Self-stabilizing and Self-optimizing

Distributed Data Structures

Bremen Stadtmusikanten On A Windy Evening

Bremen Stadtmusikanten On A Windy Evening

Bremen Stadtmusikanten On A Windy Evening

Bremen Stadtmusikanten On A Windy Evening

Page 1
Page 22 / é?:/ ujgwf ﬁ
F:f[; o I! = ; J*f ====F=== P 44 ’rrfl; ﬁmsi
g S e LTI N i S
- What about synchronlzmg to the nelghbor
| with the smallest page number?
| What about...?

, We need a “self-stabilizing algorithm™

Idea 1: If out of sync, just change to the page of a nearby player!

But what if the neighbor does the same? Do not know who was right! May never converge...

Idea 2: Go to start when asynchrony detected!

But players further away detect it later and restart later! May never converge...

Stefan Schmid (T-Labs)

A Historical Note

Self-stabilizing algorithms
pioneered by Dijkstra (1973): for
example self-stabilizing mutual
exclusion.

“I regard this as Dijkstra’s most
brilliant work. Self-stabilization is a

This Talk: Topological Self-Stabilization

From chaos to order: self-stabilizing distributed datastructure (e.g., p2p)

Formal View

Formal View

Example: Hypercube (log+log)

Model & Terminology

Configuration Rules
‘21 = Condition: on local state

- Constants: identifiers i - Action: propose new link in
- Variables: neighborhoods @ neighborhood
(set of identifiers) $ - Careful: stay connected!
= Union over all nodes
@0d) > (09
Execution @ :>

= Scheduler: execute enabled actions @
= Gives next configuration
In parallel, or “scalably”

Self-Stabilization

Do) e
ﬂ "
—> i - Convergence: eventually we end up
@ @ 1) @ in desired configuration

N

$ = Closure: once there, stays there

e

Stefan Schmid (T-Labs)

Performance Metrics

Local Algorithms (Z0¢é+4< Model)

Send...

Talk Overview

Primo Piatto: Linearization

Main Dish: The Skip+ Graph

Dessert: Delaunay Graphs & Co.

Digestive: From Self-Stabilization to Self-Optimization

Linearization

Input: Weakly Connected Graph

—®

OO

Output: Sorted Network (wrt IDs!)

A First Insight: Local Checkability

Basic requirement:

OO D-F® DB

Yes! Yes! Yes! Yes! No! No! No! No!

At least one node must observe (and continue changing)!

Local checkability:

Most Simple Undirected Linearization

Linearize left (x<y<z): Linearize right (x<y<z):

Types of Schedulers

enabled triples

affected

The FULL Scheduler: full set of triples okay

not affected

Triple 3

Triple 1

Triple 2

Problem: many changes at single node (e.g., two new edges at node 2, but up to n-1)

Concrete MIS Schedulers (Hypothetical!)

Greedy MIS Scheduler

= E.g., select highest (remaining) degree
node first (“least linearized guy”)

= And for this node, fire triple with most
remote neighbors on side with higher
degree (“most progress”)

Triple 2

/1

furthest neighbors

Triple 1
OG0 €
7

highest degree

Worst / Best Case MIS Scheduler Random MIS Scheduler

= Worst/best sets of MIS triples such that = Random MIS triples
complexity max/minimized

Stefan Schmid (T-Labs)

The Algorithm LIN-MAX

The LIN-MAX Algorithm: each node proposes furthest triple on each side

Triple 1 Trlple 2

_

" Under a greedy MIS scheduler, LIN-MAX :

has a time complexity of O(n log n).

/

Stefan Schmid (T-Labs)

Analysis LIN-MAX

" Under a greedy MIS scheduler, LIN-MAX :

has a time complexity of O(n log n).
- J

Proof

= Consider potential function ® = 2 len(e).

= Clearly, initially ® < O(n3), each edge at most n long,
and when fully linearized, ® = O(n).

= We show: in each round where triple still exists,
potential is multiplied by factor 1- Q(1/n)

= When triple right-linearized by x, ® reduced by at least @
dist(x,z)-dist(y,z)=dist(x,y)
= Due to greedy degree scheduling, and since LIN-MAX

takes furthest neighbors: dist(x,y) >= deg(x)/2-1 >=
deg(x)/4.

= Due to this triple, how many other triples cannot be fired
in this round (“blocked potential”): overall potential at
most O(n)*deg(x). So we reduce a 1/n fraction of the
total potential. QED.

Stefan Schmid (T-Labs)

Blocked Potential

= “Due to the triple (x,y,z), at most O(n)*deg(x) remaining
potential is blocked.”

blocked blocked
edge edge

blocked

blocked line
highest d 4 /' edge
ighest degree
° ° furthest neighbors not blocked:
do later in
this round!

- Look at remaining components and neighbors w of x, y, or z

= Case A: if remaining component is line, cannot linearize further in this step, but
line has blocked potential n, plus potential for edge to w (at most n as well)

= Case B: if remaining component still has triples that can fire in this round, account
for them later. But lose edge to w (potential n).

= Since max(deg(y), deg(z)) =< deg(x), max 6 deg(x) neighbors on both sides
= S0 we block at most 6*deg(x) edges and components of potential 2n.

Stefan Schmid (T-Labs)

A Lower Bound

Even under an optimal MIS scheduler,
LIN-MAX has a time complexity of Q(n).

Proof

Length of edge e is reduced by one only
per round: no parallelism.

QED

Stefan Schmid (T-Labs)

A Better Lower Bound

Under worst scheduler, time (n?) for
LIN-MAX algorithm.

Initially complete 88~

w241 -1 n +1 n-1 n

wzd 20 w0 20

o o O- O o O

- - P e ity
bipartite graph 4
] '

1 i\l_“ w2+l =t 0 1 2 w2 2+l n-1 n

Ouza -7 wD
[u] [u] [m] [m]
O. O :0 0 On Owr Oaza «20 0 0O
|

Talk Overview

Primo Piatto: Linearization

Main Dish: The Skip+ Graph

Desert: Delaunay Graphs & Co.

Digestive: from Self-Stabilization to Self-Optimization

Sklp Graphs

Attractive distributed data structure: logarithmic height, logarithmic degree
= Distributed variant of skip list...: connect to nearest neighbors on log(n) many levels
= Nodes v have identifier v.id and random string v.rs
= Nodes sorted according to v.id (range search), and organized in layers according to v.rs

NN TN
OO0
T 9,
| | O0-0O——F——FO—C

Skip+ Motivation: Local Checkability

= For fast self-stabilization, we use a different variant of the Skip graph
= Additional edges for (1) local checkability and (2) efficiency

Problem: The following graph looks “locally correct”!

level 2

| . \
. . .__ __. __ . ___ .—— ——. . . level 1
D@D~ DDy Ievel0
10 1 11 10 0l 10 10 1 01

0o 11

Skip+: Solution By Additional Edges

&—0-© ©
0 er S level 2
| e o Y e
00 {(n)r |
(e)—~(m)}—(n) (o)== J=(w)—=(=W =)=z }] level 0
00 10 10 11 00 11 11 10 (1] 10 10 11 01

level 1

19aCnCnOnOnOnCnOnOnOnOntnol
00 10 10 11 00 11 11 10 01 10 10 11 01

Definition of Skip+

Define predecessors and ez (v.0) = pred(v.{w € V | pfreyy(w) = pfrs(v) 0 2})
successors on each level sucei (v,0) = suce(v, {w € V| pfr,, (w) = pfr,(v) o 2})

Define ranges in which nodes are low (o) = mmin{pred? (v, 0).4d. pred? (v, 1.id}
interested on a level i all up to end P P L

) ighi (v) = max{succ](v,0).id, succ] (v,1).id}
of opposite color range; (v) = [low} (v), high’ (v)]

level 1

Properties of Skip+

The diameter and degree of Skip+ is
O(log n), w.h.p.

= The height and diameter is not larger than in the original Skip graph
= Interestingly, also the degree does not increase asymptotically

= Probability that there are k neighbors on level i: 2°

= Union bound over all possible distributions of degrees over levels:

H-1

1 d+H-1\ 1
Pr[X = d] < > 11 h2 = (71)—deH.
ko,...kg_1>0: 3" 2ot ky=d =0

Ifd=c-(H—1), we get

d+H -1\ 1 <[(c+1)d]H—1<[(c+1)d]H—1-24(H—1>< 1
H—1 2d—2H — 9c(H-1)—2H — Qc(H—1) — mc’

Distributed Self-Stabilization: Algorithm ALG+

Principles

- Never delete any edges! Only forward or merge
with existing ones (preserves connectivity)

= Four simple rules: all executed at all times

« No phase changes (“first clique, then...”. not self-
stabilizing)

« But analysis in phases okay!

= Preprocessing / transition step between rules:
make things bi-directed, etc.

= Do not introduce unnecessary edges (degree!)

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

/" Pre-Processing / Transition I

= Receive requests
= Make links bi-directed and send state / neighborhood

) A
O—CX p @_,@\@

Distributed Self-Stabilization: Algorithm ALG+

Rule 1: Range Reduction \

= Distinguish: stable and temporary neighbor
- Stable = out-neighbor in-range on some level i; temporary = not

= Note: in-range at level i implies in-range at level j>i (if prefix still fits: on
higher levels less nodes as more prefix bits required)

= For every level i, for any stable vEN(u) and pfx-i (v)=pfx-i(w) and v interested
In w, u requests new stable (v,w), plus if also stable: (w,v)

NI
pO[O— }
\ ®O0O00O® -/

Rule 1 ensures a fast “pointer doubling” until first interesting nodes are
found! (Initially: unbounded ranges!)

level i

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

-

_

level |

Rule 2: Forward Edges

= Node u forwards non-interesting / temporary edge to (u,v) to the
stable neighbor with the largest common prefix with v

- W must exist, otherwise (u,v) would be stable

-

@_

"0 _

\-
(

%

-0

range(u)

[oloje

N
O ®

N

/

Rule 2 used to quickly propagate edges to nodes where they are more
useful (otherwise vanish / merge)

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

/ Rule 3: Local Closure («intro all») \

= Whenever the stable neighborhood of a node u changes, e.qg., even if
only the level at which some edge is stable, u introduces edges

between all its neighbors
-
W ©

Rule 3 quickly propagates new edges in neighborhood and ensures
that already connected components stay connected in future.

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

/ Rule 4: Linearize \

= Every node u on every level i: for all stable neighbors, link neighbors
according to order of identifier ID (not random string rs!)

_ /

Rule 4 sorts nodes according identifiers: gives desired search structure.

Stefan Schmid (T-Labs)

Proof Overview (1) [G DO] G 01 |
. Think in “phases” = T~

- Bottom-up phase (time log? n) { G)
= From layer O upward, Gp components arise: O

J

.
Gp=(Vp, Ep) where Vp is set of nodes with prefix p and Ep are
edges between Vp nodes.

= Trivial for empty prefix (connected)

= Induction: each node with p0O finds buddy: node of opposite color
o1 on same level | p |.

= Given a buddy and connected Vp, we quickly get connected
graphs G,, and G;.

4)
= powered
p p1 by Rule 1
DO and Rule 3

Stefan Schmid (T-Labs)

Proof Overview (1) [G DO] G 01 |
. Think in “phases” e

- Top-down phase (time log n) { G J
= From level H downward O
= Level i contains all edges of Gp (stable “little Skip graph™)
= Level H trivial: single nodes

= Then, by Rule 1, two I-finished components zip together to (i-1)-
finished component

Stefan Schmid (T-Labs)

Bottom-Up Phase (1)

= Lemma: If weakly connected at t0, nodes will have buddy at
t0+O(log n) w.h.p.

= By Rule 1 (pointer doubling until in-range node!)
= Concept of pre-component / pre-connected:

Bottom-Up Phase (2)

- Lemma: Once pre-connected, stays pre-connected.
- Lemma: If in (0,k)-pre-component at t, o-connected at t+4.
= Mostly due to Rule 1 and 3

= Lemma: Evolution of bridges

= The level of temporary bridge edge grows
quickly: endpoints share larger prefix in
each round (Forwarding Rule 2 plus
existence of buddy)

= Then, bridge edge stabilizes, and can
serve for forwarding as well.

= This yields new stable bridges at lower
levels.

- Lemma: Once Gp connected at time t,
Gp0O and Gp1 also connected at time
t+O(log n).

= So summing over all levels: O(log? n).

Stefan Schmid (T-Labs)

Other Features of Skip+

-

_

Individual joins/leaves can be handled
locally, with polylog work.

~

Talk Overview

Primo Piatto: Linearization

Main Dish: The Skip+ Graph

Desert: Delaunay Graphs & Co.

Digestive: from Self-Stabilization to Self-Optimization

Delaunay Graphs

_

" There exists a self-stabilizing algorithm
for Delaunay graph with time complexity

of O(n3).

ldea

= More geometric
= Always compute local Delaunay graph of (outgoing) neighbors plus “local hull”: stable edges

= Greedily route temporary edges towards node closest to edge destination (“distance compass
routing”): maintain connectivity

\1 \1/ —
)\1% \ @
/_‘\ /, \

4-——-—_'_-’\ /'

Stefan Schmid (T-Labs)

Talk Overview

Primo Piatto: Linearization

Main Dish: The Skip+ Graph

Desert: Delaunay Graphs & Co.

Digestive: from Self-Stabilization to Self-Optimization

From “Optimal” Networks to Self-Adjusting Networks

= Networks become more and more dynamic (e.g., flexible SDN control)

= Vision: go beyond classic “optimal” static networks

= Example: Peer-to-peer

Chord, Pastry, SHELL

= Hypercubic
= Log diameter
= Log degree
= Log routing

D

Pancake

= Log/loglog degree and
log/loglog routing

= Constant degree
= Log routing

T30

......

From “Optimal” Networks to Self-Adjusting Networks

= Networks become more and more dynamic (e.q., flexible SDN control)

= Visiq
What if networks could self-adjust depending

= Exal

on communication Pattem? —

. Hypk\g‘ 1///d
= Log
| Log de I'TT g | ”

s’l cs -/ 9\ ® TN

= Log routing

An Old Concept: Move-to-front, Splay Trees, ...

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!

0000

= Trees: move frequently accessed elements closer to root

An Old Concept: Move-to-front, Splay Trees, ...

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!

¥y 8 NS

= Trees: move frequently accessed elements closer to root

An Old Concept: Move-to-front, Splay Trees,

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!
! . . . >

= Trees: move frequently accessed el

Splay Trees! & AAE A@x}l

The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

Communication between peer pairs!
(Not only lookups from root...)

The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

Most S|mple generalization of
classic data structure
Allows for local routing!
Allows for algebraic gossip

Model: Self-Adjusting SplayNets

Input:
= communication pattern:
(static or dynamic) graph

“Guest Graph”

Output:
= seqguence of network adjustments

Cost metric:

The Optimal Offline Solution

Dynamic program
= Binary search:
decouple left from right!
= Polynomial time
(unlike MLA!)
= So: solved M"BST’A

The Online SplayNets Algorithm

From Splay tree to SplayNet:

Algorithm 2 Double Splay Algorithm DS

Algorithm 1 Splay Tree Algorithm ST

1: (* upon lookup (u) *)
2: splay u to root of T'

: (* upon request (u,v) in T' *)
w = ar(u,v)

: T" = splay u to root of T'(w)
splay v to the child of 7" (u)

El S B

The Online SplayNets Algorithm

From Splay tree to SplayNet;

(v)
Zig

R

Algorithm 1 Splay Tree Algorithm ST

1: (* upon lookup (u) *)
2: splay u to root of T'

The Online SplayNets Algorithm

From Splay tree to SplayNet:

Algorithm 2 Double Splay Algorithm DS

1: (* upon request (u,v) in T *)
2: w = ar(u,v)

3: T" := splay u to root of T'(w)
4: splay v to the child of 7" (u)

Least Common
Ancestor

Analysis: Basic Lower and Upper Bounds

- Upper Bound —— - Lower Bound ——
A-Cost < H(X) + H(Y) A-Cost > H(X]Y) + H(Y | X)
empirical entropies of sources entropies.
resp. destinations

Adaption of Tarjan&Sleator Assuming that each node is
the root for “its tree”

Properties: Convergence

Cluster scenario:

Nodes communicate within local
clusters only!

Properties: Optimal Solutions

Laminated scenario:

Will converge to optimum:
Amortized costs 1.

>IDs

Properties: Optimal Solutions

Multicast scenario (BST): Example

(from right):

/@>@

:

3
A\
\ !
A\
B\ 3
/ 4\ H
[T \/
At TIEEEEs £

1
1
1

v
e H
Jassassanii

Invariant over “stable” subtrees

Improved Lower Bounds (and More Optimality)

Via interval cuts or conductance entropy:

>IDs

Simulation Results

L ceeees | TORO RWp=05 e -©
f ---&--- RWp=t O <
L <O~ MATCH O

30 - o=

I ot
ST Aeeeemmem————a Y S — A

I N =
3 b
Cosp 7
o [a7
w
Q
(@]
o

20 -
&
o
g |
< |

15

Network Size

Multiple BSTs: OBST

: IC: L SN N T
Static: e o A\
- Not much help for lookup model B AN
. @ NN e I [E
= Much help for routing model! A AN
o e o« e

1 BST1 BST 2
1

Conclusion

= Topological self-stabilization
= Linearization, Skip Graph, Delaunay

= Take-home messages: local checkability, only one single phase possible,
compute “local” version but ensure connectivity, ...

= Self-optimization
= Beating the lower bounds
= First look into trees

