
Dynamic Forwarding Table Aggregation without
Update Churn: The Case of Dependent Prefixes

1

Marcin Bienkowski (Uni Wroclaw)

Nadi Sarrar (TU Berlin)

Stefan Schmid (TU Berlin & T-Labs)

Steve Uhlig (Queen Mary, London)

Wow! Growth of Forwarding Tables

2 Stefan Schmid (T-Labs)

Why? Scale, virtualization, …

Problem: - TCAM expensive and power-hungry!

 - IPv6 may not help!

Local FIB Compression: 1-Page Overview

3 Stefan Schmid (T-Labs)

Model
 FIB: Forwarding Information Base

 FIB consists of

 set of <prefix, next-hop>

 IP only: most specific IP prefix

 Control: (1) RIB or (2) SDN Controller (s. picture)

Routers or
SDN Switches:

RIB or SDN
Controller

Basic Idea
 Dynamically aggregate FIB

 “Adjacent” prefixes with same next-hop (= color):
one rule only!

 But be aware that BGP updates (next-hop change,
insert, delete) may change forwarding set, need to de-
aggregate again

Benefits
 Only single router affected

 Aggregation = simple software update

Local FIB Compression: 1-Page Overview

4 Stefan Schmid (T-Labs)

Model
 FIB: Forwarding Information Base

 FIB consists of

 set of <prefix, next-hop>

 IP only: most specific IP prefix

 Control: (1) RIB or (2) SDN Controller (s. picture)

Routers or
SDN Switches:

RIB or SDN
Controller

Basic Idea
 Dynamically aggregate FIB

 “Adjacent” prefixes with same next-hop (= color):
one rule only!

 But be aware that BGP updates (next-hop change,
insert, delete) may change forwarding set, need to de-
aggregate again

Benefits
 Only single router affected

 Aggregation = simple software update

Memory!

Update!

Setting: A Memory-Efficient Switch/Router

5 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

Setting: A Memory-Efficient Switch/Router

6 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

 Expensive!
Memory

constraints?

Setting: A Memory-Efficient Switch/Router

7 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

Update Churn?

Data structure,

networking, …

Motivation: FIB Compression and Update Churn

8 Stefan Schmid (T-Labs)

Benefits of FIB aggregation
 Routeviews snapshots indicate 40%

 memory gains

 More than under uniform distribution

 But depends on number of next hops

Churn
 Thousands of routing updates per second

 Goal: do not increase more (or improve!)

Model: Online Perspective

9 Stefan Schmid (T-Labs)

Online algorithms make
decisions at time t without any
knowledge of inputs at times
t’>t.

Online Algorithm

Competitive analysis framework:

An r-competitive online algorithm
ALG gives a worst-case
performance guarantee: the
performance is at most a factor r
worse than an optimal offline
algorithm OPT!

Competitive Analysis

Competitive ratio r,

 r = Cost(ALG) / cost(OPT)

The price of not knowing the future!

Competitive Ratio

No need for complex predictions but still good!

Model: Online Input Sequence

10 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

BGP
updates 0

0 1

1

full list of forwarded
prefixes: (prefix, port)

Update: Color change

0

0 1

1 0

0 1

1

Update: Insert/Delete

0

0 1

1 0

1

1

Model: Costs

11 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

tr
a

ff
ic

online and
worst-case

arrival
consistent at any time!

(rule: most specific)

Cost = α (# updates to FIB) + ∫ memory
t

Ports = Next-Hops = Colors

Model 1: Aggregation without Exceptions (SIROCCO 2013)

12 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

independent prefixes

size 5

size 3

FIB w/o

exceptions

Theorem:

BLOCK(A,B) is 3.603-competitive.

Theorem:

Any online algorithm is at least 1.636-competitive.

(Even ALG can use exceptions and OPT not.)

Model 1: Aggregation without Exceptions (SIROCCO 2013)

13 Stefan Schmid (T-Labs)

BLOCK(A,B) operates on trie:

 Two parameters A and B for amortization (A ≥ B)

 Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

 Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

 If C(v) ≥ A α, then aggregate entire tree T(u) where
u is furthest ancestor of v with C(u) ≥ B α. (Maybe

v is u.)

 Split lazily: only when forced.

Nodes with square inside: mergeable. Nodes with bold border: suppressed for FIB1.

Model 1: Aggregation without Exceptions (SIROCCO 2013)

14 Stefan Schmid (T-Labs)

BLOCK(A,B) operates on trie:

 Two parameters A and B for amortization (A ≥ B)

 Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

 Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

 If C(v) ≥ A α, then aggregate entire tree T(u) where
u is furthest ancestor of v with C(u) ≥ B α. (Maybe

v is u.)

 Split lazily: only when forced.

Nodes with square inside: mergeable. Nodes with bold border: suppressed for FIB1.

BLOCK:

 (1) balances memory and update costs

 (2) exploits possibility to merge multiple tree nodes
 simultaneously at lower price (threshold A and B)

Model 2: Aggregation with Exceptions (DISC 2013)

15 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

dependent prefixes

size 5

size 2

FIB w/

exceptions

Theorem:

HIMS is O(w)-competitive, w = address length.

Theorem:

Asymptotically optimal for general class of
online algorithms.

Exceptions: Concepts and Definitions

16 Stefan Schmid (T-Labs)

Maximal subtrees of UFIB with
colored leaves and blank internal
nodes.

Sticks

Idea: if all leaves in Stick have same color, they would become mergeable.

The HIMS Algorithm

17 Stefan Schmid (T-Labs)

 Hide Invisibles Merge Siblings (HIMS)

u

 Two counters in Sticks:

u

C(u) = time since Stick
descendants are
unicolor

H(u) = how long do nodes have
same color as the least colored
ancestor?

Hide Invisible
Counter:

Merge Sibling
Counter:

Note: C(u) ≥ H(u), C(u) ≥ C(p(u)), H(u) ≥ H(p(u)), where p() is parent.

u

The HIMS Algorithm

18 Stefan Schmid (T-Labs)

Keep rule in FIB if and only if all three conditions hold:

(1) H(u) < α (do not hide yet)

(2) C(u) ≥ α or u is a stick leaf (do not aggregate yet if ancestor low)

(3) C(p(u)) < α or u is a stick root

Examples:

Trivial stick: node is both root and leaf (Conditions 2+3 fulfilled).
So HIMS simply waits until invisible node can be hidden. Ex 1.

Ex 2.
Stick without colored ancestors: H(u)=0 all the
time (Condition 1 fulfilled). So everything
depends on counters inside stick. If counters
large, only root stays.

Analysis

19 Stefan Schmid (T-Labs)

Theorem:

HIMS is O(w) -competitive.

Proof idea:

 In the absence of further BGP updates

(1) HIMS does not introduce any changes after time α

(2) After time α, the memory cost is at most an factor O(w) off

 In general: for any snapshot at time t, either HIMS already started
aggregating or changes are quite new

 Concept of rainbow points and line coloring useful

 A rainbow point is a “witness” for a FIB rule

 Many different rainbow points over time give lower bound

addresses

rainbow point rainbow point

0 2w-1

Lower Bound

20 Stefan Schmid (T-Labs)

Theorem:

Any (online or offline) Stick-based algo is Ω(w) -competitive.

Proof idea:

Stick-based: (1) never keep a node outside a stick

 (2) inside a stick, for any pair u,v in ancestor-
 descendant relation, only keep one

Consider single stick: prefixes representing lengths 2w-1, 2w-2, ..., 21, 20, 20

Cannot aggregate stick!

But OPT could do that:

QED

LFA: A Simplified Implementation

21 Stefan Schmid (T-Labs)

 LFA: Locality-aware FIB aggregation

 Combines stick aggregation with offline optimal ORTC

 Parameter α: depth where aggregation starts

 Parameter β: time until aggregation

LFA Simulation Results

22 Stefan Schmid (T-Labs)

For small alpha, Aggregated Table (AT) significantly smaller than Original Table (OT)

Conclusion

23 Stefan Schmid (T-Labs)

 Without exceptions in input and output: BLOCK is constant competitive

 With exceptions in input and output: HIMS is O(w)-competitive

 Note on offline variant: fixed parameter tractable, runtime of dynamic
program in f(α) nO(1)

Thank you! Questions?

