Towards Distributed and Reliable
Software Defined Networking

Marco Canini (TU Berlin & T-Labs & UCL)
Petr Kuznetsov (TU Berlin & TU Berlin & Paris Tech)

Towards Distributed and Reliable
Software Defined Networking

The Case for Software Transactional Networking?

Marco Canini (TU Berlin & T-Labs & UCL)
Petr Kuznetsov (TU Berlin & TU Berlin & Paris Tech)

The 1-Slide SDN Lecture

SDN
= Control of (forwarding) rules in network from

simple, logically centralized vantage point
= Flow concept: install rules to define flow

Vision: Middleware for Concurrent and Robust Policy Installation

. Tunnels!

Install : / Install
ACK/NAK \ ACK/NAK

iddleware

Vision /Q/I

Robust

nstall ¢ / Install
ACK/NAK \ ACK/NAK

Policies and Composition

space”)
Policy priority
Implies rules on switch ports

src=*
dst=11*
to port A
prio=1

Policy = defined over (header) domain

Conflict = overlapping domains,
different treatment

same priority,

FreakingNews.com

Policy composition = combined policy, avoids
conflicts

E.g., composition by priorities or most specific, or
do both parts

Implement exactly one policy if two conflict

Only known central solution: need to compose,
e.g., Frenetic/Pyrethic:

Composing Software-Defined Networks

Christopher Monsanto®, Joshua Reich*, Nate Foster”, Jennifer Rexford", David Walker*
“Princeton "Cornell

Abstract tasks is inexorably intertwined, making the software dif-

Managing a network requires support for multiple cons [t 0 Wrie, test. debug. and reuse.
ks, from routing and traffic monitoring, to ac- Modularity is the key to managing complexity in any
erver load balancing. Softwarc-] software system, and SDNs are no exception. Previous
lows applications to re rescarch has tackled an important special case, where
by installing packet-processing rules on €ach application controls its own slice—a disjoint por-
switches. Howexer, today’s SDN platforms provide lime tion of traffic, over which the tenant or application mod-
ited support for creating modular applications. This pa. Ul has (the illusion of) complete visibility and con-
per introduces new abstractions for building applications {701 [21. 8]. In addition to traffic isolation, such a plat-
out of muliple, independent modules that jointly man. oM may also support subdivision of network resources
age netowork trafc. First, we define composition opera- link bandwidih, rule-table space, and controller
tors anda library of policies for forwarding and querying and memory) to prevent one module from affect-
traffic. Our parallel composition operator allows muli. 18 the performance of another. However, previous work
ple policies to operate on the same set of packets, while s 49€5 10t address how 1o build a single application out
vl <enmential commasition onerator allows one nolicy ©f multiple, independent, reusable network policies that

Policy Installation

ingress port

internal ports

= SDN Match-Action
= Match header (define flow)

= Execute action (e.g., add tag or
forward to port)

= Consistent Update: 2-phase

= At internal ports: add new
rules for new policy with new
tag

= Then at ingress ports: start
tagging packets with new tag

Abstractions for Network Update

Mark Reitblatt ~ Nate Foster ~ Jennifer Rexford ~ Cole Schlesinger ~ David Walker
rnell Cornell Princeton Princeton Princeton

ABSTRACT Networks exist in a constant state of flux. Operators frequently
i B ify routing tables, adjust link weights, and change access con-
Configuration changes are a common source of insiability in net- oY roul ;
works, leading to outages, performance disruptions. and security trol lists o perform taska from planmed maintenance, to traffic en-
Vulnerabilities. Even when the initial and final configurations are gineering, to patching security vulnerabilities, to migrating virtual
cormect, the wupdate process itsel often sieps through miermediae MACHIneS in a dataceater, But even when updates are planned well
contigarations that Bt e bty Th paper o in advance, they are dificul to implement correctly, and can result
duces the notion of consistent network updates—updites dhat aze 1 JISTUPLONS such 2 ransient outages. Lost server comneetions. un-
suaranteed 10 preserve well-defined behaviors when transiti e s, hiccups in VoIP calls, or the death
between configurations. We identify two distinct consistency lev- of & player's favorite character in an online game.
els, per-packet and per-flow, and we present general mechanisms To ackde "“m'l""‘hl'm“ﬁ chers have @ number
for implementing them in Sofiware-Defined Networks using switch af exteasions i proioo Dmotices that. P
APIs like OpenFlow. We developa formal model of OpenFlow nei- V0t transient anomalies [8, 2, 9. 3, 5]. However, each of these so-

works, and prove that consistent updates preserve a large class of 10tions is limited 1o a specific protocol (e.5.. OSPF and BGP) and a

propertics. We describe out prototype mplementation. incuding SPEcilic el o propertes (e, fredom from loops and blackholes)
several optimizations that reduce the overhead required to perform 40 increa of the sysiem ly. Hence, in
consistent updates. We present a verification 100l that leverages Practice, network operators have litle help when designing a new

Policy Installation
Initially

internal ports
forward acc-
Sel e EeE | - SDN Match-Action
ingress port = Match header (define flow)

= Execute action (e.g., add tag or
forward to port)

= Consistent Update: 2-phase
- Atinternal ports: add new

Policy Installation

Phase 1

internal ports
forward acc-
Sel e EeE | - SDN Match-Action
ingress port = Match header (define flow)

= Execute action (e.g., add tag or
forward to port)

= Consistent Update: 2-phase
- Atinternal ports: add new

Policy Installation

Phase 2

internal ports
forward acc-
ording to tags: [J] [T] - SDN Match-Action
ingress port = Match header (define flow)

= Execute action (e.g., add tag or
forward to port)

= Consistent Update: 2-phase
- Atinternal ports: add new

But what about distributed and multi-author policies?

|dea: Distributed Version

internal ports

forward acc-
ording to tag: -

ingress port

Synchronize:

= Do not override conflicting
policies

Problem Statement

Goals

All-or-nothing: policy fully installed or not at all
Conflict-free: never two conflicting policies

Progress: non-conflicting policy eventually installed; and: at least one
conflicting policy

Per-packet consistency:

er packet only one policy a

lied (durin

Goal: Serializable!

Three switches, three policies, policy
1 and 2 with independent flow space,

Example (o«

appy(T) S policy 3 conflicting:
\\ ------ IS
swithwtch
1 2
switch 3
P; rapp[y(nl) 1(TCk > apply(nl) [1GCk >
L () A N
Sz LD);(ﬂj]gck : e -]aCk : Control Plane
’ apply(mz) * “nack ~
SW 1 -Cremm > =G >
s g_--g’_é@:" > —_—C — O Packet Traces
Time -<> ’ O N\ Time -O'>

Left: Concurrent history: 3rd policy aborted due to conflict.

Right: In the sequential history, no two requests applied concurrently. No packet is
in flight while an update is being installed.

No packet can distinguish the two histories! So as though the application of
policy updates is atomic and packets cross the network instantaneously.

Stefan Schmid (T-Labs)

Bad News: Impossible Without Atomic Read-Modify-Write Ports

Thm: Without atomic rmw-ports, per-packet\
consistent network update is impossible if
a controller may crash-fail.

.

Proof:

= Single port already!
= 31 and ;2 are conflicting
= Descendant of state o is extension of execution of O.

= State o is i-valent if all descendants of ¢ are processed
according to gti. Otherwise it is undecided.

= Initial state is undecided, and in undecided state nobody i \ < T2
can commit its request and at least one process cannot
abort its request.

= There must exist a critical undecided state after which it's 70
univalent if a process not longer proceeds.

= Difference cannot be observed: overriding violates
consistency (sequential composition).
QED

Stefan Schmid (T-Labs)

Valency Proof

bivalent

Good News: Middleware for Concurrent Policy Updates

internal ports

(Thm: With atomic RMW,\
the TAG algorithm is
correct and wait-free (up
to n-1 failures).

N -

ingress port

= Principles:
(1) Unigue tag per policy
(2) Install at internal ports first
(compose if necessary*)
(3) Once installed at internal ports...
(4) ... add tag to all packets at
Ingress port(s)!

= Observations:
= Rule always ready internally (2)
= Per-packet consistency solved (4):
packet never changes tag!

: : : : = Wait-free policy installation!
* requires atomic read-modify-write

Stefan Schmid (T-Labs)

Conclusion

= Concurrent SDN policy updates: A case for
“Software Transactional Networking™?

= Concurrent control not possible under
atomic r/w, but possible under atomic r+w

