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Abstract. This paper shows that the results by Czygrinow et al. (DISC
2008) and Amiri et al. (PODC 2016) can be combined to obtain a
O(log∗ n)-time local and deterministic approximation scheme for Min-
imum Dominating Sets on bounded genus graphs.

1 Local MDS Approximation Scheme

It is well-known that fundamental graph problems such as the Minimum Domi-
nating Set (MDS) problem cannot be solved efficiently by distributed algorithms
on general graphs. However, over the last years, researchers have found several
very fast distributed algorithms for sparse families of networks, such as constant-
degree graphs and planar graphs.

This paper presents a deterministic O(log∗ n)-time MDS (1 + ε)-factor ap-
proximation algorithm for a more general graph family: graphs of constant genus.
The algorithm relies on: (1) a slight modification of the clusting algorithm for
planar graphs presented by Czygrinow et al. [2], and (2) the recent constant ap-
proximation result by Amiri et al. [1] for MDS on graphs of bounded genus. Due
to space constraints, we refer the reader to the prior work for more background.

We suppose familiarity with basic graph theory and graphs on surfaces [4].
We consider simple finite undirected graphs unless stated explicitly otherwise.
We denote the set of all integers by N. For a graph G = (V,E), we write E(G)
resp. V (G) to denote the edge set resp. vertex set of graph G. For a weighted
graph G, we define an edge weight function as w : E(G) → N. For a sub-graph
S ⊆ G, we write W (S) for Σe∈E(S)w(e), and call it the total edge weight of S.
We contract an edge {u, v} by identifying its two ends, creating a new vertex uv,
but keeping all edges (except for parallel edges and loops). Additionally, if the
graph is weighted and {u, x}, {v, x} ∈ E(G), we set the edge weight of {uv, x}
to w(uv, x) := w(u, x) + w(v, x). Let S ⊆ V (G), we denote by G[S] an induced
subgraph of G on vertices of S. The degeneracy of a graph G is the least number
d for which every induced subgraph of G has degree at most d.

We need the following lemma for the sake of completeness.
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Lemma 1. Let G be a class of graphs of genus at most g. Then the degeneracy
of every graph G ∈ G is in O(

√
g).

Proof. We prove the lemma for graphs with orientable genus g; an analogous
argument works for graphs of non-orientable genus g. Let G ∈ G with genus at
most g, and suppose the degeneracy of G is c. We prove that c ∈ O(

√
g). Let

us denote by v, e the number of vertices and edges of G, respectively. By the
Euler formula, we have: e ≤ 3 · v+ 6g−6 [1]. On the other hand, by definition of
the degeneracy, every vertex in G has degree at least c, so c·v

2 ≤ 3v + 6g − 6⇒
c ≤ 12g−12

v + 6 (1). To find the maximum value of c for a fixed genus, we must
minimise v. A complete graph on v vertices has genus at most v2/12 [4], therefore
by plugging it into (1), we obtain that c ≤

√
12g + 6.

Definition 1 (Pseudo-Forest [2]). A pseudo-forest is a directed graph in
which every vertex has an out-degree at most 1.

For a directed graph G, if we ignore the edge directions, we write Ḡ.
Different variations of the first part of the following lemma have already been

proved in the literature. However, to be able to provide exact numbers and for
completeness, we include a proof here. Let G be a graph and let F be a family of
forests such that for all F ∈ F , we have F ⊆ G. We say that F is a forest cover
of G, if for every edge e ∈ E(G), there is a forest F ∈ F such that e ∈ E(F ).

Lemma 2. There is a constant c1 such that for an edge weighted graph G of
genus g, we can find, in two communication rounds, a pseudo-forest F such that
F̄ is a spanning sub-graph of G and W (F̄ ) ≥ W (G)

c1·
√
g .

Proof. By Lemma 1, the degeneracy of a graph G of genus g is in O(
√
g). The

degeneracy is within factor two of the arboricity [3], and the arboricity equals the
size of at least a forest cover F of G. Therefore, there is a constant c′1 such that
|F| ≤ c′1 ·

√
g. Hence, there is a forest F1 ∈ F such that W (F1) ≥W (G)/(c′1 ·

√
g).

Similarly to the proof of Fact 1 in [2], for a vertex v, we choose an edge {v, u} of
largest weight, and direct it from v to u. If we happen to choose an edge {v, u}
for both vertices u and v, we direct it from v to u, using the larger identifier
as a tie breaker. This algorithm creates a pseudo-forest F . F̄ is a spanning
sub-graph of G and it has a total edge weight of at least half of W (F1), so
W (F̄ ) ≥ W (G)/(2 · c′1 ·

√
g). We set c1 = 2 · c′1. Note that we found F in two

rounds. �

Lemma 3. There is a local algorithm which takes an 0 < ε < 1 and an edge-
weighted graph G of genus at most g as input, runs in O(log∗ n + 1/ε · √g)
communication rounds and returns a set of clusters C1, . . . , Cl partitioning G,
such that, each cluster has a constant diameter. Moreover, if we contract each
Ci to a single vertex to obtain a graph H, then W (H) ≤ ε ·W (G).

Proof. Let t := 4·c1 ·
√
g. By applying theHeavyStars algorithm from [2] on the

pseudo forest provided in the proof of Lemma 2, we obtain stars of weight |E(G)|
t .
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We also run the algorithm Clustering provided in [2], but we set the number
of iterations in the algorithm to log( 1

ε )/ log( t
t−1 ); the rest of the algorithm is left

unchanged. A similar line of proof for the original algorithm, proves the claim
of the lemma. Just note that log( x

x−1 ) ≥ 1/x for x > 1. �

Theorem 1. Given a 0 < δ < 1 and a graph G of bounded genus, the Minimum
Dominating Set can be approximated in O(log∗ |G|) time within a factor of 1+δ.

Proof. Suppose OPT is the optimal dominating set of G. By [1], we can find a
dominating set D of G such that for some constant c, we have |D| ≤ c ·g · |OPT |.
This can be done in a constant number of communication rounds. For a vertex
v ∈ G, we denote the neighbours of v in G by N [v] i.e., N [v] = v ∪ {u ∈ V (G) |
{u, v} ∈ E(G)}. Suppose |D| = t.

Let us order the vertices of D arbitrarily, and suppose d1, . . . , dt is such an
ordering. Create a partition (V1, . . . , Vt) of V (G) such that Vi = {v ∈ N [di] |
v ∈ (G−D−

⋃
j<i Vj)}∪ {di}. We next contract each Vi to a single vertex vi to

obtain a graph H. We assign an edge weight to H, i.e., for all e ∈ E(H), we set
w(e) := 1. It is clear that W (H) = |E(H)|. H has genus at most g and it has
at most 3|D|+ 6g − 6 edges (see Lemma 4 of [1]). Set ε = δ/((6 + 12g) · c · g).
When we apply the algorithm in Lemma 3, it finds clusters C1, . . . , Cl such that
the total edge weights between clusters amount to at most ε · |E(H)| . Note that
as ε ∈ Ω(1/g2), the algorithm uses O(log∗ |G| · 1/ε · √g) = O(log∗ |G| · g2√g)
communication rounds.

For a cluster Cj , suppose V (Cj) = {vj1 , . . . , vjk}, and let Uj be an induced
subgraph of G on vertices of a subgraph X =

⋃
i=1,...,k Vji , i.e Uj := G[X]. We

find the optimum dominating set Si in each Uj . Moreover, we know that each Ci
had a constant diameter therefore, each Uj will have a constant diameter. Hence,
finding an optimum dominating set within each Ui can be done in a constant
number of communication rounds. Now take a dominating set S =

⋃
Si. First

of all, it is clear that S is a dominating set of G. To prove the upper bound, let
D∗ be a set of vertices of D which have a neighbour in other clusters, i.e., D∗ =
{w ∈ D | if w ∈ Ui then ∃j 6= i and ∃x ∈ Uj such that {w, x} ∈ E(G)}. By the
Clustering algorithm and the above counting, we have |D∗| ≤ 2ε|E(H)| ≤
2ε(3|D|+ 6g− 6) ≤ 2ε · c · g · (3|D|+ 6g) ≤ δ|OPT |. On the other hand, we know
that |S| ≤ |OPT ∪D∗| ≤ (1 + δ)|OPT |. �
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