Demand-Aware Network Designs of Bounded Degree
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Motivation

Traditional datacentre networks are static:
— Either over provisioned or under provisioned
— Example. Fat-tree topologies: provide full bisection bandwidth
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Al-Fares et al. “A scalable, commodity data center network architecture,” ACM SIGCOMM Computer Communication Review, 2008



Motivation

* New: Reconfigurable network
— Reconfigurable on demand

— Example: ProjecTor
M. Ghobadi et al. Projector: Agile reconfigurable data center interconnect. In Proc. ACM SIGCOMM, 2016
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Motivation

* Instead of optimizing worst-case performance, design better
networks with more information on communication patterns.
— Example: Huffman coding.
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The Problem

?: distribution matrix ~ N: Demand aware network (DAN)
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Expected Path Length: EPL(#,N) = z p(u,v) - dy(u,v)
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Bounded Network Design (BND)

* Inputs: Communication distribution 2|p(i,j)],., and a

maximum degree A.

nxn

* Output: A Demand Aware Network N € N, s.t.

BND(?, A) = min EPL(?,N
(9,8 = iy EPLON)



Related Problems: Embedding

Embedding problem (guest graph-host graph)

— A =2: Minimum linear arrangement problem
— A>2 : Type of host graph is not fixed beforehand

* Flexible! Easier or harder?
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Related Problems: Spanners

Unbounded degree

* Spanners
— Maintains local distortion

— Presence of auxiliary edges
like geometric spanner

— Bounded degree

* Relation between spanner,
entropy and BND!




Related Problems: Coding

* Entropy and information theory

— EPL(BST): bounded by entropy of destination frequencies p
EPL(p,T)= B(H(X)) 2

Kurt Mehlhorn. Nearly optimal binary search trees. Acta Inf., 1975.

— Entropy: H(X)= X, p(xplog,(1/p(xi))

* Coding theory

— Huffman coding: Optimize expected code length
which is equivalent to optimizing EPL in a BST.




Remainder of the talk

Lower bounds

Bounded degree network designs
— Tree distributions
— Sparse distributions

— Uniform and regular distributions
* Locally doubling dimension distributions

Contributions
Future work



Lower bound

* Theorem: Let X, Y are distributed as marginal distribution of the
sources and destinations in ¥ respectively. Then

BND(%, A) = Q(H,(Y|X) + H,(X[Y))
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Lower bound

Proof idea (EPL=Q(H,(Y|X))):

Build optimal A-ary tree for
each source 1.
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Lower bound

* Helping Lemma: Let T', be an optimal A—ary tree built for the
normalized distribution of i’th row ?[i]| of ¥. Then

EPL(7[i], Tiy) = Q(H, ((Y |X=i)))




Lower bound

* Considering union of n trees,

EPL(%,N,) 2zn p(i) EPL(7[i], Tiy)
1=1

> Yiz1 p() (Hy(Y [X=1))

= Q(HA(Y [X))



Lower bound

e Similarly, for incoming communications

EPL(ON,) = Q(H,(X|Y))

* Hence, BND(?, A) = Q(H,(Y|X) + Hy,(X]|Y))



Remainder of the talk

* Bounded degree network designs
— Tree distributions
— Sparse distributions

— Uniform and regular distributions
* Locally doubling dimension distributions

e Contributions
* Future work



Tree distributions

* Theorem: Let ¥ be such that G,is a tree (ignoring the edge
direction). It is possible to generate a DAN N with maximum
degree 8, such that,

EPL(O,N) < O(H(Y|X)+H(X|Y))

AN —



Tree distributions

 Proofidea:

N
)

of each node in a binary tree. 7 3

:

— Repeat it for the incoming
edges.

— Parent-child relationship
implied by arbitrary root. ’
1 .
— Arrange the outgoing children y (}&/
-
.2\

— Degree as parent: at most 2
— Degree as child: at most 6



Tree distributions
+ EPL(O,N) < 1L, p(i) EPL(C,B) + XL, q(i) EPL(E; B)
< ¥ p()HD) + ¥, q() H(D))
= H(Y|X)+H(X|Y)

. D_; : normalized destination distributions of v, (i'th row)

* Helping Lemma: Let p be the destination distributions for a source node
then it is possible to find a A-ary tree T, s.t.,

EPL(p,T) < O(H, (P))



Sparse distributions

e Real datacentre's traffic shows
evidence that the demand
distributions are indeed sparse.

* Theorem: G is a sparse graph with average degree Apvg | then
it is possible to find a DAN N with maximum degree 124,
such that

EPL(O,N) < O(H(Y|X)+H(X|Y))



Sparse distributions

Find low degree nodes.

Mark low-low edges. é . _21

High degree nodes with . %

all low degree neighbors. Joe—=el0

Make binary tree of them. i

Low degree node 15 i, B

between high-high edge. /|‘\2 1 /\ AN
1 - 7 | o

High nodes have only low 3 |4 5@ '@ 3

neighbours. Make tree.



Sparse distributions

* Proof: Node degree<12 A,

— n/2 low degree nodes with degree bounded by ZAan.
* Each low degree node in 2A,,, trees so degree at most 64,,, in N.

— Each low degree node helps at most A, edges

* sopresentinanother 2 A,,, trees and hence degree increases by another 6A,,,



Sparse distributions

e Create new matrix 7/

- EPL(Z[i], B)) <O(H(Y|X=i)) and
EPL(7'[j], B) <O(H(X|Y=)))

* Remaining analysis is almost similar to tree distribution.



Regular and uniform distributions

 Regular graph can be dense
— Example: Hypercube

* Theorem: Zis uniform, regular and possibly dense. If G, has a
constant sparse (graph) spanner, then 3 DAN N such that,

EPL(#,N) < O(H(Y[X)+H(X|Y))



Regular and uniform distributions

* Proof: Maximum degree of spanner S isr, if Zis r-regular.
EPL(ON) = Z(u’v)e o p(u, v)dy(u,v)
< Z(u’v)e o P(u,v)ds(u,v) 2logr
= EPL(%,S) -2 -logr = 0(logr) = O(H(Y |X))

* Lemma: If S has average degree A,,, and maximum degree
A then 3 S” with maximum degree 84, such that

d.(uv) <2logA, ., d.(uv)

max ’



Regular and uniform distributions

 Corollary. 7# constant and regular communication
distribution. Possible to generate DAN N ff,

— If G _jis a hypercube with nlog n edges

* has sparse 3-spanner

— If G_is a (possibly dense) chordal graph

* has constant sparse spanner



Regular and uniform distributions

* A special case: Possible to generate DAN N, if G jhas
minimum degree A> n1/¢, for any constant c.

— Create a A-ary tree with the nodes of G jand call it N
— Distortion logy,n on N

— EPL(ON) = Z(u’v)e o Py, v)dy(u,v)

< Z(u,v)e o P(u,v)dg(u,v) -2log n = O(HA(Y [X))
Since, H,(Y |X) = (1/c) log,n



Locally-bounded doubling dimension

LDD: G, has a Locally-bounded Doubling Dimension (LDD) iff
2-hop neighbours are covered by 1-hop neighbours of finite
nodes.

Formally, B(u, 2) € Ui7‘=1 B(yi, 1)

LDD vs BDD:
— Every BDD is a LDD.

— Dense, unbounded degree,
irregular.




Locally-bounded doubling dimension

 Lemma: There exists a sparse 9-spanner for LDD. This is also a
subgraph spanner.

* Def.(e-net): A subset V' of Vis a €-net for a graph G = (V,E) if
— forevery u,veV,d;(u,v)>¢
— foreachw €V, 3 at least one u € V' such that, d;(uw) < ¢



Locally-bounded doubling dimension

Proof idea: Find a 2-net
and add nodes to one of the
closest 2-net nodes.

Join two clusters if there are
edges in between.

Distortion 9

Sparse: Only finite number
of net nodes within 5 hops.




Locally-bounded doubling dimension

* Theorem: It is possible to find a DAN N for an uniform and
regular locally doubly dimension graph such that,

EPL(ZN) < O(H(Y|X)+H(X]Y))
* Proof: Existence of constant sparse spanner.



Contributions

BND is a fundamental problem
Provide a lower bound in terms of entropy

Matching upper bound for sparse distribution, uniform and
regular distributions.

Convert network to low degree network s.t. EPL< O(H(Y[X))



Future work

e More general graphs: regular/maximum degree n'/", for any r.
Do we require alternate flavours of graph entropy?

* Maintaining the bounded degree network dynamically.



Thank You !



