
Online Balanced Repartitioning
Chen Avin 

Ben Gurion University of the Negev

Joint work with Andreas Loukas, Maciej Pacut & Stefan Schmid  



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Motivation



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

Motivation



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

• Online graph re-partitioning

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

• Online graph re-partitioning

• Edges are updated  

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

• Online graph re-partitioning

• Edges are updated  

• Clustering is updated

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Graph partitioning problems 

•   clusters, each of size   

• Online graph re-partitioning

• Edges are updated  

• Clustering is updated

• At a cost 

Motivation

` k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Motivation



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Motivation
• Practical motivation 

• Data centres 

• Reduce network traffic



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Motivation
• Practical motivation 

• Data centres 

• Reduce network traffic

• Clusters as servers (static)

• Nodes as VMs (can move)

•               .  k

`

k << `



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Motivation
• Practical motivation 

• Data centres 

• Reduce network traffic

• Clusters as servers (static)

• Nodes as VMs (can move)

•               .  

• Traffic-Aware Networking

k

`

k << `



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Overview
• Motivation 

• Model and Problem definition 

• Examples  

• Some results  

• Future work and open questions



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model

k

`



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

k

`



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

k

`

C = {C1, . . . , C`} k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

• (online) pairwise communication requests 

k

`

C = {C1, . . . , C`} k

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

• (online) pairwise communication requests 

• Serving costs for                   :

k

`

C = {C1, . . . , C`} k

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .

�t = {u, v}



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

• (online) pairwise communication requests 

• Serving costs for                   :
• intra-cluster: 0

k

`

C = {C1, . . . , C`} k

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .

�t = {u, v}



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

• (online) pairwise communication requests 

• Serving costs for                   :
• intra-cluster: 0
• inter-cluster: 1 k

`

C = {C1, . . . , C`} k

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .

�t = {u, v}



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Model
• Balanced RePartitioning (BRP) 

• Clusters                              each of size 

• (online) pairwise communication requests 

• Serving costs for                   :
• intra-cluster: 0
• inter-cluster: 1
• migration: 𝛼

k

`

C = {C1, . . . , C`} k

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .

�t = {u, v}



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Problem Defintion



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• The Cost of ALG  
 
 

Problem Defintion

ALG(�) =

|�|X

t=1

mig(�t;ALG) + com(�t;ALG)

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• The Cost of ALG  
 
 

Problem Defintion

ALG(�) =

|�|X

t=1

mig(�t;ALG) + com(�t;ALG)

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• The Cost of ALG  
 
 

Problem Defintion

ALG(�) =

|�|X

t=1

mig(�t;ALG) + com(�t;ALG)

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• The Cost of ALG  
 
 

• What is the competitive ratio 
 
 

Problem Defintion

ALG(�) =

|�|X

t=1

mig(�t;ALG) + com(�t;ALG)

⇢(On) = max

�

On(�)

Off(�)

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• The Cost of ALG  
 
 

• What is the competitive ratio 
 
 

• w/o Augmentation 

Problem Defintion

ALG(�) =

|�|X

t=1

mig(�t;ALG) + com(�t;ALG)

⇢(On) = max

�

On(�)

Off(�)

� = {u1, v1}, {u2, v2}, {u3, v3}, . . .



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example I:                                                                                                   ` = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example I:                                                                                                   
• The static variant corresponds to the minimum 

bisection problem - hard, but approx

` = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example I:                                                                                                   
• The static variant corresponds to the minimum 

bisection problem - hard, but approx

• The dynamic case is  
a generalization of online paging

` = 2

cache disk



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example I:                                                                                                   
• The static variant corresponds to the minimum 

bisection problem - hard, but approx

• The dynamic case is  
a generalization of online paging

• Imply     lower bound (deterministic)

` = 2

cache disk

k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example I:                                                                                                   
• The static variant corresponds to the minimum 

bisection problem - hard, but approx

• The dynamic case is  
a generalization of online paging

• Imply     lower bound (deterministic)

• With augmentation it’s different….

` = 2

cache disk

k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example II:                                                                                                   k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example II:                                                                                                   
• The iid variant corresponds to the maximum 

matching problem (minimum cut)

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example II:                                                                                                   
• The iid variant corresponds to the maximum 

matching problem (minimum cut)

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Example II:                                                                                                   
• The iid variant corresponds to the maximum 

matching problem (minimum cut)

• A novel online version  
 of maximum matching

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Algo Guidelines 

• Serve remotely or migrate (``rent or buy’')? 

• Where to migrate, and what? 

• Which nodes to evict?



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Related work
• Similar in spirit to many classical on-line problems: 

• ski rental, page and server migration, k-server, caching, bin packing  

• However, does not fit to the online metrical task system scenario  
• both ends of the communication requests can move 

• every request only reveals partial and and limited information about 
the optimal configuration 

• large space 

• Caching models with bypassing 



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

 Results overview
• Bounds for deterministic algorithms  

• k=2 - constant competitive bound   

• Lower bound (with augmentation) -  

• Upper bound (with augmentation) - O(k log k)

⌦(k)



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

• When outside traffic > 3𝛼

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

• When outside traffic > 3𝛼

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

• When outside traffic > 3𝛼

• Identify and migrate to best cluster

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

• When outside traffic > 3𝛼

• Identify and migrate to best cluster

• An upper bound of 7𝛼

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• We show a lower bound of 3-competitive

• No eviction problem 😀

• A greedy algorithm:

• When outside traffic > 3𝛼

• Identify and migrate to best cluster

• An upper bound of 7𝛼

• no augmentation

k = 2



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

• A simple cycle like request sequence 

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

• A simple cycle like request sequence 

• Always an inter-cluster edge to ask

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

• A simple cycle like request sequence 

• Always an inter-cluster edge to ask

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

• A simple cycle like request sequence 

• Always an inter-cluster edge to ask

Lower Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Any non trivial augmentation (all fit in one)

• A simple cycle like request sequence 

• Always an inter-cluster edge to ask

• Leads to a lower bound > 

Lower Bound

k



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Upper Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• C-REP algorithm (Component-based)

Upper Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• C-REP algorithm (Component-based)

• 4 Augmentation

Upper Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• C-REP algorithm (Component-based)

• 4 Augmentation

Upper Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• C-REP algorithm (Component-based)

• 4 Augmentation

Upper Bound



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• C-REP algorithm (Component-based)

• 4 Augmentation

• Theorem: CREP is                  competitive. 

Upper Bound

O(k log k)



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

• Small-to-large component 

Component based



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

• Small-to-large component 

• Only move once to a “new” cluster

Component based

“new”



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

• Small-to-large component 

• Only move once to a “new” cluster

• Component larger than k we can safely charge OFF

Component based

“new”



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

• Small-to-large component 

• Only move once to a “new” cluster

• Component larger than k we can safely charge OFF

• Epoch ends…. split cluster to singletons

Component based

“new”



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

• Communication components 

• Merge while you can  

• Small-to-large component 

• Only move once to a “new” cluster

• Component larger than k we can safely charge OFF

• Epoch ends…. split cluster to singletons

• Need to be careful on the condition to merge

Component based

“new”



6 Avin, Loukas, Pacut, Schmid

Algorithm 1 CREP with 4 Augmentation
1: Construct graph G = ( , E, w) with singleton components: one component per node. Set wij = 0 for

all {vi, vj} 2
�
V
2

�
. For each component �i, reserve space reserve(�i) = 1.

2: for each new request {ut, vt} do

. Keep track of communication cost.
3: Let �i = �(ut) and �j = �(vt) be the two components that communicated.
4: if �i 6= �j then

5: wij  wij + 1
6: end if

. Merge components.
7: Let X be the largest cardinality set with vol(X)  k and com(X) � (|X|� 1) · ↵
8: if |X| > 1 then

9: Let �0 =
S

�i2X �i and for all �j 2 �\X set w0j =
P

�i2X wij .
10: Let � 2 X be the component having the largest reserved space.
11: if reserved(�) � vol(X)� |�| then
12: Migrate �0 to the cluster hosting �
13: Update reserved(�0) = reserved(�)� (vol(X)� |�|)
14: else

15: Migrate �0 to a cluster s with spare(s) � min(k, 2|�0|)
16: Set reserved(�0) = min(k � |�0|, |�0|)
17: end if

18: end if

. End of a Y -epoch.
19: Let Y be the smallest components set with vol(Y ) > k and com(Y ) � vol(Y ) · ↵
20: if Y 6= ; then
21: Split every �i 2 Y into �i singleton components and reset the weights of all edges involving at

least one newly created component. Reserve one additional space for each newly created component.
If necessary, migrate at most vol(Y )/2 + 1 singletons to clusters with spare space.

22: end if

23: end for

possible to find a cluster where the to-be-merged components fit. We then derive an upper bound
on CREP’s cost per component epoch and a lower bound on the optimal o✏ine cost per component
epoch. Finally, in the Appendix, we show that the competitive ratio is also bounded with respect
to incomplete epochs.

We start by observing that there always exists a cluster which can host the entire merged
component, including the required reserved space without any evacuation, i.e., its spare space is
at least k.

Property 1. At any point in time, a cluster exists having at least k spare space.

So indeed, CREP can always place a merged component greedily into clusters—no global
component rearrangement is necessary. On the other hand, augmenting the cluster size allows
CREP to reserve additional space for migrated components. As we show in the following, this
ensures that each node is migrated at most log k times (rather than k) during the formation of a
component.

Upper bound on CREP’s costs. The online algorithm’s cost during each epoch consists of the
communication cost, which amounts to the number of communication requests that were served
remotely, and the migration cost, which is equal to the number of node migrations. The following
properties provide upper bounds for both kinds of costs for a single component:

Property 2. At any point in time, consider a component c induced by the communication pattern
in this epoch, then:

1. The communication cost between nodes in � is, in this epoch, at most (|�|� 1) · ↵.
2. The migration cost of nodes in � is, in this epoch, at most (|�| log |�|) · ↵.

Proof (Proof of Property 2). The two properties are proved in turn.

Property 2.1. We prove this property by induction on the merging sequence, i. e., the sequence of
merges that includes all the nodes in � from the time when they were singletons, ordered by time.
To establish the base case, consider the first merge of nodes in �, where X was a set of singletons
(Line 7) and |X| singleton components were combined into a new component �

0

= [�i2X�i. By



6 Avin, Loukas, Pacut, Schmid

Algorithm 1 CREP with 4 Augmentation
1: Construct graph G = ( , E, w) with singleton components: one component per node. Set wij = 0 for

all {vi, vj} 2
�
V
2

�
. For each component �i, reserve space reserve(�i) = 1.

2: for each new request {ut, vt} do

. Keep track of communication cost.
3: Let �i = �(ut) and �j = �(vt) be the two components that communicated.
4: if �i 6= �j then

5: wij  wij + 1
6: end if

. Merge components.
7: Let X be the largest cardinality set with vol(X)  k and com(X) � (|X|� 1) · ↵
8: if |X| > 1 then

9: Let �0 =
S

�i2X �i and for all �j 2 �\X set w0j =
P

�i2X wij .
10: Let � 2 X be the component having the largest reserved space.
11: if reserved(�) � vol(X)� |�| then
12: Migrate �0 to the cluster hosting �
13: Update reserved(�0) = reserved(�)� (vol(X)� |�|)
14: else

15: Migrate �0 to a cluster s with spare(s) � min(k, 2|�0|)
16: Set reserved(�0) = min(k � |�0|, |�0|)
17: end if

18: end if

. End of a Y -epoch.
19: Let Y be the smallest components set with vol(Y ) > k and com(Y ) � vol(Y ) · ↵
20: if Y 6= ; then
21: Split every �i 2 Y into �i singleton components and reset the weights of all edges involving at

least one newly created component. Reserve one additional space for each newly created component.
If necessary, migrate at most vol(Y )/2 + 1 singletons to clusters with spare space.

22: end if

23: end for

possible to find a cluster where the to-be-merged components fit. We then derive an upper bound
on CREP’s cost per component epoch and a lower bound on the optimal o✏ine cost per component
epoch. Finally, in the Appendix, we show that the competitive ratio is also bounded with respect
to incomplete epochs.

We start by observing that there always exists a cluster which can host the entire merged
component, including the required reserved space without any evacuation, i.e., its spare space is
at least k.

Property 1. At any point in time, a cluster exists having at least k spare space.

So indeed, CREP can always place a merged component greedily into clusters—no global
component rearrangement is necessary. On the other hand, augmenting the cluster size allows
CREP to reserve additional space for migrated components. As we show in the following, this
ensures that each node is migrated at most log k times (rather than k) during the formation of a
component.

Upper bound on CREP’s costs. The online algorithm’s cost during each epoch consists of the
communication cost, which amounts to the number of communication requests that were served
remotely, and the migration cost, which is equal to the number of node migrations. The following
properties provide upper bounds for both kinds of costs for a single component:

Property 2. At any point in time, consider a component c induced by the communication pattern
in this epoch, then:

1. The communication cost between nodes in � is, in this epoch, at most (|�|� 1) · ↵.
2. The migration cost of nodes in � is, in this epoch, at most (|�| log |�|) · ↵.

Proof (Proof of Property 2). The two properties are proved in turn.

Property 2.1. We prove this property by induction on the merging sequence, i. e., the sequence of
merges that includes all the nodes in � from the time when they were singletons, ordered by time.
To establish the base case, consider the first merge of nodes in �, where X was a set of singletons
(Line 7) and |X| singleton components were combined into a new component �

0

= [�i2X�i. By

il
le
ga
l
sl
id
e



Online Balanced Repartitioning - DISC 2016, Paris, 29-Sep, 2016

Open questions
• Randomize algorithms (lower and upper bounds) 

• Some initial results 

• A better network model than one-switch network  

• Similar models that fits better in practice (e.g., 
MapReduce. etc.) 

• Open Postdoc position (Beer-Sheva and Berlin) to 
work on these problems… feel free to talk to me. 



Thank you !


