéi one can be inefficient:
(v5,v3,vg) could be shortcut

to (v-,vg).

in, !mm uf 0O around (v,,V;)

40(30(21

Vs ma VoV, m Vg * out, Push recursively 40:.

30111 3111 route around (v,,vg)
30|21 31|21

2 Failures: Push Recursively

in,
; V1-O> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!

: > T One failure: push 30:
|n2 ' ﬂwlll 11‘&
30121 21

3111

in . Also note: due to push, header size
1 2 . . I
A A _> vz__. V4 may grow arbitrarily!

Ir12 4|0|30|11 1 22 O around (VZ,V3)
40|30|21 n

Vs ma VoV, m Vg * out, Push recursively 40:.

30111 3111 route around (v,,vg)
30|21 31|21

But masking links one-by-

Responsibilities of a Sysadmin

Routers and switches store
list of forwarding rules, and
conditional failover rules.

ey S
T

"

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

Reachability?

&

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Responsibilities of a Sysadmin

E.g. NORDUnet: no traffic via
Iceland (expensive!).

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

* Policy: Is it ensured that traffic from A
to B never goes via C?

* Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

Generalization: service chaining!

Approach: Automation and Formal Methods

T To-T_ [Tn-Label | Outl o
(o1, v2) | push(10)
g ush(20)

T 10)
20 swap(21)
To 1 swap(12)
21 swap(22)
11 swap(12)

Compilation pX — qXX

T 12

Tos 40

Tun 30 swap(31)
30 swap(31)
61 e swap(62)
G

) | swap(72)
31| o) | pon

) | swap(11) pX : q YX
72| (vr,vs) | swap(22)

e

d V) ey V, mp v3;>v4.>out1
in, W %5 TN
. . rY=r

Vs — Vg —— V; —— Vg mpOUL,

local FFT Out-I | In-Label | Out-I op rX ; pX

™ (v2.0s) | 11| (v2,06) | push(30) .
Y L lmes) | 21| (vave) | push(30) Inte rp retation

(v2, v6) 30 (va,vs) | push(40)

alobal FFT | Outl | In-Label | Outl op

Tho (va,v3) 11 (va,v6) | swap(61)

N (v, v3) 21 (vg.vg) | swap(T1)

(v2,) 61 5) | push(40)

(vav6) | 71| (vg.vs) | push(40)

Router configurations Pushdown Automaton and
(Cisco, Juniper, etc.) Prefix Rewriting Systems

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Approach: Auto

o
(o1, v2) | push(10)
0)

ods

Compilation

X = gXX
il e P X= qYX
m— qY = ryy

»
V) =y Vs V3 ey V=P OUL;

inz ol = T 22
gl \ r r
Vs — Vg —— V; —— Vg mpOUL,
local FFT Out-I' | In-Label | Out-I op rX : pX
Toa (v2,v3) 11 (v2.v6) | push(30) .
(ove) | 21| (vave) | push(30) Inte rp retation
(va,v6) 30 (v2,v5) | push(40)
global FFT [Outl | In-Label | Out- op
T, (v, v3) 11 U2, U g
(vg.v3) 21
() 61
(v2, v6) 71

Router configurations Pushdown Automaton and
(Cisco, Juniper, etc.) Prefix Rewriting Systems

Jensen et al. P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. 14th ACM
International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2018.

AalWiNes Tool

Philippines
2 About
MPLS Reachability Analysis & Visualization Tool iy

Indonesia A tool for MPLS reachability analysis and visualization
Model Aarnet

from:

« Aalborg University
Query <ip> [.#Sydneyl] .* [Brisbane2#.] <ip> 0 Timar q

Examples: :
<ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0 arwin
<smpls ip> [.#Sydney1] .* [Brisbane2#.] <mpls* smpls ip> 1 Have a look at the

« University of Vienna

Initial header:
RO CSigleifo B [- #Sydneyl] .* [Brisbane2#.)

Perth2
Final header: ip

Query:

. . & . olomon
| Mlice_Springs irns |
Max link failures: _
Q-
regular

Islands
s Toknsville
expression

Options

Run Validation

1ckhampton
Vi

ide? | Brisbane2 o
Result Satisfied

\ Arml dale
Query: <ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0

2
Melbou rcr?éﬂ;y PeY
<ip6> : [¥ #Sydney1]
° 0 o
<s43,ip6> : [Sydneyl#Brisbanel] @ Dozens of
TA
<544,ip6> : [Brisbanel#Brisbane2]

£ networks
<ip6> : [Brisbane2#®]

Online demo: https://demo.aalwines.cs.aau.dk
Source code: https ithub.com/DEIS-Tools/AalWiNes

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

Example

Can traffic starting with [] go through s5, under up to k=2 failures?

T Query: 3 regular expressions
2 §5 | —— @ (initial and final header, route)
o, \ k=2 [] 51 >>55>>57 []
o YES

" (Polynomial time!)

s1 s4 sé6 s8

Why AalWiNes is Fast (Polytime):
Automata Theory

* For fast verification, we can use the result by Biichi: the
set of all reachable configurations of a pushdown
automaton a is regular set

* We hence simply use Nondeterministic Finite Automata

(NFAs) when reasoning about the pushdown automata Juls Richard Bieh

1924-1984

Swiss logician

* The resulting regular operations are all polynomial time

AalWiNes

Part 1: Parses query

and constructs Push-

Translation module Moped
Down System (PDS) 25 Reduction o
| A network [™~ QA
— Ov_er- _ > PDA <l pre*
{ In Python 3 | Query | __——» approximation
. Trace- P WA
----- > Weight ¢ l_ reconstruction trace Our solver
1 o i 4 Library
Part 2: Reachability I e i
Inconclusive Network f ¥ =N post*
o trace |« Successful Under- Result €
analysis of Unestiod 2o approvimaion —

constructed PDS

e Usi nNg MOPEd tOOI °0Q Resp. our new weighted extension and
much faster implementation in C++.

Network Model
* Network: a 7-tuple -

(V E, Jm Jout Mo, L 5F)

Set of labels in
Incom ng packet header
interface

Network Model

* Network: a 7-tuple

N =(V,E, L", 17", A, L, 6;))

Interface
function

-

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

Ay : I UTOW — V
Thatis: (\,(in),v) € E and (v,\,(out)) € E

~

Network Model

* Network: a 7-tuple

N =(V,E, 1", 13" Xy, L, 6,)

%

Routing
function

Routing function: for each set of failed links F C E, the
routing function

~

§F . Iim x [* —5 9™ xL")

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Routing

ﬂacket routing sequence can be represented using sequence of tupIeS'\

forwards it to .. given that these
m live next hop I|nks are down.

U’Lv anv hzv OUt’L) hz—i—la

Node ... packet with w
recelves header

 Example: routing (in)finite sequence of tuples

J

(v1,in1, h1, outy, ho, F), in_1V1 outl in2 v2 _out2

"“’ "“’ ,_’
h2

(U27 ’Z:'l’LQ, h27 OUt27 h37 F2)7

Case Study: NORDUnet

Regional service provider

24 MIPLS routers geographically —
distributed across several countries

Running Juniper operating system
More than 30,000 labels

Ca. 1 million forwarding rules in our
model

NORDURet Fibre:

For most queries of operators:
answer within seconds

= Commercial Capacity

NORDUnet

Pardic Gateway for Ressanch & Edusation

Generalizes to Quantitative Properties

* AalWiNes can also be used to test quantitative properties

* |f query is satisfied, find trace that minimizes:
* Hops

* Latency (based on a latency value per link)

* Tunnels
Transitions annotated
, with weights.
o0 U

e Approach: weighted pushdown automata

* Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)

* Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

Conclusion

Fast rerouting requires local decision making
Different fault-tolerance metrics: ideal resilience, perfect resilience
What can be achieved depends on what can be matched locally

Locally balancing load under failures is hard, but randomization helps

What About The Control Plane?

Still many open questions
too, see e.g., TACAS 2021

Resilient Capacity-Aware Routing

Stefan Schmid®, Nicolas Schnepf?, and Jifi Srba?

! Faculty of Computer Science, University of Vienna
2 Department of Computer Science, Aalborg University

Abstract. To ensure a high availability, most modern communication
networks provide resilient routing mechanisms that quickly change routes
upon failures. However, a fundamental algorithmic question underlying
such mechanisms is hardly understood: how to efficiently verify whether
a given network reroutes flows along feasible paths, without violating
capacity constraints, for up to k link failures? We chart the algorithmic
complexity landscape of resilient routing under link failures, considering
shortest path routing based on link weights (e.g., the widely deployed
ECMP protocol). We study two models: a pessimistic model where flows
interfere in a worst-case manner along equal-cost shortest paths, and an
optimistic model where flows are routed in a best-case manner and we
present a complete picture of the algorithmic complexities for these mod-
els. We further propose a strategic search algorithm that checks only the
critical failure scenarios while still providing correctness guarantees. Our
experimental evaluation on a large benchmark of Internet and datacen-
ter topologies confirms an improved performance of our strategic search
algorithm by several orders of magnitude.

What About Segment Routing?

4L - .ge
C a\ al L gl genmid . Maximally Resilient Replacement Paths for a
1S .
. Ke@? RN i‘:ec““o\ogy, swede® _ Family of Product Graphs
oud {pstitt® ©
- Ao, 4 x) do°°
. .) , Mahmoud Parham
oerstet Srid of the ® n
oF Ly of ienn® AvS " on the &09‘“6 c\)ﬂa“\ node: ot . University of Vienna, Faculty of Computer Science, Vienna, Austria
exst Q X € o i PR
ce ode, S 5 mahmoudAparham@\nnvxe@c.at
ned! oy 20 e st -y, i
) The o O sto ! eeooment)’
. aable ot ha¥e 1 ‘m‘.‘)oﬂ pac\«e&%] outing @ se%be givectly 6 Klaus-Tycho Foerster
i {t‘t’\e is now Wis cast u on h(,nesi pa nat Yink nas © ; University of Vienna, Faculty of Computer Science, Vienna, Austria
<) V! ver, W utes e 1ies Yink, © . o Qunivie.ac
ang O Powever 160 T aang 1s 2 W - s Klaus-tycho.foerster @univie.ac.at
ent ROV et 2 Y&, sn SR M hjates 10 Jement de. Ao
g otin® | x UA ext 1 0o | stac .
A"S;'\mec:;r jned “““\‘:meen? resiient Sl res. T \“’:,‘:'\esms Wit o e to € cor? “d 0 poi™ im0 powe e . Petar Kosic
ne- fuuy aple ec) fas! a ! st " R): Iniversity - na. F of C . s Austri
and ow oV P! over ™ e ad); rie (FR 1 University of Vienna, aculty of Computer Science, Vienna, Austria
failo b 2 VO . ond nting
w(\aﬂ“ orerat® ot‘ye static S‘“(\ nence s“o‘:\':\‘s nd “\e“;\‘Y The defint 1 diver ity © 2] o4 st Rer© 1 gm\ad. 1 petar.kosi univie.ac.at
whic!) St ence jeve o 1 e U om 5 X X
etica) were! eI acey, ceaSe als . (0 .
the W end O® ¢ o ntrodve® Sorty cannot be ity 28 1© Wt e can orest P e 8 ginatio® B . Stefan Schmid
o no*) fanur® oW at €A% © orticy % {hs e 0 jprerm® o {ive ¥ 4 the IS 1 University of Vienna, Faculty of Computer Science, Vienna, Austria
actio! offs © g W P ng PR pution g ok Ao o e aroun ination PR
e’ gl 2 { T if 10 contr? £ a W de Us a m(o\“e des! 1 stefan schmid@univ t
onda" gatic resih ot performiil g, Out " e B0 say qome 1% - qefine? 1) ek T (VY o qinatio® 0
erm T {erms ce of fai on 10 ance S w A a\abﬁ B cdiat e ack
aerent PO o in O bz\i“'\s restien! ey 200 P ulatio wayPoy ‘“0 o v 1o es ¢ e G 100 * Abstract
1q s > < 1S . N N . .
be :eS\\\::‘ ’\guf'\“““ w“;‘ ‘,mva\!\e TES\ nalyS$'S W jover (S o on the sack): N sends out 2 PN pode 18 PO R & Modern communication networks support fast path restoration mechanisms which allow to
is 2 :vh\C“ com® \:)\emg‘\t our z\oebe“e pode ¥ D) nce éaC“ S e Wr iy o ted © ‘,"'0“ ¢ traffic in case of (possibly multiple) link failures, in a completely decentralized manner and without
”“‘:\-amee . We c :‘“ qch § oW @w P ce £ ‘)ac\ge‘ § acket (\N\\“ sw ediat a an® 1 requiring global route reconvergence. However, devising resilient path restoration algorithms is
22:‘ e 0?0‘0‘,5:;‘;‘9 et o ack and the P a(\d\f\o“'d\ w 1o challenging as these algorithms need to be inherently local. Furthermore, the resulting failover paths
st " oM _m \fa \ures OCC,\“.\ » often have to fulfill additional requirements related to the policy and function implemented by the
it INTR erg® (ons Ao ed ‘ec\)ﬁ\"a - , network, such as the traversal of certain waypoints (e.gs & firewall).
. (S\u \\\, J £ e“%'meeil\“‘é ‘sz \(aﬁf‘c can be 2 This paper presents local algorithms which ensure 2 maximally resilient path restoration for a
men RoVUNS M?Ls_bage(\ L o geme“‘ “{“ . . 5 large family of product graphs, including the widely used tori and generalized hypercube topologies.
eg" " 155! W “\a' . < , Our algorithms provably ensure that even under multiple link failures, traffic is rerouted to the other
opetdio oo 2 fne- & " it af avery failad Tl whenever ncibla (i o dotaurina failed Tilea) amfarring wavnainte and

See e.g., G/ 2018
and OPODIS 2020

What About Segment Routing?

IGP
Segment

O t

wl o
s2 g
sl <3
w2

S

What About Segment Routing?

®* We need two definitions:

* P-Space: the nodes whose shortest path from S does not use L

* Q-Space: the nodes whose shortest path to T does not use L

p-Space Q'Space

uy L 4
*" Ve, le

Idea: choose segment endpoint w at intersection!

Two Cases

P-Space and Q-Space: Are connected subgraphs, cover all
nodes, overlap or are adjacent

_Space
p-5P Case 1: S can

simply push W

Case 2: S pushes W and
(W,N), forces packet to
enter Q-space

* v .
a *ae?
.‘ll...--‘l‘

TI-LFA Under Double Failure

TI-MFA: failure-
carrying packets
for SR!

Efficient Implementation of FRR?

PURR: A Primitive for Reconfigurable Fast Reroute
(hope for the best and program for the worst)

Seee.g,,
CoNEXT 2019

Marco Chiesa Roshan Sedar Gianni Antichi
KTH Royal Institute of Technology Universitat Politécnica de Catalunya Queen Mary University of London
Michael Borokhovich Andrzej Kamisinski Georgios Nikolaidis
Independent Researcher AGH University of Science and Barefoot Networks
Technology in Krakow
Stefan Schmid

Faculty of Computer Science
University of Vienna

ABSTRACT

Highly dependable communication networks usually rely on some
kind of Fast Re-Route (FRR) mechanism which allows to quickly
re-route traffic upon failures, entirely in the data plane. This paper
studies the design of FRR mechanisms for emerging reconfigurable
switches.

Our main contribution is an FRR primitive for programmable
data planes, PURR, which provides low failover latency and high
switch throughput, by avoiding packet recirculation. PURR tolerates
multiple concurrent failures and comes with minimal memory re-
quirements, ensuring compact forwarding tables, by unveiling an
intriguing connection to classic “string theory” (i.e., stringology).
and in particular, the shortest common supersequence problem.
PURR is well-suited for high-speed match-action forwarding archi-
tectures (e.g., PISA) and supports the implementation of arbitrary
network-wide FRR mechanisms. Our simulations and prototype im-
plementation (on an FPGA and Tofino) show that PURR improves

ACM Reference Format:

Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej
Kamisinski, Georgios Nikolaidis, and Stefan Schmid. 2019. PURR: A Primi-
tive for Reconfigurable Fast Reroute: (hope for the best and program for the
worst). In The 15th International Conference on emerging Networking EXperi-
ments and Technologies (CONEXT '19), December 9-12, 2019, Orlando, FL, USA.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3359989.3365410

1 INTRODUCTION

Emerging applications, e.g., in the context of business [21] and
entertainment [57], pose stringent requirements on the dependabil-
ity and performance of the underlying communication networks,
which have become a critical infrastructure of our digital society. In
order to meet such requirements, many communication networks
provide Fast Re-Route (FRR) mechanisms [5, 39, 64] which allow
to quickly reroute traffic upon unexpected failures, entirely in the

A Recent Survey

A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

https://www.univie.ac.at/ct/stefan/frr-survey.pdf

References

On the Feasibility of Perfect Resilience with Local Fast Failover

Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), Alexandria, Virginia, USA, January 2021.

Brief Announcement: What Can(not) Be Perfectly Rerouted Locally

Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2020.

Improved Fast Rerouting Using Postprocessing
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.

Resilient Capacity-Aware Routing

Stefan Schmid, Nicolas Schnepf and Jiri Srba.

27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual
Conference, March 2021.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks

Peter Gjgl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.

16th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT), Barcelona, Spain,
December 2020.

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures

Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT), Heraklion/Crete,
Greece, December 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://www.univie.ac.at/ct/stefan/apocs21resilience.pdf
https://www.univie.ac.at/ct/stefan/disc20.pdf
https://www.univie.ac.at/ct/stefan/tdsc20.pdf
https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf

More References

Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion
Gregor Bankhamer, Robert Elsdsser, and Stefan Schmid..
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2021.

Bonsai: Efficient Fast Failover Routing Using Small Arborescences
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, Oregon, USA, June 2019.

CASA: Congestion and Stretch Aware Static Fast Rerouting
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Load-Optimal Local Fast Rerouting for Dense Networks
Michael Borokhovich, Yvonne-Anne Pignolet, Gilles Tredan, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2018.

PURR: A Primitive for Reconfigurable Fast Reroute

Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej Kamisinski, Georgios Nikolaidis, and Stefan
Schmid.

15th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Orlando, Florida,
USA, December 2019.

Artefact Evaluation: Available, Functional, Reusable.

On the Resiliency of Static Forwarding Tables
In IEEE/ACM Transactions on Networking (ToN), 2017
M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry, M. Schapira, S. Shenker

https://www.univie.ac.at/ct/stefan/disc21.pdf
https://www.univie.ac.at/ct/stefan/dsn19.pdf
https://www.univie.ac.at/ct/stefan/infocom2019e.pdf
https://www.univie.ac.at/ct/stefan/ton18failover.pdf
https://www.univie.ac.at/ct/stefan/conext19failover.pdf

3

	Disconnected cooperation in resilient networks and �the algorithmic challenges of local fast re-routing
	Disconnected cooperation in resilient networks and �the algorithmic challenges of local fast re-routing
	Communication Networks
	Requirements vs Reality
	Even Tech-Savvy Companies Struggle
	No Surprise: Networks Are Complex
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	We’re Falling Behind the Curve:�Increasing Complexity, Software from the 90s �
	Roadmap
	Roadmap
	Traditional Networks�
	Software-Defined Networks (SDN)�
	Software-Defined Networks (SDN)�
	Restoration in control plane takes time -> packet drops!
	Failover: Control Plane vs Data Plane
	Approaches for Failover
	Approaches for Failover
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	What information is locally available in a switch for handling a packet?
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Raises an Interesting Question
	Remark: Traditional Approach LFA
	Remark: Traditional Approach LFA
	Remark: Traditional Approach LFA
	Roadmap
	So: How many failures can be tolerated by static forwarding tables?
	If we partition the network, �there is not much to do
	The connectivity k of a network 𝑁: the minimum number of link deletions that partitions 𝑁 �
	Resilience Criteria
	Resilience Criteria
	Spectrum of Models
	Spectrum of Models
	Per-destination routing cannot cope with even one link failure
	Can we achieve k – 1 resiliency in k-connected graph here?
	Can we achieve k – 1 resiliency in k-connected graph here?
	Can we achieve k – 1 resiliency in k-connected graph here?
	Ideal Resilience: Example 2-dim Torus?
	Ideal Resilience: Example 2-dim Torus?
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Ideal Resilience with Hamilton Cycles
	Ideal Resilience in General k-Connected Graphs
	Ideal Resilience in General k-Connected Graphs
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	General technique: routing along the same tree
	When a failed link is hit…
	… how do we choose the next arborescence?
	But how do we choose the next arborescence?
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	An Alternative Algorithm: Bouncing Arborescence
	Bouncing-Arborescence is 1-Resilient
	Bouncing-Arborescence is 1-Resilient
	Bouncing-Arborescence is 1-Resilient
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Ideas
	Resilience Criteria
	Resilience Criteria
	Relevant Neighbors
	Relevant Neighbors
	How to Achieve Perfect Resilience?
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	A Pity: Planar Graphs Are Important
	A Pity: Planar Graphs Are Important
	Where Can Perfect Resilience Be Achieved?
	Some Observations
	What we know about perfect resilience
	Roadmap
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Failover Matrix Representation
	Failover Matrix Representation
	What Are Good Failover Matrices?
	Challenging Example: Incast
	A Bad Matrix for Load
	A Bad Matrix for Load
	Good Failover Matrices?
	Good Failover Matrices?
	Connection to Block Designs
	Overview of Results
	Randomized Failover
	The Power of Randomization
	Benefits in Datacenter Networks
	What About Path Length and Stretch?
	Swapping Operations Which Maintain Decomposition
	Roadmap
	Roadmap
	Case Study: MPLS Networks
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Approach: Automation and Formal Methods
	Approach: Automation and Formal Methods
	AalWiNes Tool
	Example
	Why AalWiNes is Fast (Polytime):�Automata Theory
	AalWiNes
	Network Model
	Network Model
	Network Model
	Routing
	Case Study: NORDUnet
	Generalizes to Quantitative Properties
	Conclusion
	What About The Control Plane?
	What About Segment Routing?
	What About Segment Routing?
	What About Segment Routing?
	Two Cases
	TI-LFA Under Double Failure
	Efficient Implementation of FRR?
	A Recent Survey
	References
	More References
	Questions?

