Self-stabilizing and Self-optimizing

Distributed Data Structures
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- What about synchronlzmg to the nelghbor
| with the smallest page number?
| What about...?

, We need a “self-stabilizing algorithm™

Idea 1: If out of sync, just change to the page of a nearby player!

But what if the neighbor does the same? Do not know who was right! May never converge...

Idea 2: Go to start when asynchrony detected!

But players further away detect it later and restart later! May never converge...
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A Historical Note

Self-stabilizing algorithms
pioneered by Dijkstra (1973): for
example self-stabilizing mutual
exclusion.

“I regard this as Dijkstra’s most
brilliant work. Self-stabilization is a




This Talk: Topological Self-Stabilization

From chaos to order: self-stabilizing distributed datastructure (e.g., p2p)




Formal View




Formal View

Example: Hypercube (log+log)




Model & Terminology

Configuration Rules
‘21 = Condition: on local state

- Constants: identifiers i - Action: propose new link in
- Variables: neighborhoods @ neighborhood
(set of identifiers) $ - Careful: stay connected!
= Union over all nodes
@0d) > (09
Execution @ :>

= Scheduler: execute enabled actions @
= Gives next configuration
In parallel, or “scalably”

Self-Stabilization

Do) e
ﬂ "
—> i - Convergence: eventually we end up
@ @ 1 ) @ in desired configuration

N

$ = Closure: once there, stays there

e
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Performance Metrics




Local Algorithms (Z0¢é+4< Model)

Send...




Talk Overview

Primo Piatto: Linearization

Main Dish: The Skip+ Graph

Dessert: Delaunay Graphs & Co.

Digestive: From Self-Stabilization to Self-Optimization




Linearization

Input: Weakly Connected Graph

—®

OO

Output: Sorted Network (wrt IDs!)




A First Insight: Local Checkability

Basic requirement:

OO D-F® DB

Yes! Yes! Yes! Yes! No! No! No! No!

At least one node must observe (and continue changing)!

Local checkability:




Most Simple Undirected Linearization

Linearize left (x<y<z): Linearize right (x<y<z):




Types of Schedulers

enabled triples

affected

The FULL Scheduler: full set of triples okay

not affected

Triple 3

Triple 1

Triple 2

Problem: many changes at single node (e.g., two new edges at node 2, but up to n-1)




Concrete MIS Schedulers (Hypothetical!)

Greedy MIS Scheduler

= E.g., select highest (remaining) degree
node first (“least linearized guy”)

= And for this node, fire triple with most
remote neighbors on side with higher
degree (“most progress”)

Triple 2

/1

furthest neighbors

Triple 1
OG0 €
7

highest degree

Worst / Best Case MIS Scheduler Random MIS Scheduler

= Worst/best sets of MIS triples such that = Random MIS triples
complexity max/minimized
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The Algorithm LIN-MAX

The LIN-MAX Algorithm: each node proposes furthest triple on each side

Triple 1 Trlple 2

\_

" Under a greedy MIS scheduler, LIN-MAX :

has a time complexity of O(n log n).

/
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Analysis LIN-MAX

" Under a greedy MIS scheduler, LIN-MAX :

has a time complexity of O(n log n).
- J

Proof

= Consider potential function ® = 2 len(e).

= Clearly, initially ® < O(n3), each edge at most n long,
and when fully linearized, ® = O(n).

= We show: in each round where triple still exists,
potential is multiplied by factor 1- Q(1/n)

= When triple right-linearized by x, ® reduced by at least @
dist(x,z)-dist(y,z)=dist(x,y)
= Due to greedy degree scheduling, and since LIN-MAX

takes furthest neighbors: dist(x,y) >= deg(x)/2-1 >=
deg(x)/4.

= Due to this triple, how many other triples cannot be fired
in this round (“blocked potential”): overall potential at
most O(n)*deg(x). So we reduce a 1/n fraction of the
total potential. QED.

Stefan Schmid (T-Labs)



Blocked Potential

= “Due to the triple (x,y,z), at most O(n)*deg(x) remaining
potential is blocked.”

blocked blocked
edge edge

blocked

blocked line
highest d 4 /' edge
ighest degree
° ° furthest neighbors not blocked:
do later in
this round!

- Look at remaining components and neighbors w of x, y, or z

= Case A: if remaining component is line, cannot linearize further in this step, but
line has blocked potential n, plus potential for edge to w (at most n as well)

= Case B: if remaining component still has triples that can fire in this round, account
for them later. But lose edge to w (potential n).

= Since max(deg(y), deg(z)) =< deg(x), max 6 deg(x) neighbors on both sides
= S0 we block at most 6*deg(x) edges and components of potential 2n.

Stefan Schmid (T-Labs)



A Lower Bound

Even under an optimal MIS scheduler,
LIN-MAX has a time complexity of Q(n).

Proof

Length of edge e is reduced by one only
per round: no parallelism.

QED

Stefan Schmid (T-Labs)



A Better Lower Bound

Under worst scheduler, time (n?) for
LIN-MAX algorithm.

Initially complete 88~
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Sklp Graphs

Attractive distributed data structure: logarithmic height, logarithmic degree
= Distributed variant of skip list...: connect to nearest neighbors on log(n) many levels
= Nodes v have identifier v.id and random string v.rs
= Nodes sorted according to v.id (range search), and organized in layers according to v.rs
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Skip+ Motivation: Local Checkability

= For fast self-stabilization, we use a different variant of the Skip graph
= Additional edges for (1) local checkability and (2) efficiency

Problem: The following graph looks “locally correct”!

level 2
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Skip+: Solution By Additional Edges
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Definition of Skip+

Define predecessors and ez (v.0) = pred(v.{w € V | pfreyy(w) = pfrs(v) 0 2})
successors on each level sucei (v,0) = suce(v, {w € V| pfr,, (w) = pfr,(v) o 2})

Define ranges in which nodes are low (o) = mmin{pred? (v, 0).4d. pred? (v, 1.id}
interested on a level i all up to end P P L

) ighi (v) = max{succ](v,0).id, succ] (v,1).id}
of opposite color range; (v) = [low} (v), high’ (v)]

level 1




Properties of Skip+

The diameter and degree of Skip+ is
O(log n), w.h.p.

= The height and diameter is not larger than in the original Skip graph
= Interestingly, also the degree does not increase asymptotically

= Probability that there are k neighbors on level i: 2°

= Union bound over all possible distributions of degrees over levels:

H-1

1 d+H-1\ 1
Pr[X = d] < > 11 h2 = ( 71 )—deH.
ko,...kg_1>0: 3" 2ot ky=d =0

Ifd=c-(H—1), we get

d+H -1\ 1 <[(c+1)d]H—1<[(c+1)d]H—1-24(H—1>< 1
H—1 2d—2H — 9c(H-1)—2H — Qc(H—1) — mc’




Distributed Self-Stabilization: Algorithm ALG+

Principles

- Never delete any edges! Only forward or merge
with existing ones (preserves connectivity)

= Four simple rules: all executed at all times

« No phase changes (“first clique, then...”. not self-
stabilizing)

« But analysis in phases okay!

= Preprocessing / transition step between rules:
make things bi-directed, etc.

= Do not introduce unnecessary edges (degree!)

Stefan Schmid (T-Labs)



Distributed Self-Stabilization: Algorithm ALG+

/" Pre-Processing / Transition I

= Receive requests
= Make links bi-directed and send state / neighborhood

) A
O—CX p @_,@\@




Distributed Self-Stabilization: Algorithm ALG+

Rule 1: Range Reduction \

= Distinguish: stable and temporary neighbor
- Stable = out-neighbor in-range on some level i; temporary = not

= Note: in-range at level i implies in-range at level j>i (if prefix still fits: on
higher levels less nodes as more prefix bits required)

= For every level i, for any stable vEN(u) and pfx-i (v)=pfx-i(w) and v interested
In w, u requests new stable (v,w), plus if also stable: (w,v)

NI
pO[ O— }
\ ®O0O00O® -/

Rule 1 ensures a fast “pointer doubling” until first interesting nodes are
found! (Initially: unbounded ranges!)

level i
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Distributed Self-Stabilization: Algorithm ALG+

-

\_

level |

Rule 2: Forward Edges

= Node u forwards non-interesting / temporary edge to (u,v) to the
stable neighbor with the largest common prefix with v

- W must exist, otherwise (u,v) would be stable

-

@_

"0 _

\-
(

%

-0

range(u)

[oloje

N
O ®

N

/

Rule 2 used to quickly propagate edges to nodes where they are more
useful (otherwise vanish / merge)
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Distributed Self-Stabilization: Algorithm ALG+

/ Rule 3: Local Closure («intro all») \

= Whenever the stable neighborhood of a node u changes, e.qg., even if
only the level at which some edge is stable, u introduces edges

between all its neighbors
-
W ©

Rule 3 quickly propagates new edges in neighborhood and ensures
that already connected components stay connected in future.

Stefan Schmid (T-Labs)



Distributed Self-Stabilization: Algorithm ALG+

/ Rule 4: Linearize \

= Every node u on every level i: for all stable neighbors, link neighbors
according to order of identifier ID (not random string rs!)

\_ /

Rule 4 sorts nodes according identifiers: gives desired search structure.
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Proof Overview (1) [G DO] G 01 |
. Think in “phases” = T~

- Bottom-up phase (time log? n) { G )
= From layer O upward, Gp components arise: O

J

.
Gp=(Vp, Ep) where Vp is set of nodes with prefix p and Ep are
edges between Vp nodes.

= Trivial for empty prefix (connected)

= Induction: each node with p0O finds buddy: node of opposite color
o1 on same level | p |.

= Given a buddy and connected Vp, we quickly get connected
graphs G,, and G;.

4 )
= powered
p p1 by Rule 1
DO and Rule 3

Stefan Schmid (T-Labs)



Proof Overview (1) [G DO] G 01 |
. Think in “phases” e

- Top-down phase (time log n) { G J
= From level H downward O
= Level i contains all edges of Gp (stable “little Skip graph™)
= Level H trivial: single nodes

= Then, by Rule 1, two I-finished components zip together to (i-1)-
finished component

Stefan Schmid (T-Labs)



Bottom-Up Phase (1)

= Lemma: If weakly connected at t0, nodes will have buddy at
t0+O(log n) w.h.p.

= By Rule 1 (pointer doubling until in-range node!)
= Concept of pre-component / pre-connected:




Bottom-Up Phase (2)

- Lemma: Once pre-connected, stays pre-connected.
- Lemma: If in (0,k)-pre-component at t, o-connected at t+4.
= Mostly due to Rule 1 and 3

= Lemma: Evolution of bridges

= The level of temporary bridge edge grows
quickly: endpoints share larger prefix in
each round (Forwarding Rule 2 plus
existence of buddy)

= Then, bridge edge stabilizes, and can
serve for forwarding as well.

= This yields new stable bridges at lower
levels.

- Lemma: Once Gp connected at time t,
Gp0O and Gp1 also connected at time
t+O(log n).

= So summing over all levels: O(log? n).

Stefan Schmid (T-Labs)



Other Features of Skip+

-

\_

Individual joins/leaves can be handled
locally, with polylog work.

~
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Delaunay Graphs

\_

" There exists a self-stabilizing algorithm
for Delaunay graph with time complexity

of O(n3).

ldea

= More geometric
= Always compute local Delaunay graph of (outgoing) neighbors plus “local hull”: stable edges

= Greedily route temporary edges towards node closest to edge destination (“distance compass
routing”): maintain connectivity

\1 \1/ —
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From “Optimal” Networks to Self-Adjusting Networks

= Networks become more and more dynamic (e.g., flexible SDN control)

= Vision: go beyond classic “optimal” static networks

= Example: Peer-to-peer

Chord, Pastry, SHELL

= Hypercubic
= Log diameter
= Log degree
= Log routing

D

Pancake

= Log/loglog degree and
log/loglog routing

= Constant degree
= Log routing

T30

......



From “Optimal” Networks to Self-Adjusting Networks

= Networks become more and more dynamic (e.q., flexible SDN control)

= Visiq
What if networks could self-adjust depending

= Exal

on communication Pattem? —

. Hypk\g‘ 1///d
= Log
| Log de I'TT g | ”

s’l cs -/ 9\ ® TN

= Log routing



An Old Concept: Move-to-front, Splay Trees, ...

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!

0000

= Trees: move frequently accessed elements closer to root




An Old Concept: Move-to-front, Splay Trees, ...

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!

¥y 8 NS

= Trees: move frequently accessed elements closer to root




An Old Concept: Move-to-front, Splay Trees,

= Classic data structures: lists, trees

= Linked list: move frequently accessed elements to front!
! . . . >

= Trees: move frequently accessed el

Splay Trees! & AAE A@x}l




The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)




The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)




The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

Communication between peer pairs!
(Not only lookups from root...)




The Vision: Splay Networks (“Distributed Splay Trees”)

= Most simple self-adjusting tree network: Binary Search Tree (BST)

Most S|mple generalization of
classic data structure
Allows for local routing!
Allows for algebraic gossip



Model: Self-Adjusting SplayNets

Input:
= communication pattern:
(static or dynamic) graph

“Guest Graph”

Output:
= seqguence of network adjustments

Cost metric:



The Optimal Offline Solution

Dynamic program
= Binary search:
decouple left from right!
= Polynomial time
(unlike MLA!)
= So: solved M"BST’A




The Online SplayNets Algorithm

From Splay tree to SplayNet:

Algorithm 2 Double Splay Algorithm DS

Algorithm 1 Splay Tree Algorithm ST

1: (* upon lookup (u) *)
2: splay u to root of T'

: (* upon request (u,v) in T' *)
w = ar(u,v)

: T" = splay u to root of T'(w)
splay v to the child of 7" (u)

El S B




The Online SplayNets Algorithm

From Splay tree to SplayNet;

(v)
Zig

R

Algorithm 1 Splay Tree Algorithm ST

1: (* upon lookup (u) *)
2: splay u to root of T'




The Online SplayNets Algorithm

From Splay tree to SplayNet:

Algorithm 2 Double Splay Algorithm DS

1: (* upon request (u,v) in T *)
2: w = ar(u,v)

3: T" := splay u to root of T'(w)
4: splay v to the child of 7" (u)

Least Common
Ancestor




Analysis: Basic Lower and Upper Bounds

- Upper Bound —— - Lower Bound ——
A-Cost < H(X) + H(Y) A-Cost > H(X]Y) + H(Y | X)
empirical entropies of sources entropies.
resp. destinations

Adaption of Tarjan&Sleator Assuming that each node is
the root for “its tree”




Properties: Convergence

Cluster scenario:

Nodes communicate within local
clusters only!




Properties: Optimal Solutions

Laminated scenario:

Will converge to optimum:
Amortized costs 1.

>IDs




Properties: Optimal Solutions

Multicast scenario (BST): Example

(from right):

/@>@
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Invariant over “stable” subtrees




Improved Lower Bounds (and More Optimality)

Via interval cuts or conductance entropy:

>IDs




Simulation Results
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Multiple BSTs: OBST

: IC: L SN N T
Static: e o A\
- Not much help for lookup model B AN
. @ NN e I [ E
= Much help for routing model! A AN
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Conclusion

= Topological self-stabilization
= Linearization, Skip Graph, Delaunay

= Take-home messages: local checkability, only one single phase possible,
compute “local” version but ensure connectivity, ...

= Self-optimization
= Beating the lower bounds
= First look into trees




