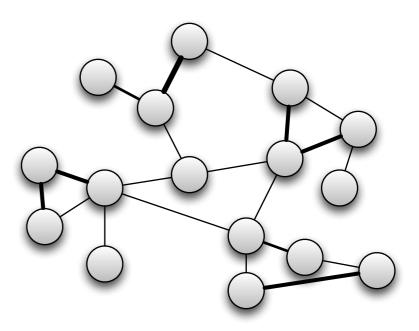


Online Balanced Repartitioning

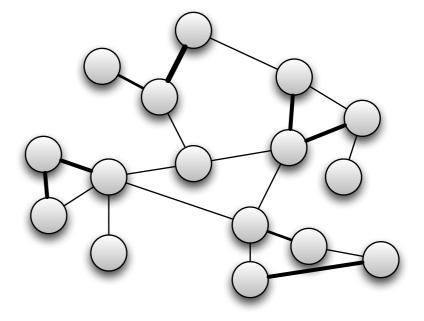
Chen Avin

Ben Gurion University of the Negev

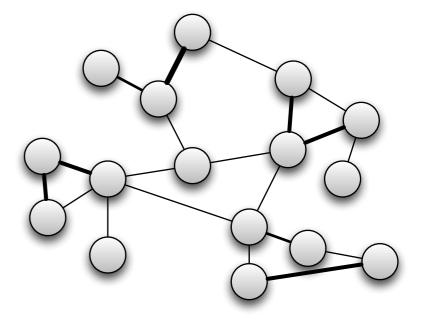
Joint work with Andreas Loukas, Maciej Pacut & Stefan Schmid



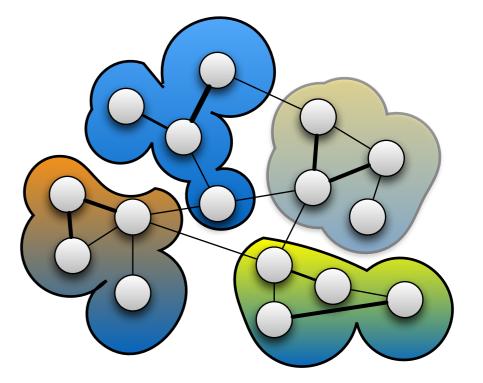
Graph partitioning problems



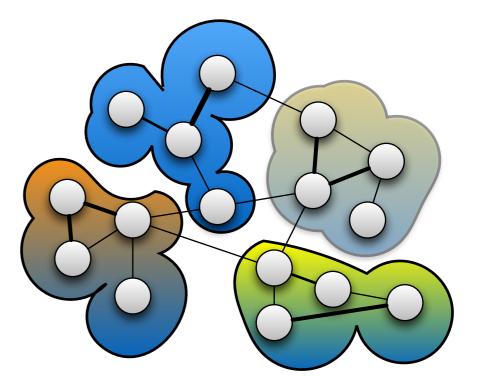
- Graph partitioning problems
 - ℓ clusters, each of size k



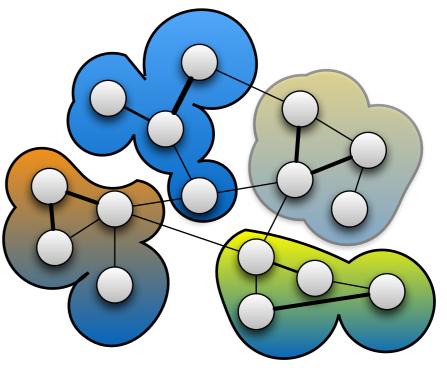
- Graph partitioning problems
 - ℓ clusters, each of size k

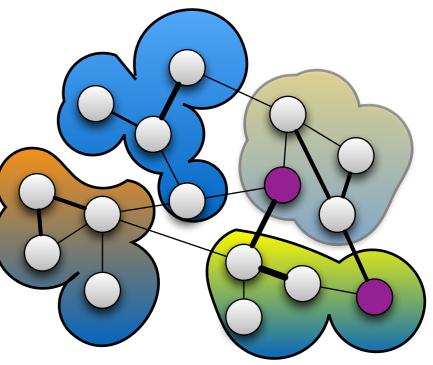


- Graph partitioning problems
 - ℓ clusters, each of size k
- Online graph re-partitioning

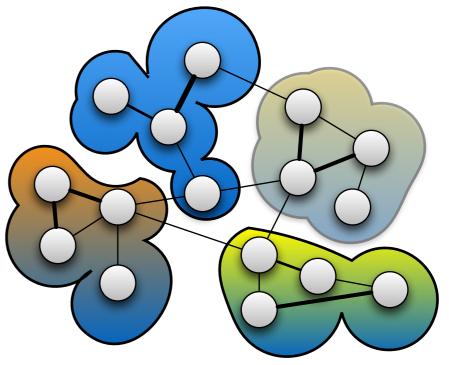


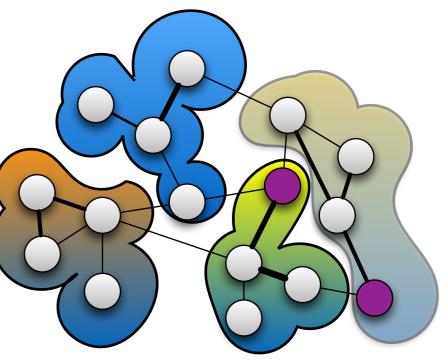
- Graph partitioning problems
 - ℓ clusters, each of size k
- Online graph re-partitioning
 - Edges are updated





- Graph partitioning problems
 - ℓ clusters, each of size k
- Online graph re-partitioning
 - Edges are updated
 - Clustering is updated

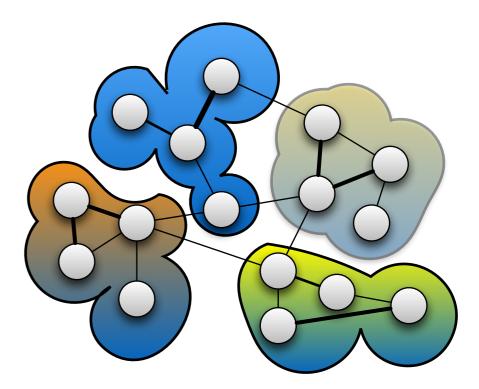




- Graph partitioning problems
 - ℓ clusters, each of size k
- Online graph re-partitioning
 - Edges are updated
 - Clustering is updated
 - At a cost

Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

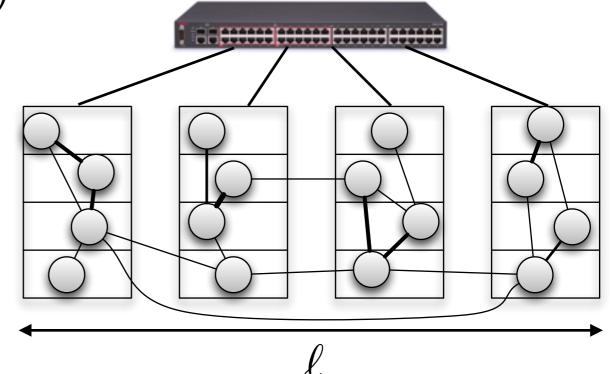
ted



- Practical motivation
 - Data centres
 - Reduce network traffic

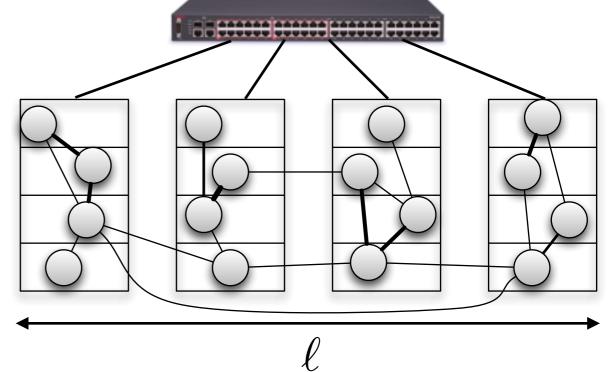
k

- Practical motivation
 - Data centres
 - Reduce network traffic
 - Clusters as **servers** (static)
 - Nodes as VMs (can move)
 - $k << \ell$



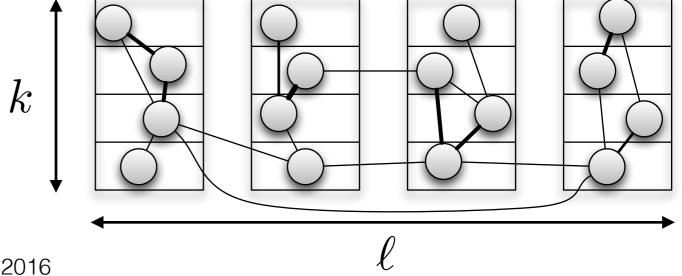
k

- Practical motivation
 - Data centres
 - Reduce network traffic
 - Clusters as **servers** (static)
 - Nodes as VMs (can move)
 - $k << \ell$
- Traffic-Aware Networking



Overview

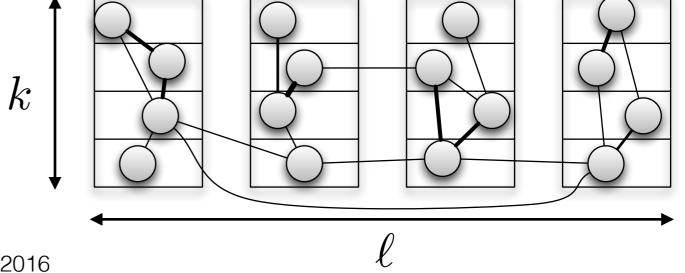
- Motivation
- Model and Problem definition
- Examples
- Some results
- Future work and open questions



• Balanced RePartitioning (BRP)



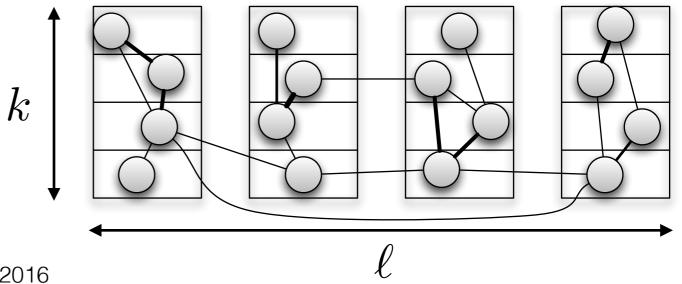
- Balanced RePartitioning (BRP)
 - Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k



• Balanced RePartitioning (BRP)

- Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k
- (online) pairwise communication requests

$$\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$$

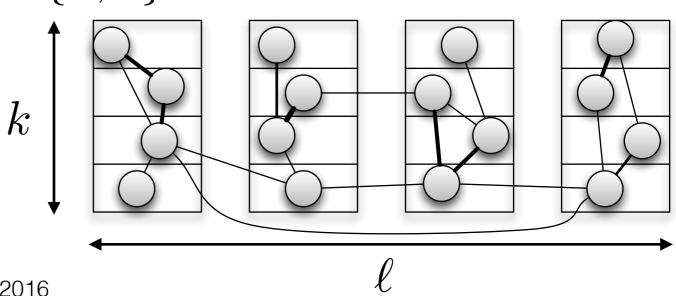


• Balanced RePartitioning (BRP)

- Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k
- (online) pairwise communication requests

$$\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$$

• Serving **costs** for $\sigma_t = \{u, v\}$:

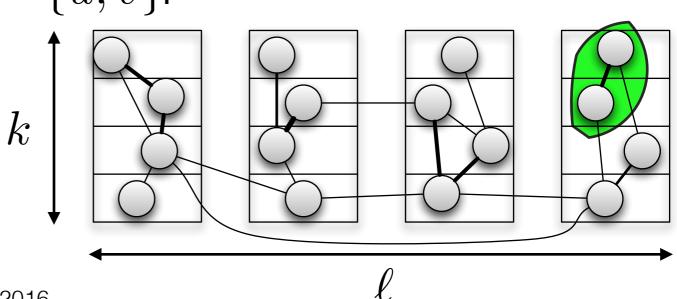


• Balanced RePartitioning (BRP)

- Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k
- (online) pairwise communication requests

$$\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$$

- Serving **costs** for $\sigma_t = \{u, v\}$:
 - intra-cluster: 0

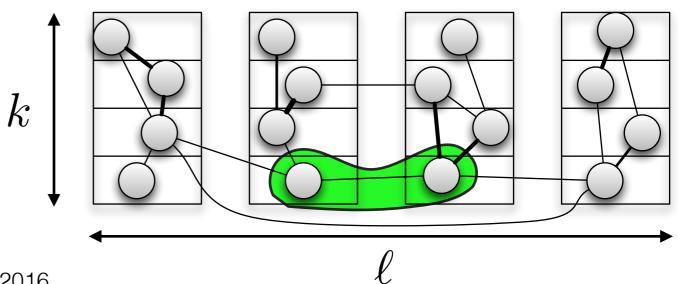


• Balanced RePartitioning (BRP)

- Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k
- (online) pairwise communication requests

$$\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$$

- Serving **costs** for $\sigma_t = \{u, v\}$:
 - intra-cluster: 0
 - inter-cluster: 1

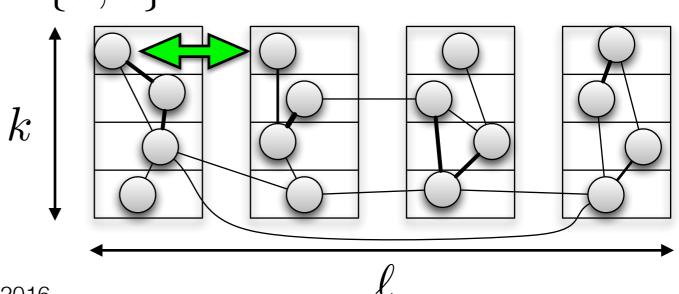


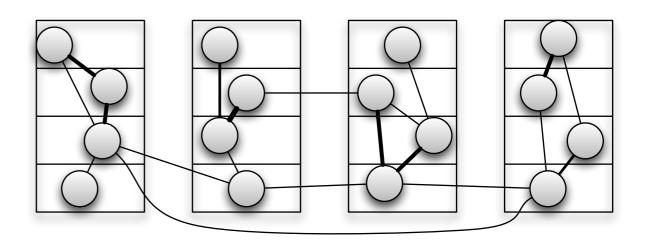
• Balanced RePartitioning (BRP)

- Clusters $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ each of size k
- (online) pairwise communication requests

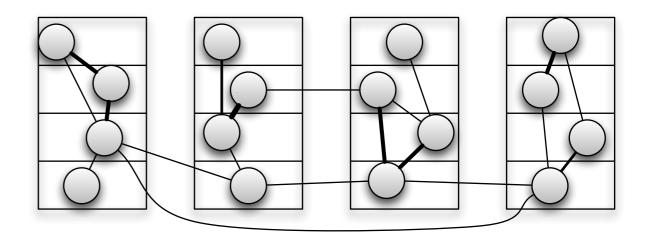
$$\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$$

- Serving **costs** for $\sigma_t = \{u, v\}$:
 - intra-cluster: 0
 - inter-cluster: 1
 - migration: α



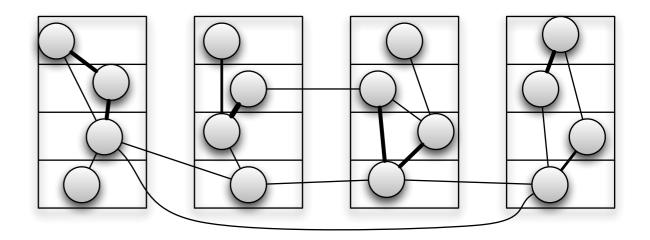


- The Cost of **ALG** $\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$
 - $ALG(\sigma) = \sum_{t=1}^{|\sigma|} mig(\sigma_t; ALG) + com(\sigma_t; ALG)$



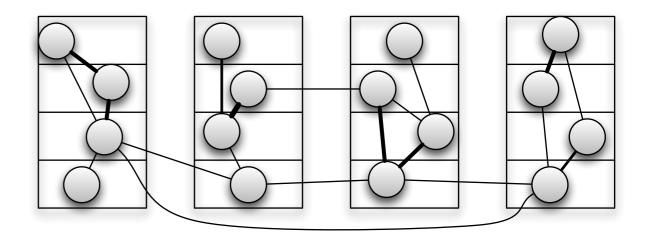
• The Cost of **ALG** $\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$

$$ALG(\sigma) = \sum_{t=1}^{|\sigma|} \operatorname{mig}(\sigma_t; ALG) + \operatorname{com}(\sigma_t; ALG)$$



• The Cost of **ALG** $\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$

$$ALG(\sigma) = \sum_{t=1}^{|\sigma|} mig(\sigma_t; ALG) + com(\sigma_t; ALG)$$



• The Cost of **ALG** $\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$

$$ALG(\sigma) = \sum_{t=1}^{|\sigma|} mig(\sigma_t; ALG) + com(\sigma_t; ALG)$$

• What is the competitive ratio

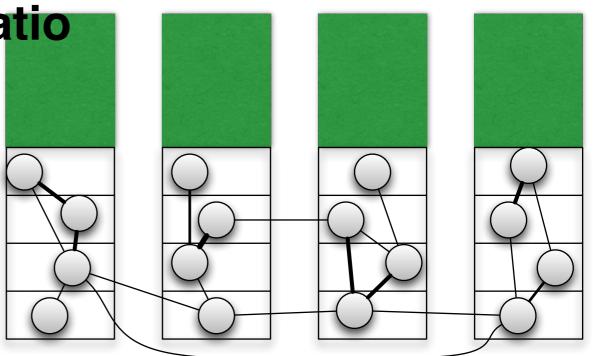
• The Cost of **ALG** $\sigma = \{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \dots$

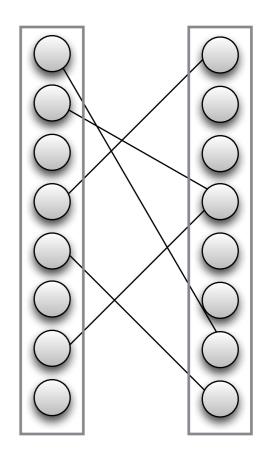
$$ALG(\sigma) = \sum_{t=1}^{|\sigma|} mig(\sigma_t; ALG) + com(\sigma_t; ALG)$$

What is the competitive ratio

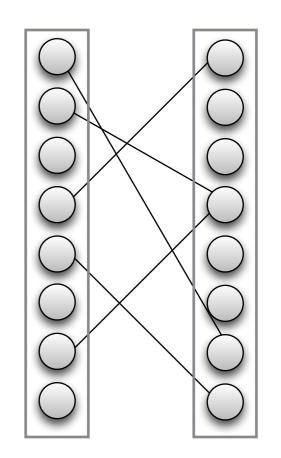
$$\rho(ON) = \max_{\sigma} \frac{ON(\sigma)}{OFF(\sigma)}$$

w/o Augmentation

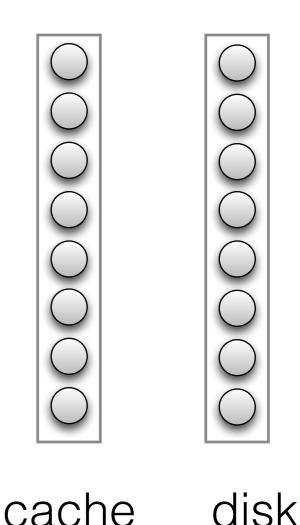




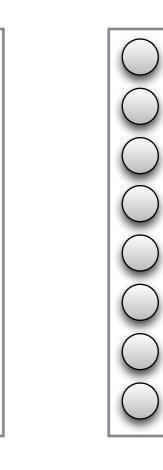
• The static variant corresponds to the minimum bisection problem - hard, but approx



- The static variant corresponds to the minimum bisection problem hard, but approx
- The dynamic case is a generalization of online paging



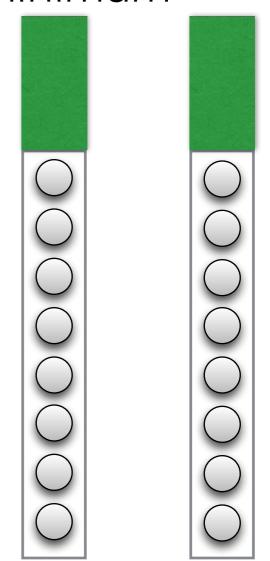
- The static variant corresponds to the minimum bisection problem hard, but approx
- The dynamic case is a generalization of online paging
- Imply k lower bound (deterministic)



disk

cache

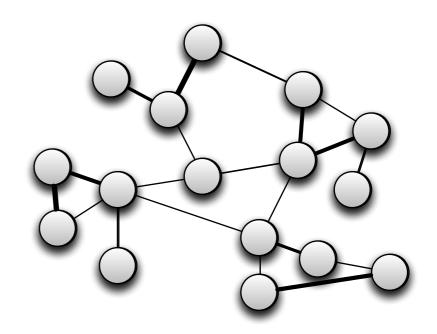
- The static variant corresponds to the minimum bisection problem hard, but approx
- The dynamic case is a generalization of online paging
- Imply k lower bound (deterministic)
- With augmentation it's different....



disk

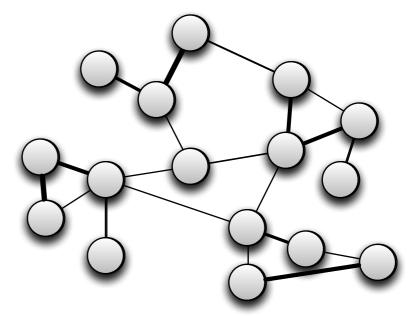
cache

Example II: k = 2



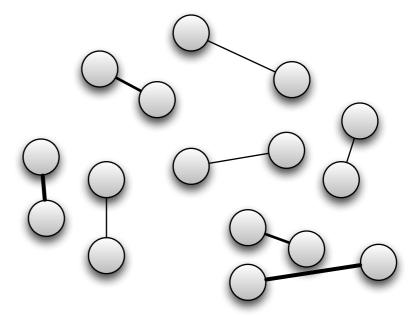
Example II: k = 2

The iid variant corresponds to the maximum matching problem (minimum cut)



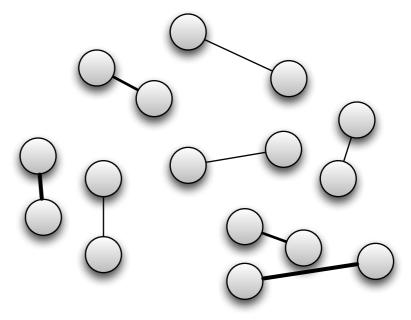
Example II: k = 2

The iid variant corresponds to the maximum matching problem (minimum cut)



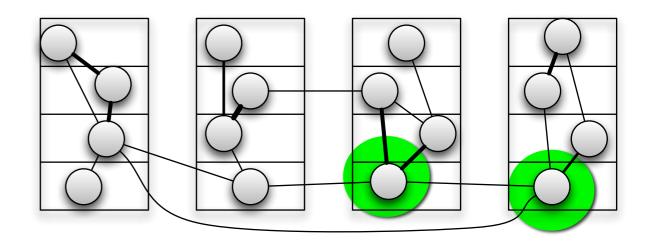
Example II: k = 2

- The iid variant corresponds to the maximum matching problem (minimum cut)
- A novel online version of maximum matching



Algo Guidelines

- Serve remotely or migrate (``rent or buy'')?
- Where to migrate, and what?
- Which nodes to evict?

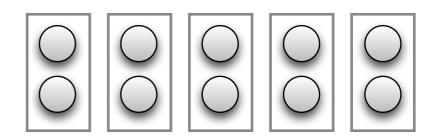


Related work

- Similar in spirit to many classical on-line problems:
 - ski rental, page and server migration, k-server, caching, bin packing
- However, does not fit to the online metrical task system scenario
 - both ends of the communication requests can move
 - every request only reveals partial and and limited information about the optimal configuration
 - large space
- Caching models with bypassing

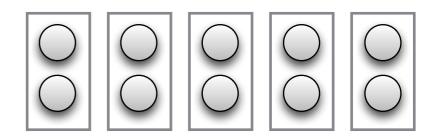
Results overview

- Bounds for **deterministic** algorithms
- k=2 constant competitive bound
- Lower bound (with augmentation) $\Omega(k)$
- Upper bound (with augmentation) $O(k \log k)$

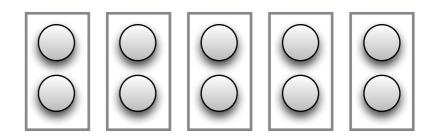


k = 2

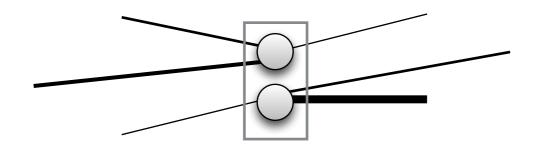
• We show a lower bound of 3-competitive

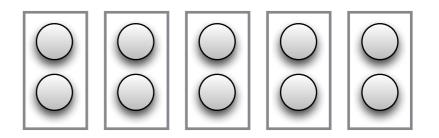


- We show a lower bound of 3-competitive
- No eviction problem 😄

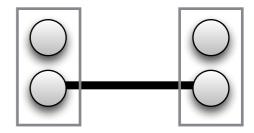


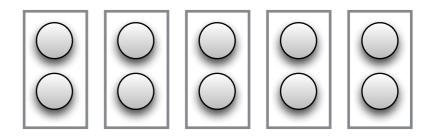
- We show a lower bound of 3-competitive
- No eviction problem 😅
- A **greedy** algorithm:



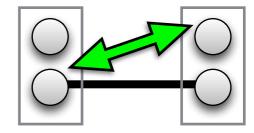


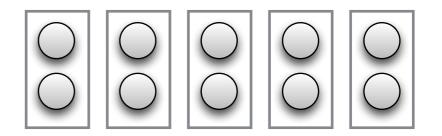
- We show a lower bound of 3-competitive
- No eviction problem 😅
- A **greedy** algorithm:
 - When outside traffic > 3α



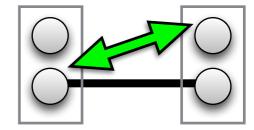


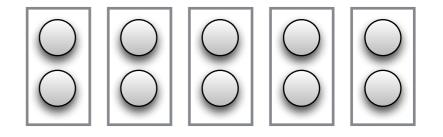
- We show a lower bound of 3-competitive
- No eviction problem 😅
- A **greedy** algorithm:
 - When outside traffic > 3α



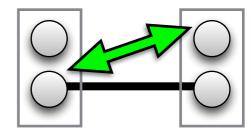


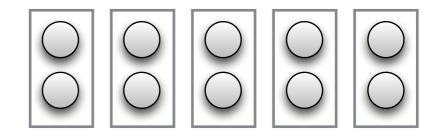
- We show a lower bound of 3-competitive
- No eviction problem 😅
- A **greedy** algorithm:
 - When outside traffic > 3α
 - Identify and migrate to best cluster



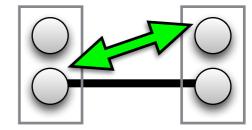


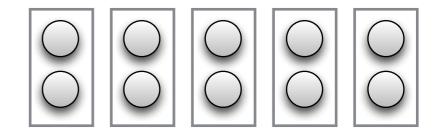
- We show a lower bound of 3-competitive
- No eviction problem (a)
- A **greedy** algorithm:
 - When outside traffic > 3α
 - Identify and migrate to best cluster
- An upper bound of 7α





- We show a lower bound of 3-competitive
- No eviction problem 😅
- A **greedy** algorithm:
 - When outside traffic > 3α
 - Identify and migrate to best cluster
- An upper bound of 7α
- no augmentation



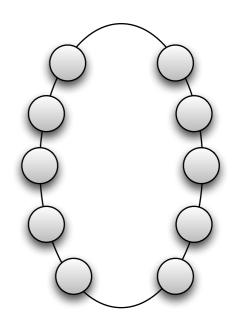


• Any non trivial augmentation (all fit in one)

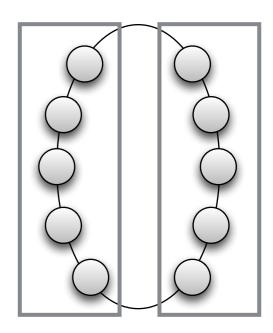
- Any non trivial augmentation (all fit in one)
- A simple cycle like request sequence



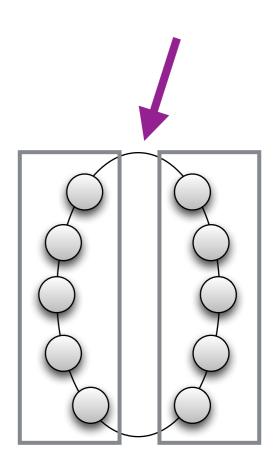
- Any non trivial augmentation (all fit in one)
- A simple cycle like request sequence
- Always an inter-cluster edge to ask



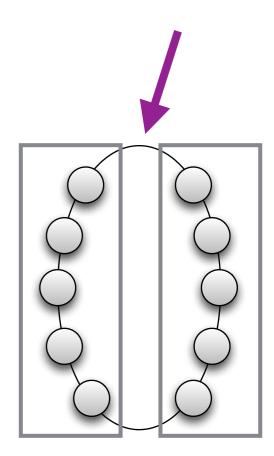
- Any non trivial augmentation (all fit in one)
- A simple cycle like request sequence
- Always an inter-cluster edge to ask

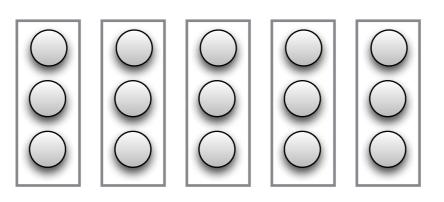


- Any non trivial augmentation (all fit in one)
- A simple cycle like request sequence
- Always an **inter-cluster** edge to ask

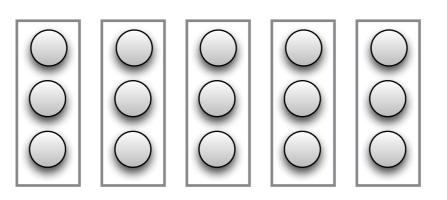


- Any non trivial augmentation (all fit in one)
- A simple cycle like request sequence
- Always an **inter-cluster** edge to ask
- Leads to a lower bound > k

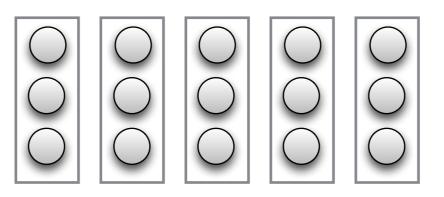




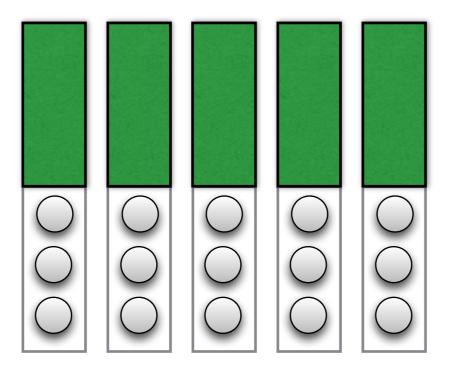
• C-REP algorithm (Component-based)



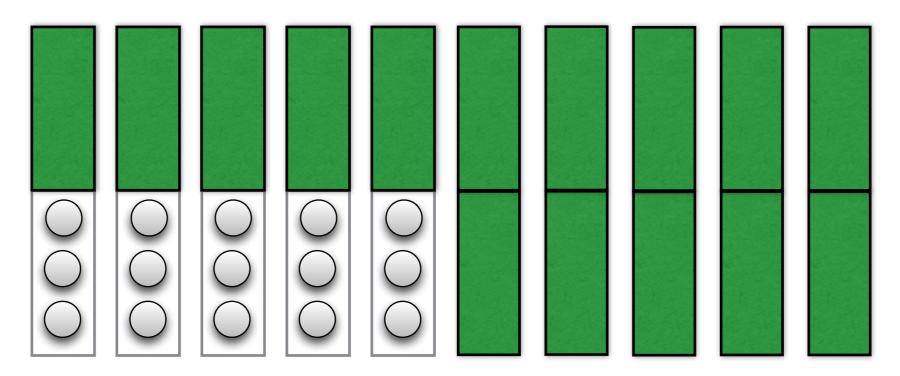
- C-REP algorithm (Component-based)
- 4 Augmentation



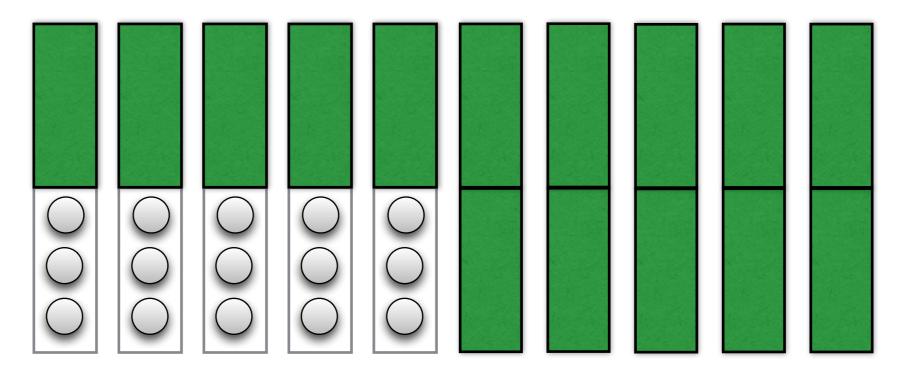
- C-REP algorithm (Component-based)
- 4 Augmentation

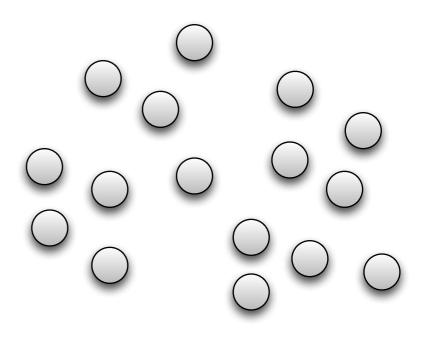


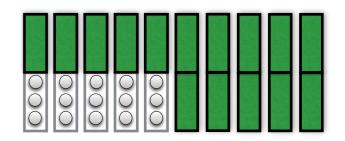
- C-REP algorithm (Component-based)
- 4 Augmentation



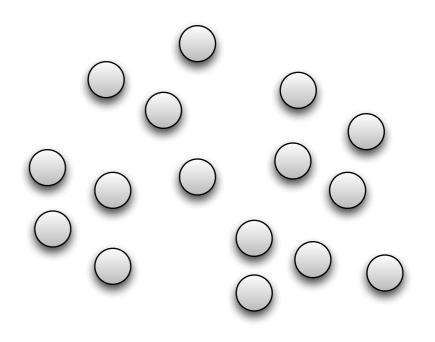
- C-REP algorithm (Component-based)
- 4 Augmentation
- **Theorem**: CREP is $O(k \log k)$ competitive.

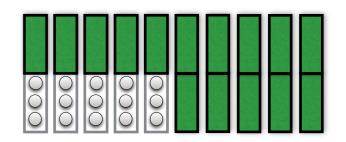




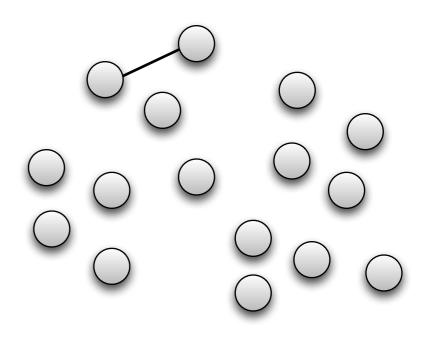


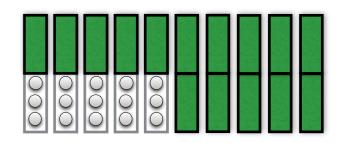
• Communication components



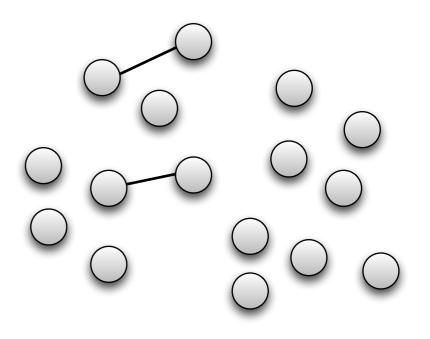


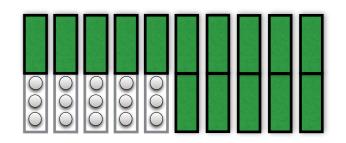
• Communication components



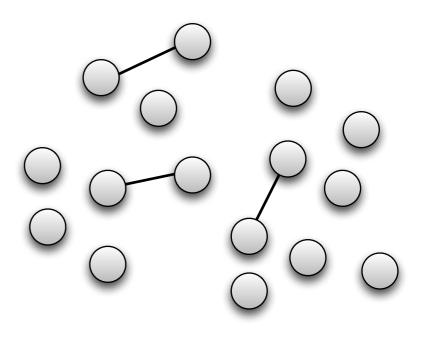


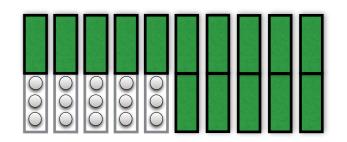
• Communication components



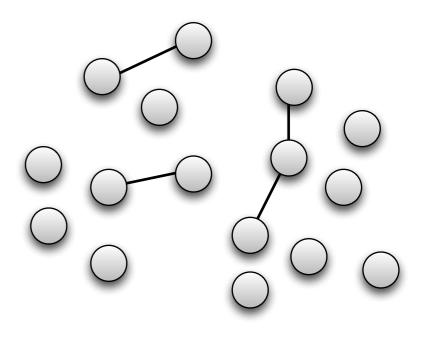


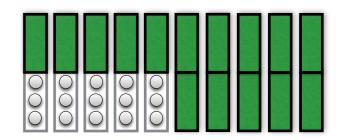
• Communication components



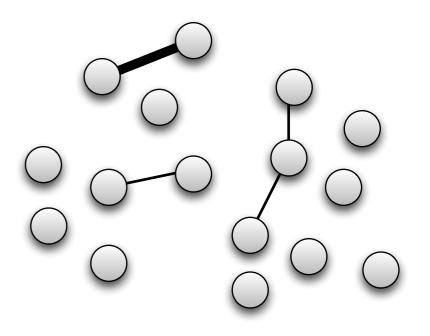


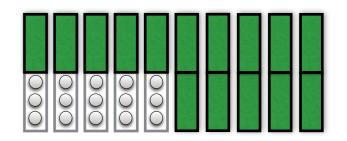
• Communication components



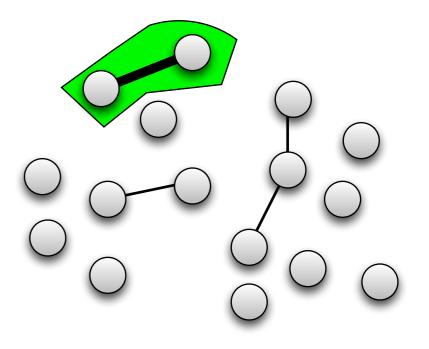


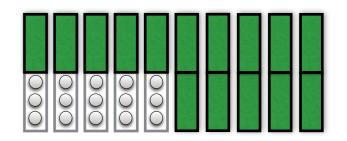
• Communication components



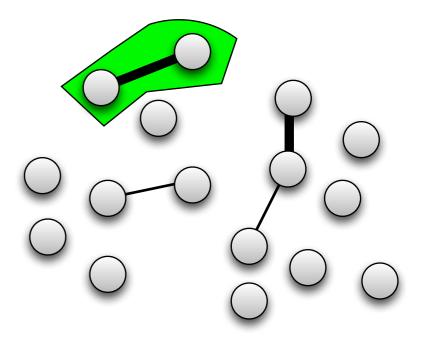


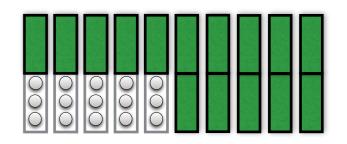
• Communication components



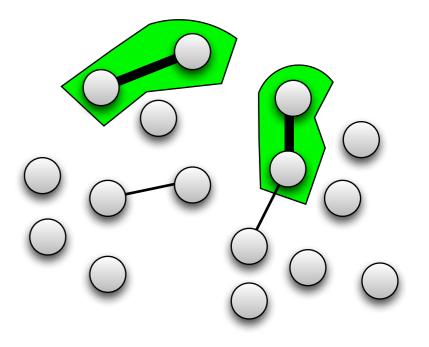


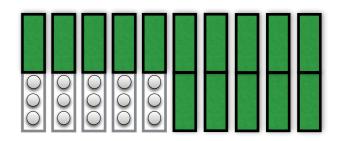
• Communication components



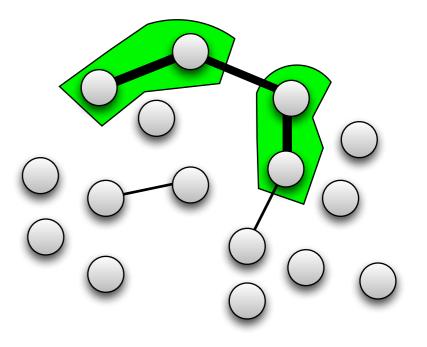


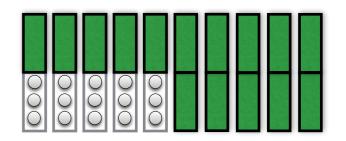
• Communication components



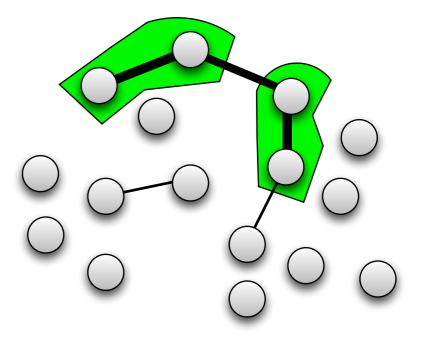


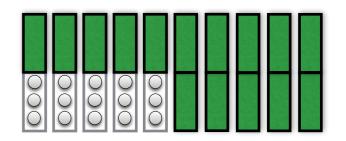
• Communication components



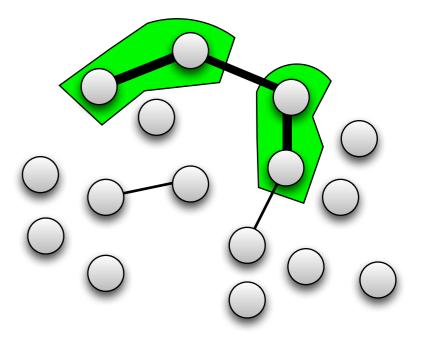


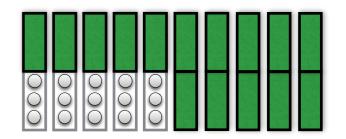
- Communication components
- Merge while you can



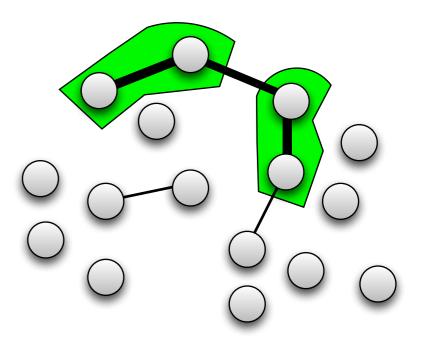


- Communication components
- Merge while you can
- Small-to-large component

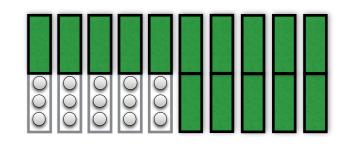




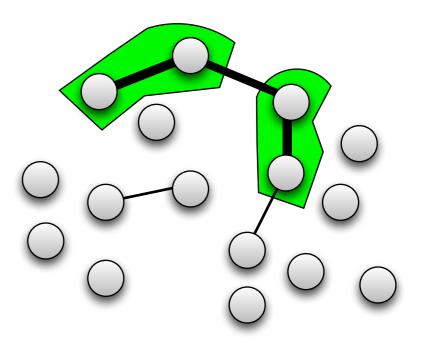
- Communication components
- Merge while you can
- Small-to-large component
- Only move once to a "new" cluster

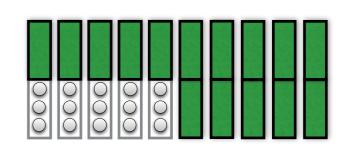


"new"



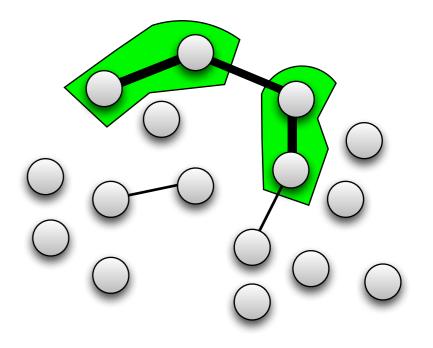
- Communication components
- Merge while you can
- Small-to-large component
- Only move once to a "new" cluster
- Component larger than k we can safely charge OFF

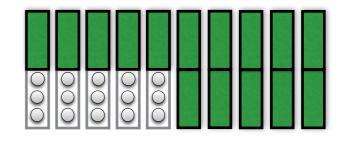




"new"

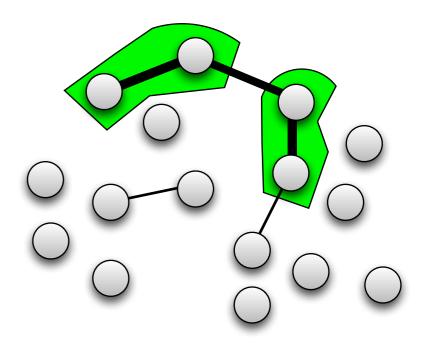
- Communication components
- Merge while you can
- Small-to-large component
- Only move once to a "new" cluster
- Component larger than k we can safely charge OFF
- Epoch ends.... split cluster to singletons

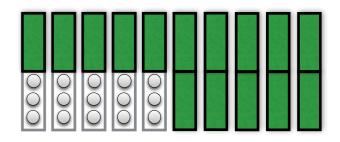




"new"

- Communication components
- Merge while you can
- Small-to-large component
- Only move once to a "new" cluster
- Component larger than k we can safely charge OFF
- Epoch ends.... split cluster to singletons
- Need to be careful on the condition to merge





"new"

Algorithm 1 CREP with 4 Augmentation

1: (Construct graph $G = (\Psi, E, w)$ with singleton components: one component per node. Set $w_{ij} = 0$ for
	all $\{v_i, v_j\} \in {V \choose 2}$. For each component ϕ_i , reserve space reserve $(\phi_i) = 1$.
2: for each new request $\{u_t, v_t\}$ do	
	\triangleright Keep track of communication cost.
3:	Let $\phi_i = \Phi(u_t)$ and $\phi_j = \Phi(v_t)$ be the two components that communicated.
4:	$\mathbf{if} \ \phi_i \neq \phi_j \ \mathbf{then}$
5:	$w_{ij} \leftarrow w_{ij} + 1$
6:	end if
	\triangleright Merge components.
7:	Let X be the largest cardinality set with $vol(X) \leq k$ and $com(X) \geq (X - 1) \cdot \alpha$
8:	if $ X > 1$ then
9:	Let $\phi_0 = \bigcup_{\phi_i \in X} \phi_i$ and for all $\phi_j \in \Phi \setminus X$ set $w_{0j} = \sum_{\phi_i \in X} w_{ij}$.
10:	Let $\phi \in X$ be the component having the largest reserved space.
11:	if reserved $(\phi) \ge \operatorname{vol}(X) - \phi $ then
12:	Migrate ϕ_0 to the cluster hosting ϕ
13:	Update reserved (ϕ_0) = reserved $(\phi) - (\operatorname{vol}(X) - \phi)$
14:	else
15:	Migrate ϕ_0 to a cluster s with spare $(s) \ge \min(k, 2 \phi_0)$
16:	Set reserved $(\phi_0) = \min(k - \phi_0 , \phi_0)$
17:	end if
18:	end if
	\triangleright End of a Y-epoch.
19:	Let Y be the smallest components set with $vol(Y) > k$ and $com(Y) \ge vol(Y) \cdot \alpha$
20:	$\mathbf{if} \ Y \neq \emptyset \ \mathbf{then}$

21: Split every $\phi_i \in Y$ into ϕ_i singleton components and reset the weights of all edges involving at least one newly created component. Reserve one additional space for each newly created component. If necessary, migrate at most $\operatorname{vol}(Y)/2 + 1$ singletons to clusters with spare space.

22: end if

23: end for

Algorithm 1 CREP with 4 Augmentation

1: Construct graph $G = (\Psi, E, w)$ with singleton components: one component per node. Set $w_{ij} = 0$ for all $\{v_i, v_j\} \in {V \choose 2}$. For each component ϕ_i , reserve space reserve $(\phi_i) = 1$.	
2: for each new request $\{u_t, v_t\}$ do	
3: Let $\phi_i = \Phi(u_t)$ and $\phi_j = \Phi(v_t)$ be the two components that communicated.	
4: If $\phi_i \neq \phi_j$ then	
5: $w_{ij} \leftarrow w_{ij} + 1$	
$\begin{array}{ccc} 6: & \omega_{ij} & \omega_{ij} + 1 \\ 6: & \text{end if} \end{array}$	
b. Merge components.	
7: Let X be the largest cardinality set with $vol(X) \le k$ and $m(X \ge (X - 1) \cdot \alpha$	
8: if $ X > 1$ then	
9: Let $\phi_0 = \bigcup_{\phi_i \in X} \phi_i$ and for all $\phi_j \in \Phi \setminus X$ set $w_{0j} = \sum_{\phi_i \in X} w_{ij}$	
10: Let $\phi \in X$ be the component having transferred space.	
11: if reserved $(\phi) \ge \operatorname{vol}(X) - \phi$ then	
12: Migrate ϕ_0 to the cluster hosting ϕ	
13: Update reserved $(\phi_0) = \operatorname{reserve}(\phi - (\operatorname{vol}(X) - \phi))$	
14: else	
15: Migrate ϕ_0 to a closer with spare $(s) \ge \min(k, 2 \phi_0)$	
16: Set reserved (ϕ_0) - mi $(k - \phi_0), \phi_0 $	
17: end if	
18: epc if \checkmark	
\triangleright End of a Y-epoch.	
19: Let Y be the mallest components set with $vol(Y) > k$ and $com(Y) \ge vol(Y) \cdot \alpha$	
20: if $V \neq 1$ hen	
21: Split every $\phi_i \in Y$ into ϕ_i singleton components and reset the weights of all edges involving at	
least one newly created component. Reserve one additional space for each newly created component.	
If necessary, migrate at most $vol(Y)/2 + 1$ singletons to clusters with spare space.	
22: end if	
23: end for	

Open questions

- Randomize algorithms (lower and upper bounds)
 - Some initial results
- A better network model than one-switch network
- Similar models that fits better in practice (e.g., MapReduce. etc.)
- Open Postdoc position (Beer-Sheva and Berlin) to work on these problems... feel free to talk to me.

Thank you !