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Wired networks!
• Innovations on all layers
• Different from what you may think

Wired networks?
• “Cosy living room”: well-

understood and just works

• Passed test of time

• Should and cannot be changed
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Wired networks?
• Well-understood, passed the test of time
• Should and cannot be changed

Wired networks!
• Place where fantastic innovations are 

happening ☺ On all layers.
• For performance and dependability
• Still: specific and interesting contraints

due to simple but fast hardware
• DISC bonus (compared to wireless): 

simple and discrete models ☺



Rewinding the clock of the 
Internet  to a decade ago...

Why do networks evolve?
The Internet 50 years ago…



When the Internet was designed...

… for a different purpose and context:
• Goal: connectivity between fixed locations / “super computers”
• For researchers : Simple applications like email and file transfer

Kudos to: Pedro Casas



Now we live in a different era: 
Age of Computation

Datacenters („hyperscale“)

7

Data intensive applications requiring significant processing.



Age of Computation: Evidence
Nvidia: fastest growing company ever

Datacenters („hyperscale“)

Training even across multiple 

datacenters (and powerplants)!

Data intensive applications requiring significant processing.
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Age of Computation: Evidence
Nvidia: fastest growing company ever

Datacenters („hyperscale“)

Energy consumption and probably also 
computation trends will likely stay. 
Kardashev Scale even classifies 
civilizations by their energy use!

Training even across multiple 

datacenters (and powerplants)!

Data intensive applications requiring significant processing.
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Age of Computation: More Evidence
Nobel Prizes in Physics and Chemistry…
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Age of Computation: More Evidence
… and soon also in Economics and Literature?!

7



Actually: Age of Distributed Computation

8

Datacenters („hyperscale“)
Distributed applications…
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Networks are a critical infrastructure of
digital society. Especially to, from, and 
inside datacenter networks!



Actually: Age of Distributed Computation

Datacenters („hyperscale“)

Networks are a critical infrastructure of
digital society. Especially to, from, and 
inside datacenter networks!

Tr
af

fi
c

Time

… require networks!

Distributed applications…
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Challenge and Opportunity: 
Networks become larger and larger

9

• Also here: end of Moore’s Law in 
networking
– Transistor density rates stalling 

▪ Hence: need more equipment, larger 
networks

▪ Opportunity: network itself forms large 
distributed system! With specialized 
but fast hardware.
– E.g., in-network processing to speed up all-

reduce? 
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• A highly decentralized problem! 

• How much packets dropped in Internet today? 

Example Innovation on Transport Layer:
Congestion Control
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• A highly decentralized problem! 

• How much packets dropped in Internet today? 
– Not negligible.

• Because of the way we control congestion!
– A TCP sender cannot directly “see” traffic load in network… 

– … so opportunistically probes: increases sending rate until loss

– So TCP needs packet loss to determine their sending rate

network state?

signal: 
packet loss!

sending 
rate?

Example Innovation on Transport Layer:
Congestion Control

10
How optimal 

is this?



• Well, huge success for decades: additive increase, multiplicative decrease (AIMD)
– No congestion collapse since 1990s

– Same mechanism since 30+ years, while traffic increased by factor 1 billion!
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Loss at link capacity, 
cut in half!

AIMD:

efficiency 
only ~75% 

Example Innovation on Transport Layer:
Congestion Control
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efficiency 
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Example Innovation on Transport Layer:
Congestion Control
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• Well, huge success for decades: additive increase, multiplicative decrease (AIMD)
– No congestion collapse since 1990s

– Same mechanism since 30+ years, while traffic increased by factor 1 billion!

Loss at link capacity, 
cut in half!



• A little bit better: Linux‘ TCP CUBIC
– Idea: increase sending rate faster until „near last packet loss“-rate

time

1/2

se
n
d
in

g
 r
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te

1

used

TCP CUBIC

loss!

Example Innovation on Transport Layer:
Congestion Control
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• Still: performance could be better
– Google’s BBR, QUIC, Netflix, ECN, etc.: additional 

signals about congestion (e.g., latency)

– Also: congestion control in datacenters (e.g., to 
handle ML workloads)

• Opportunity for DISC: Many of these 
protocols have no theoretical underpinnings!
– And indeed, have issues, e.g., regarding fairness

– Often hard to catch issues empirically and or in 
simulations!

sending 
rate?

signal: 
loss, 

latency, 
queue 

length …

Can we do better? Significant efforts right now!
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Theory needed! Example BBR.

• BBR: relatively fast and large deployment

• But with fairness and other issues

• Needed several adjustments and new versions still under development

Literature: Model-Based Insights on the Performance, Fairness, and Stability of BBR. Scherrer et al., ACM IMC 2022.



Example Innovation on Network Layer:
Segment Routing („Valiant Routing“)
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Example Innovation on Network Layer:
Segment Routing („Valiant Routing“)
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Traffic Engineering

s1

s2

v

d

1/
2

1/2

1

1

all link capacities of 1

a single destination

2 sources of traffic 
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How to set link weights to serve this traffic?
Without violating capacities and to minimize load.



Traffic Engineering
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all link capacities of 1
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link weights
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Traditional traffic engineering:

• operator sets link weights

• per-destination routing

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5



Traffic Engineering

s1

s2

v
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1/
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1

1

all link capacities of 1

1

1

1
1

1

shortest path DAG
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Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest-path DAGs

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5



Traffic Engineering
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all link capacities of 1

Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest paths DAGs 

• equal-split

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1
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Traffic Engineering

s1

s2

v

d

1/2

Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest paths DAGs

• equal-split

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1

1

1
1

1

1/2

1/2
1

1
0.75

0.75

0.75

0,75
Good! 
≤ 100% link
utilization

1.5
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Traffic Engineering

s1

s2

v

d

1/2

Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest paths DAGs

• equal-split

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1

1

1
1

1

1/2

1/2
1

1

1.5

1.5

No link-weight assignment can attain
≤ 100% link utilization!

(for both demand matrices, although in principle enough capacity available!)

Not good!
150% link 
utilization!
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What about this?!

s1

s2

v

d
Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest paths DAGs

• equal-split

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1

1

0
1

1

1/2
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What about this?!

s1

s2

v

d
Traditional traffic engineering:

• operator sets link weights

• per-destination routing

• shortest paths DAGs

• equal-split

1

1

0
1

1

1/2

16

Careful: first flow now 
splits twice! Two more 
shortest paths later. 

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.51/2

1/2

1/2
0.75

0.75

0.375

1,125

1.5

1/2
0.375

Not good!
112,5% link 
utilization!



Powerful Extension: Segment Routing
„Valiant Routing for IP Networks“

Shortest path  
segment

• Can define waypoints between source 
and destination
– Like Valiant routing: important technique in 

oblivious routing (but random waypoint)

• Shortest paths on „segments“ 
between waypoints (and source and 
destination)

s2s1

s

w

t

17



Good! All links
≤ 100% utilization

Traffic Engineering with Segment Routing

s1

s2

v

d

1/2

Segment Routing:

• Can push a waypoint w between 

source s2 and destination d

• Then: shortest path from s to w, 

and shortest path from w to d

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1

1

1
1

1

1/2

1/2
1

1

Half of traffic from s2 via waypoint v!

0.75

0.75



Good! All links
≤ 100% utilization

Traffic Engineering with Segment Routing

s1

s2

v

d

1/2

Segment Routing:

• Can push a waypoint w between 

source s2 and destination d

• Then: shortest path from s to w, 

and shortest path from w to d

Only two possible demand matrices:

1. only s1 d = 1.5

2. only s2 d = 1.5
1

1

1
1

1

1/2

1/2
1

1

Half of traffic from s2 via waypoint v!

0.75

0.75

Literature: Traffic Engineering with Joint Link Weight and Segment Optimization. Parham et al., ACM CoNEXT, 2021.



Example: Many more…

• New Ethernet versions
– Automotive Ethernet

– Ethernet for datacenters

– …

• Hollow-fiber: faster speed of light!
– Cost(latency)>>>Cost(bandwidth)

• Optical and reconfigurable networks

19



Roadmap: Two Examples

• Resilient routing

• Datacenter networks



Two Options to React to Link Failures

Routing
Algorithm

data
plane

control
plane
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plane
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without communication.

Two Options to React to Link Failures

Distributed algorithms, e.g., 
re-compute shortest paths
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Routing
Algorithm

data
plane

control
plane

Local ’algorithms’, typically 
without communication.

Slow…

Learn and re-converge!

Two Options to React to Link Failures

Distributed algorithms, e.g., 
re-compute shortest paths
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Fast…
Detect locally and just apply 
conditional failover rules!
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re-compute shortest paths
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Distributed algorithms, e.g., 
re-compute shortest paths
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Pre-installed, depend only 
on local failures, no 

information about failures 
downstream!



Routing
Algorithm

data
plane

control
plane

Local ’algorithms’, typically 
without communication.

Fast…
Detect locally and just apply 
conditional failover rules!

Two Options to React to Link Failures

Distributed algorithms, e.g., 
re-compute shortest paths

21

Pre-installed, depend only 
on local failures, no 

information about failures 
downstream!

Algorithmic challenge: how to pre-install 
rules, so that later routes are connected 
even under multiple failures?



Why is slow bad? Packet drops until restored!

2024-10-29 53Video shot taken from “Lemmings” 
designed and developed by DMA Design

control plane 
restoration



How can a switch/router locally decide 
how to handle an arriving packet?

Credits: Marco Chiesa 23



Nodes Locally Store A
Forwarding Match -> Action Table

Forwarding 
table

match action

Credits: Marco Chiesa 23



Forwarding 
table

match action

Credits: Marco Chiesa

And what information is locally available to 
decide how to handle an arriving packet?

23



Locally Available Information:
The Packet Header (e.g., Source, Destination)

Forwarding 
table

match actionheader

Credits: Marco Chiesa 23



Locally Available Information:
The Inport of the Received Packet

Forwarding 
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 23



Forwarding 
table

match actionheader

Locally Available Information:
Which Incident Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 23

!



Raises an Interesting Question

Can we pre-install local fast failover rules 
which ensure reachability under multiple 

failures? In particular: How many failures can 
be tolerated by static forwarding tables?

24



So: How many failures can be tolerated by 
static forwarding tables?

Credits: Marco Chiesa 25



If we partition the network, 
there is not much to do

Credits: Marco Chiesa 25



If we partition the network, 
there is not much to do

Credits: Marco Chiesa 25

Clearly, topological 
connectivity is necessary. 

But also sufficient?



Definition: Connectivity k of a network 𝑁: the 
minimum number of link deletions that partitions 𝑁

The connectivity of this 
network is four

Credits: Marco Chiesa 25



Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.
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Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

26

Can this be achieved? Assume undirected link failures.



Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Credits: Marco Chiesa 27



Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Can carry global information, 
but often undesirable

Credits: Marco Chiesa 27



Example: Which level of resiliency?

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X

28



Per-destination routing cannot cope
with even one link failure

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X 0

Without matching inport: 
sends back – loop!  s

Pre-computed 
failover path

28



Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X ?

s

Credits: Marco Chiesa 29



Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X Yes

s
k disjoint paths: try
one after the other, 
routing back to 
source each time. 

Credits: Marco Chiesa 29



Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X ?

What about this scenario? 
Practically important. But open 

problem since many years…
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Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X ?

What about this scenario? 
Practically important. But open 

problem since many years…

30

For some special graphs we know: the answer is positive!



Ideal Resilience: Example 2-dim Torus?

31



Ideal Resilience: Example 2-dim Torus?

k=4 connected: 
tolerate 3 failures?

31



• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

31



• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

2nd Hamilton cycle

31
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• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 

2nd HC, if again failure 
reverse direction

• No more failures possible!

31



Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing 

can be constructed!

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017. 



Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing 

can be constructed!

What about graphs which cannot be 
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017. 



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 
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A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 

t

Credits: Marco Chiesa 34



General technique: routing along the same tree

t

Credits: Marco Chiesa 35



When a failed link is hit…

t

Credits: Marco Chiesa 35



… how do we choose the next arborescence?

t

Credits: Marco Chiesa 35



But how do we choose the next arborescence?

Circular-arborescence routing: 

• compute an order of the arborescences

• switch to the next arborescence when hitting a failed link

36



Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

3 4
Intuition: each single 

failure may affect 
two arborescences

t

Credits: Marco Chiesa 37



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 1 
to destination...

37
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 2 to 
destination...
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 3 to 
destination...

3237

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single 
failure may affect 

two arborescences



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 4 to 
destination...

37

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single 
failure may affect 

two arborescences



1 2 3 4

All k=4 arborescences used 
(2 failures disconnected 

affected all four):
LOOP!

t

Credits: Marco Chiesa 37

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single 
failure may affect 

two arborescences



Resilience Criteria

Can this be achieved? Assume undirected link failures.

Ideal resilience

Given a k-connected graphs, we 
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

38



Perfect resilience is impossible to 
achieve in general.

Resilience Criteria

39

Already on simple planar 
graphs, proof by case
distinction (and 
indistinguishability).



Related to several DISC problems but with twist!

• Geometric routing 
– E.g., a left-hand rule can be used in planar graphs

• Local algorithms without communication
– E.g., Balanced Incomplete Block Design (BIBD) can be used 

to minimize congestion!

• Graph exploration and connectivity problems
– E.g., Omer Reingold’s “undirected connectivity in log-space”

40



Many Open Questions…

41

• Big open question: ideal resilience conjecture
– False? DISC experts!

• What if we can rewrite some header bits?
– With log(n) bits it is easy: can remember all failures. What about less?

• What about fast rerouting in Segment Routing networks?

• What about special graph classes? 

• Automated synthesis of tables (e.g., BDDs)
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Literature: 
On the Feasibility of Perfect Resilience with Local Fast Failover. Foerster et al., SIAM APOCS, 2021.
Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion. Bankhamer et al. DISC, 2021.

• Big open question: ideal resilience conjecture
– False? DISC experts!

• What if we can rewrite some header bits?
– With log(n) bits it is easy: can remember all failures. What about less?

• What about fast rerouting in Segment Routing networks?

• What about special graph classes? 

• Automated synthesis of tables (e.g., BDDs)



Local Reroute with Segment Routing?

42

Shortest path  
segment

s2s1

s

w

t

• Recall segment routing: shortest path
routing on segments

• Fast rerouting currently under
standardization at IETF

• Good time to have impact!



How to handle at least 1 failure?
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v
t

• When a node v on route from s to t 
locally detects failure on link e, it can
push a waypoint w.

s

Local link 
failure!
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How to handle at least 1 failure?
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Local link 
failure!

v
t

• When a node v on route from s to t 
locally detects failure on link e, it can
push a waypoint w.

• Rule: v should push a w such that the
shortest path s1 (from v to w) and the
shortest path s2 (from w to t) does not 
include e again! So can route around.

s

w

link e

s1 s2



A Local Solution

44

• We need two definitions: 

• P-Space: the nodes which v can reach on shortest paths without using e

• Q-Space: the nodes which can reach t on shortest paths without using e

Then: choose any waypoint w at intersection* for rerouting!
*If intersection empty, spaces must be adjacent and there is also a (different) solution.

e

tv

w



A Local Solution
• We need two definitions: 

• P-Space: the nodes which v can reach on shortest paths without using e

• Q-Space: the nodes which can reach t on shortest paths without using e

Then: choose any waypoint w at intersection* for rerouting!
*If intersection empty, spaces must be adjacent and there is also a (different) solution.

e

tv

w

What about 
2 failures?

Literature: TI-MFA: Keep Calm and Reroute Segments Fast. Foerster et al., IEEE Global Internet Symposium (GI), 2018.



Roadmap: Two Examples

• Resilient routing

• Datacenter networks

45



Datacenter Networks

How to interconnect racks?How to interconnect racks?

46



Datacenter Networks

How to interconnect racks?

Many flavors, 

but in common: fixed 

and oblivious to 

actual demand.
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Datacenter Networks

How to interconnect racks?

Many flavors, 

but in common: fixed 

and oblivious to 

actual demand.Highway which ignores 

actual traffic: frustrating!
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An Alternative: Reconfigurable

How to interconnect racks?

e.g. lasers

e.g. mirrors

demand:
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How to interconnect racks?

new demand:

e.g. lasers

e.g. mirrors

Matches demand!
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An Alternative: Reconfigurable

How to interconnect racks?

Self-adjusting networks: adapt 

in a demand-aware manner!

e.g. lasers

e.g. mirrors

47



Empirical Motivation

• Workloads have much spatial
and temporal structure
– That is, low entropy

• Can be exploited for optimization

Literature: On the Complexity of Traffic Traces and Implications. Avin et al. ACM SIGMETRICS, 2020. 48



Lenses

Mirrors on Motors

Rotate Mirror

Enabler

• Optical circuit switch
– E.g., Google

• Adapt in microsecs!

49



Self-Adjusting Networks

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

50



Connection to Datastructures & Coding

Traditional BST Demand-aware BST Self-adjusting BST
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Connection to Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer entropy 

bounds and algorithms of 

data-structures to networks. 

First result: 

Demand-aware networks of 

asymptotically optimal route 

lengths. 

More than 

an analogy!

51



First Deployments and a Challenge

• Google‘s demand-aware 
reconfigurable datacenter

• Key challenge according to Amin Vahdat: 
scalable and distributed control

52



• Optimal static network for a source
– Huffman tree or biased binary search tree

Example: Splay Networks
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Example: Splay Networks

• Optimal static network for a source
– Huffman tree or biased binary search tree

• For entire demand: take union
– But reduce degree

• Dynamic: replace with splay tree

• Distributed? 
– Distributed version of splay trees?

53



Conclusion

• Wired networks: different from what you may think! And evolving.

• Much control is distributed
– Congestion control, local fast re-routing, demand-aware networks

• A good moment to contribute: on publications..
– DISC expertise where other communities got stuck?

• … and in practice: have impact, e.g., at standardizations at IETF, initiatives like 
Ultra Ethernet Consortium

54



Thank you!
Questions?



• per-destination

• shortest paths DAGs

• equal-split
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A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

https://www.univie.ac.at/ct/stefan/frr-survey.pdf
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On the Price of Locality in Static Fast Rerouting
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, Maryland, USA, June 2022.

The Hazard Value: A Quantitative Network Connectivity Measure Accounting for Failures
Pieter Cuijpers, Stefan Schmid, Nicolas Schnepf, and Jiri Srba.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, Maryland, USA, June 2022.
On the Feasibility of Perfect Resilience with Local Fast Failover
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), Alexandria, Virginia, USA, January 2021.

Brief Announcement: What Can(not) Be Perfectly Rerouted Locally
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2020.

Improved Fast Rerouting Using Postprocessing
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.

Resilient Capacity-Aware Routing
Stefan Schmid, Nicolas Schnepf and Jiri Srba.
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual Conference, March 2021.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona, Spain, December 2020.

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete, Greece, December 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://www.univie.ac.at/ct/stefan/dsn22frr.pdf
https://www.univie.ac.at/ct/stefan/dsn22hazard.pdf
https://www.univie.ac.at/ct/stefan/apocs21resilience.pdf
https://www.univie.ac.at/ct/stefan/disc20.pdf
https://www.univie.ac.at/ct/stefan/tdsc20.pdf
https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
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s Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion
Gregor Bankhamer, Robert Elsässer, and Stefan Schmid..
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2021. 

Bonsai: Efficient Fast Failover Routing Using Small Arborescences
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, Oregon, USA, June 2019.

CASA: Congestion and Stretch Aware Static Fast Rerouting
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Load-Optimal Local Fast Rerouting for Dense Networks
Michael Borokhovich, Yvonne-Anne Pignolet, Gilles Tredan, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2018.

PURR: A Primitive for Reconfigurable Fast Reroute
Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej Kamisinski, Georgios Nikolaidis, and Stefan Schmid.
15th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Orlando, Florida, USA, December 2019.
Artefact Evaluation: Available, Functional, Reusable.

On the Resiliency of Static Forwarding Tables
In IEEE/ACM Transactions on Networking (ToN), 2017
M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry, M. Schapira, S. Shenker

https://www.univie.ac.at/ct/stefan/disc21.pdf
https://www.univie.ac.at/ct/stefan/dsn19.pdf
https://www.univie.ac.at/ct/stefan/infocom2019e.pdf
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Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.
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Demand-Aware Network Design with Minimal Congestion and Route Lengths
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Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
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Intelligent Routers: A Use Case
Assume: shared memory size 3.

Scenario 2: assign buffer conservatively and keep space.

Suboptimal: drops were unnecessary, buffer not needed for green packets!

No more  

arrivals!



Credence

• Traffic at switch can be predicted fairly well

• AI/ML could significantly improve buffer management…

• … and hence admission control and throughput!

• Further reading:

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2024.

https://schmiste.github.io/nsdi24credence.pdf

