
Towards Distributed and Reliable
Software Defined Networking

1

Marco Canini (TU Berlin & T-Labs & UCL)

Petr Kuznetsov (TU Berlin & TU Berlin & Paris Tech)

Dan Levin (TU Berlin)

Stefan Schmid (TU Berlin & T-Labs)

Towards Distributed and Reliable
Software Defined Networking

2

Marco Canini (TU Berlin & T-Labs & UCL)

Petr Kuznetsov (TU Berlin & TU Berlin & Paris Tech)

Dan Levin (TU Berlin)

Stefan Schmid (TU Berlin & T-Labs)

The Case for Software Transactional Networking?

The 1-Slide SDN Lecture

3 Stefan Schmid (T-Labs)

3

SDN

 Control of (forwarding) rules in network from
simple, logically centralized vantage point

 Flow concept: install rules to define flow

 Match-Action concept: apply actions to packets

 Specifies global network policies, e.g., load-
balancing, adaptive monitoring / heavy hitter
detection, …

Vision: Middleware for Concurrent and Robust Policy Installation

Stefan Schmid (T-Labs)

compose and install concurrent policies

Middleware

Install

ACK/NAK

Install

ACK/NAK

ACLs! Tunnels!

Stefan Schmid (T-Labs)

compose and install concurrent policies

Middleware

Install

ACK/NAK

Install

ACK/NAK

failures (fail-stop)
Robust

Vision: Middleware for Concurrent and Robust Policy Installation

ACLs! Tunnels!

Policies and Composition

Stefan Schmid (T-Labs)

 Policy = defined over (header) domain (“flow
space”)

 Policy priority

 Implies rules on switch ports

 Conflict = overlapping domains, same priority,
different treatment

 Policy composition = combined policy, avoids
conflicts

 E.g., composition by priorities or most specific, or
do both parts

 Implement exactly one policy if two conflict

 Only known central solution: need to compose,
e.g., Frenetic/Pyrethic:

src=*

dst=11*

to port A

prio=1

src=10*

dst=*

to port B

prio=1

?

Policy Installation

7 Stefan Schmid (T-Labs)

ingress port

internal ports

 SDN Match-Action

 Match header (define flow)

 Execute action (e.g., add tag or
forward to port)

 Consistent Update: 2-phase

 At internal ports: add new
rules for new policy with new
tag

 Then at ingress ports: start
tagging packets with new tag

Known central solution

(our model):

Policy Installation

8 Stefan Schmid (T-Labs)

ingress port

internal ports

 SDN Match-Action

 Match header (define flow)

 Execute action (e.g., add tag or
forward to port)

 Consistent Update: 2-phase

 At internal ports: add new
rules for new policy with new
tag

 Then at ingress ports: start
tagging packets with new tag

add tag:

forward acc-
ording to tag:

Initially

Policy Installation

9 Stefan Schmid (T-Labs)

internal ports

 SDN Match-Action

 Match header (define flow)

 Execute action (e.g., add tag or
forward to port)

 Consistent Update: 2-phase

 At internal ports: add new
rules for new policy with new
tag

 Then at ingress ports: start
tagging packets with new tag

forward acc-
ording to tag:

Phase 1

ingress port

add tag:

Policy Installation

10 Stefan Schmid (T-Labs)

internal ports

 SDN Match-Action

 Match header (define flow)

 Execute action (e.g., add tag or
forward to port)

 Consistent Update: 2-phase

 At internal ports: add new
rules for new policy with new
tag

 Then at ingress ports: start
tagging packets with new tag

forward acc-
ording to tags:

Phase 2

ingress port

add tag:

But what about distributed and multi-author policies?

Stefan Schmid (T-Labs)

vs

One guy in charge of setting up tunnels,
one guy in charge of ACLs, …

Idea: Distributed Version

Stefan Schmid (T-Labs)

ingress port

internal ports

Synchronize:

 Do not override conflicting
policies

 Especially ingress port(s)

add tag:

forward acc-
ording to tag:

Share Tags:

 Agree on tags

Problem Statement

13 Stefan Schmid (T-Labs)

Goals

 All-or-nothing: policy fully installed or not at all

 Conflict-free: never two conflicting policies

 Progress: non-conflicting policy eventually installed; and: at least one
conflicting policy

 Per-packet consistency: per packet only one policy applied (during
journey through network)

 Always rules ready when packets arrive (not under control!)

Goal: Serializable!

Stefan Schmid (T-Labs)

Left: Concurrent history: 3rd policy aborted due to conflict.

Right: In the sequential history, no two requests applied concurrently. No packet is
in flight while an update is being installed.

No packet can distinguish the two histories! So as though the application of
policy updates is atomic and packets cross the network instantaneously.

Control Plane

Packet Traces

Example Three switches, three policies, policy
1 and 2 with independent flow space,
policy 3 conflicting:

Bad News: Impossible Without Atomic Read-Modify-Write Ports

Stefan Schmid (T-Labs)

Thm: Without atomic rmw-ports, per-packet
consistent network update is impossible if

a controller may crash-fail.

Proof:

π1

 Single port already!

 π1 and π2 are conflicting

 Descendant of state σ is extension of execution of σ.

 State σ is i-valent if all descendants of σ are processed
according to πi. Otherwise it is undecided.

 Initial state is undecided, and in undecided state nobody
can commit its request and at least one process cannot
abort its request.

 There must exist a critical undecided state after which it’s
univalent if a process not longer proceeds.

 Difference cannot be observed: overriding violates
consistency (sequential composition).

π2

π0

QED

bivalent

Valency Proof

Stefan Schmid (T-Labs)

π1 π2

π0

univalent

1 0 0 1 1 1

Good News: Middleware for Concurrent Policy Updates

Stefan Schmid (T-Labs)

ingress port

internal ports

 Principles:

(1) Unique tag per policy

(2) Install at internal ports first

 (compose if necessary*)

(3) Once installed at internal ports…

(4) … add tag to all packets at

 ingress port(s)!

* requires atomic read-modify-write

Tag 1
Tag 2

Tag 1
Tag 2 Tag 1

Tag 2

Tag 1
Tag 2

Tag 1

add
Tag 1

Tag 1

Tag 1
Tag 1 Tag 1

Thm: With atomic RMW,
the TAG algorithm is

correct and wait-free (up
to n-1 failures).

 Observations:

 Rule always ready internally (2)

 Per-packet consistency solved (4):

 packet never changes tag!

 Wait-free policy installation!

Conclusion

18 Stefan Schmid (T-Labs)

 Concurrent SDN policy updates: A case for
“Software Transactional Networking”?

 Concurrent control not possible under
atomic r/w, but possible under atomic r+w

 Future work: reduce tag size

