Demand-Aware Network Designs of Bounded Degree

Chen Avin, Kaushik Mondal and Stefan Schmid

AALBORG UNIVERSITET

Ben Gurion University of the Negev

Motivation

- Traditional datacentre networks are static:
 - Either over provisioned or under provisioned
 - Example. Fat-tree topologies: provide full bisection bandwidth

Al-Fares et al. "A scalable, commodity data center network architecture," ACM SIGCOMM Computer Communication Review, 2008

Motivation

- New: Reconfigurable network
 - Reconfigurable on demand
 - Example: ProjecTor

M. Ghobadi et al. Projector: Agile reconfigurable data center interconnect. In Proc. ACM SIGCOMM, 2016

Motivation

- Instead of optimizing *worst-case* performance, design better networks with more information on communication patterns.
 - Example: Huffman coding.

The Problem

 \mathcal{D} : distribution matrix N: Demand aware network (DAN)

Expected Path Length: $EPL(\mathcal{D},N) = \sum_{(u,v)\in \mathcal{D}} p(u,v) \cdot d_N(u,v)$

Bounded Network Design (BND)

Inputs: Communication distribution D[p(i,j)]_{nxn} and a maximum degree Δ.

• **Output**: A Demand Aware Network $N \in N_{\Delta}$ s.t.

$$BND(\mathcal{D}, \Delta) = \min_{\mathbf{N} \in \mathcal{N}_{\Delta}} EPL(\mathcal{D}, \mathbf{N})$$

Related Problems: Embedding

- Embedding problem (guest graph-host graph)
 - $\Delta = 2$: Minimum linear arrangement problem
 - $-\Delta > 2$: Type of host graph is not fixed beforehand
 - Flexible! Easier or harder?

Related Problems: Spanners

- Spanners
 - Maintains local distortion
 - Presence of auxiliary edges like geometric spanner
 - Bounded degree

 Relation between spanner, entropy and BND!

Related Problems: Coding

- Entropy and information theory
 - EPL(BST): bounded by entropy of destination frequencies \overline{p} EPL(\overline{p} ,T)= $\theta(H(X))$

Kurt Mehlhorn. Nearly optimal binary search trees. Acta Inf., 1975.

- Entropy: $H(X) = \sum_{i=1}^{n} p(x_i) \log_2(1/p(x_i))$
- Coding theory
 - Huffman coding: Optimize expected code length which is equivalent to optimizing EPL in a BST.

Remainder of the talk

- Motivation
- The problem
- Related problems
- Lower bounds
- Bounded degree network designs
 - Tree distributions
 - Sparse distributions
 - Uniform and regular distributions
 - Locally doubling dimension distributions
- Contributions
- Future work

• **Theorem:** Let X, Y are distributed as marginal distribution of the sources and destinations in \mathcal{D} respectively. Then

 $BND(\mathcal{D}, \Delta) \geq \Omega(H_{\Delta}(Y|X) + H_{\Delta}(X|Y))$

• $H(X|Y) = \sum_{i=1}^{n} p(x_i, y_j) \log_2(1/p(x_i|y_j))$

- **Proof idea** (EPL= $\Omega(H_{\Delta}(Y|X))$):
- Build optimal Δ-ary tree for each source i.
- Consider union of all trees.
- Violates degree restriction but valid lower bound.

Helping Lemma: Let Tⁱ_Δ be an optimal Δ−ary tree built for the normalized distribution of i'th row D[i] of D. Then
 EPL(D[i], Tⁱ_Δ) ≥ Ω(H_Δ((Y |X=i)))

• Considering union of n trees,

$$EPL(\mathcal{D}, N_{\Delta}) \geq \sum_{i=1}^{n} p(i) EPL(\mathcal{D}[i], Ti_{\Delta})$$

 $\geq \sum_{i=1}^{n} p(i) (H_{\Delta}(Y | X=i))$

 $= \Omega(H_{\Delta}(Y | X))$

- Similarly, for incoming communications $EPL(\mathcal{D}, N_{\Delta}) \ge \Omega(H_{\Delta}(X | Y))$
- Hence, $BND(\mathcal{D}, \Delta) \ge \Omega(H_{\Delta}(Y|X) + H_{\Delta}(X|Y))$

Remainder of the talk

- Motivation
- The problem
- Related problems
- Lower bounds
- Bounded degree network designs
 - Tree distributions
 - Sparse distributions
 - Uniform and regular distributions
 - Locally doubling dimension distributions
- Contributions
- Future work

Tree distributions

• **Theorem:** Let \mathcal{D} be such that $G_{\mathcal{D}}$ is a tree (ignoring the edge direction). It is possible to generate a DAN N with maximum degree 8, such that,

Tree distributions

- Proof idea:
 - Parent-child relationship implied by arbitrary root.
 - Arrange the outgoing children of each node in a binary tree.
 - Repeat it for the incoming edges.
 - Degree as parent: at most 2
 - Degree as child: at most 6

Tree distributions

• $EPL(\mathcal{D},N) \leq \sum_{i=1}^{n} p(i) EPL(\overrightarrow{c_i},\overrightarrow{B_i}) + \sum_{i=1}^{n} q(i) EPL(\overleftarrow{c_i},\overleftarrow{B_i})$

 $\leq \sum_{i=1}^{n} p(i) \operatorname{H}(\overrightarrow{D_{i}}) + \sum_{i=1}^{n} q(i) \operatorname{H}(\overleftarrow{D_{i}})$

= H(Y|X) + H(X|Y)

- $\overrightarrow{D_i}$: normalized destination distributions of v_i (i'th row)
- Helping Lemma: Let \overline{p} be the destination distributions for a source node then it is possible to find a Δ -ary tree T, s.t.,

 $\operatorname{EPL}(\overline{p},T) \leq O(H_{\Delta}(\overline{p}))$

 Real datacentre's traffic shows evidence that the demand distributions are indeed sparse.

• **Theorem:** $G_{\mathscr{D}}$ is a sparse graph with average degree Δ_{avg} , then it is possible to find a DAN N with maximum degree $12\Delta_{avg}$, such that

 $EPL(\mathcal{D}, N) \le O(H(Y|X) + H(X|Y))$

- Find low degree nodes.
- Mark low-low edges.
- High degree nodes with all low degree neighbors.
- Make binary tree of them.
- Low degree node between high-high edge.
- High nodes have only low neighbours. Make tree.

- **Proof:** Node degree<12 Δ_{avg}
 - n/2 low degree nodes with degree bounded by $2\Delta_{avg}$.
 - Each low degree node in $2\Delta_{avg}$ trees so degree at most $6\Delta_{avg}$ in N.

- Each low degree node helps at most Δ_{avg} edges
 - so present in another 2 Δ_{avg} trees and hence degree increases by another $6\Delta_{avg}$

• Create new matrix \mathcal{D}'

- $EPL(\overrightarrow{\mathcal{D}'[i]}, \overrightarrow{B_i}) \leq O(H(Y|X=i))$ and $EPL(\overleftarrow{\mathcal{D}'[j]}, \overleftarrow{B_j}) \leq O(H(X|Y=j))$
- Remaining analysis is almost similar to tree distribution.

- Regular graph can be dense
 - Example: Hypercube

Theorem: D is uniform, regular and possibly dense. If G_D has a constant sparse (graph) spanner, then ∃ DAN N such that,
 EPL(D,N) ≤ O(H(Y|X)+H(X|Y))

- **Proof:** Maximum degree of spanner S is r, if \mathscr{D} is r-regular. $EPL(\mathscr{D},N) = \sum_{(u,v)\in \mathscr{D}} p(u,v)d_N(u,v)$ $\leq \sum_{(u,v)\in \mathscr{D}} p(u,v)d_S(u,v) 2 \log r$ $= EPL(\mathscr{D},S) \cdot 2 \cdot \log r = O(\log r) = O(H(Y | X))$
- Lemma: If S has average degree Δ_{avg} and maximum degree Δ_{max} , then \exists S' with maximum degree $8\Delta_{avg}$ such that $d_{s'}(u,v) \leq 2 \log \Delta_{max} d_s(u,v)$

- Corollary. 2: constant and regular communication distribution. Possible to generate DAN N if,
 - If $G_{\ensuremath{\mathcal{D}}}$ is a hypercube with $nlog\,n$ edges
 - has sparse 3-spanner

- If $G_{\mathscr{D}}$ is a (possibly dense) chordal graph
 - has constant sparse spanner

• A special case: Possible to generate DAN N, if $G_{\mathcal{D}}$ has minimum degree $\Delta \ge n^{1/c}$, for any constant c.

- Create a $\Delta\text{-ary}$ tree with the nodes of $G_{\mathscr{D}}\text{and}$ call it N
- Distortion $log_{\Delta}n$ on N

$$- EPL(\mathcal{D}, N) = \sum_{(u,v)\in \mathcal{D}} p(u,v)d_N(u,v)$$

$$\leq \sum_{(u,v)\in \mathcal{D}} p(u,v)d_G(u,v) \cdot 2\log n = O(H_{\Delta}(Y | X))$$

Since, $H_{\Delta}(Y | X) \ge (1/c) \log_{\Delta} n$

- LDD: $G_{\mathcal{D}}$ has a Locally-bounded Doubling Dimension (LDD) iff 2-hop neighbours are covered by 1-hop neighbours of finite nodes.
- Formally, $B(u, 2) \subseteq \bigcup_{i=1}^{\lambda} B(y_i, 1)$
- LDD vs BDD:
 - Every BDD is a LDD.
 - Dense, unbounded degree, irregular.

• Lemma: There exists a sparse 9-spanner for LDD. This is also a subgraph spanner.

- **Def.(\epsilon-net)**: A subset V' of V is a ϵ -net for a graph G = (V, E) if
 - for every $u, v \in V'$, $d_G(u, v) > \varepsilon$
 - − for each $w \in V$, ∃ at least one $u \in V'$ such that, $d_G(u,w) \le ε$

- **Proof idea:** Find a 2-net and add nodes to one of the closest 2-net nodes.
- Join two clusters if there are edges in between.
- Distortion 9
- Sparse: Only finite number of net nodes within 5 hops.

• **Theorem:** It is possible to find a DAN N for an uniform and regular locally doubly dimension graph such that,

 $EPL(\mathcal{D}, N) \le O(H(Y|X) + H(X|Y))$

• **Proof:** Existence of constant sparse spanner.

Contributions

• BND is a fundamental problem

• Provide a lower bound in terms of entropy

• Matching upper bound for sparse distribution, uniform and regular distributions.

• Convert network to low degree network s.t. $EPL \le O(H(Y|X))$

Future work

• More general graphs: regular/maximum degree $n^{1/r}$, for any r.

• Do we require alternate flavours of graph entropy?

• Maintaining the bounded degree network dynamically.

Thank You !