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Requirements:  

  - Play “happy birthday” again and again 

  - Wind changes pages without players knowing! 

  - When wind stops, harmonize eventually! 
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Bremen Stadtmusikanten On A Windy Evening 

How to achieve? 

 Idea 1: If out of sync, just change to the page of a nearby player! 

  But what if the neighbor does the same? Do not know who was right! May never converge… 

 Idea 2: Go to start when asynchrony detected!  

    But players further away detect it later and restart later! May never converge… 
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Bremen Stadtmusikanten On A Windy Evening 

How to achieve? 

 Idea 1: If out of sync, just change to the page of a nearby player! 

  But what if the neighbor does the same? Do not know who was right! May never converge… 

 Idea 2: Go to start when asynchrony detected!  

    But players further away detect it later and restart later! May never converge… 

 

 

 

 

 

 

 

 

 

 

 

 

 

What about synchronizing to the neighbor 
with the smallest page number? 

What about…? 

We need a “self-stabilizing algorithm”! 
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A Historical Note 

Self-stabilizing algorithms 
pioneered by Dijkstra (1973): for 
example self-stabilizing mutual 
exclusion.  

 

 

 

 

 

 

 

 

 

 

 

 

“I regard this as Dijkstra’s most 
brilliant work. Self-stabilization is a 
very important concept in fault 
tolerance.” 

 

Leslie Lamport (PODC 1983) 

 

 

 

 

 

 

 

 

 

 

 



This Talk: Topological Self-Stabilization 
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From chaos to order: self-stabilizing distributed datastructure (e.g., p2p) 
 

 

 

 

 

 

 

 

 

 

 

 

 

failures, 
adversary, 
attack, …   
 

adversary stops 
 

 

 

 

 

 

 

 

 

 

 

 

 

 FIB: Forwarding 
Information Base 

 FIB consists of 

 set of <prefix, next-
hop> 

t0 t0+D 

desired structure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 FIB: Forwarding 
Information Base 

 FIB consists of 

 set of <prefix, next-
hop> 



Formal View 
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Example: Hypercube (log+log) 
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adversary, 
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weakly connected 
 

 

 

 

 

 

 

 

 

 

 

 

 FIB: Forwarding 
Information Base 

 FIB consists of 

 set of <prefix, next-
hop> 

t0 t0+D 

stabilized 
hypercube 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIB: 
Forwarding 
Information 
Base 

 FIB consists 
of 

 set of 
<prefix, 
next-
hop> 

001 000 

100 

011 

111 110 

101 

010 

001 000 

100 

011 

111 110 

101 

010 

001 000 

100 

011 

111 110 

101 

010 
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How? 
 

 

 

 

 

 

How: 

 Distributed: local algorithm 

 Fast: minimize D, and stay there! 

stabilized 
hypercube 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIB: 
Forwarding 
Information 
Base 

 FIB consists 
of 

 set of 
<prefix, 
next-
hop> 

Formal View 

Example: Hypercube (log+log) 
 

 

 

 

 

 

 

 

 

 

 

 

 



Model & Terminology 
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Configuration 
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 Constants: identifiers 

 Variables: neighborhoods 
(set of identifiers) 

 Union over all nodes 

Execution 
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 Scheduler: execute enabled actions 

 Gives next configuration 

 In parallel, or “scalably” 

Rules 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Condition: on local state 

 Action: propose new link in 
neighborhood 

 Careful: stay connected! 

001 

101 

111 

001 

101 

111 

001 000 

100 

011 

111 110 

101 

010 

Self-Stabilization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Convergence: eventually we end up 
in desired configuration 

 Closure: once there, stays there  
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Parallel Time complexity 
 

 

 

 

 

 

 

 

 

 

 

 

 

weakly connected 
 

 

 

 

 

 

 

 

 

 

 

 

 

t0 t0+D 

stabilized 
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 Number of parallel rounds until stabilization in the worst case 

 Depends on scheduler (scalable: only constant number of enabled actions per node) 

Work 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Number of changed edges 

Input-sensitive 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Local repairs and joins/leaves 



Local Algorithms (LOCAL Model) 
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... receive... 
 

Send... 

... compute. 
 



Talk Overview 
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 Primo Piatto: Linearization 

 

 Main Dish: The Skip+ Graph 

 

 Dessert: Delaunay Graphs & Co. 

 

 Digestive: From Self-Stabilization to Self-Optimization 



Linearization 
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Input: Weakly Connected Graph 

Output: Sorted Network (wrt IDs!) 

2 1 4 3 6 5 8 7 

2 1 4 3 6 5 8 7 

How?  Local neighborhood changes only 

 Preserve connectivity 

 Once there, stay there 



A First Insight: Local Checkability 
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Basic requirement:  

At least one node must observe (and continue changing)! 

 

Local checkability: 

2 1 4 3 6 5 8 7 

Yes! Yes! Yes! Yes! No! No! No! No! 

Yes! 

Yes! No! 

Yes! 

F(       ) = No! 



Most Simple Undirected Linearization 
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Linearize left (x<y<z): Linearize right (x<y<z): 

y x z 

Correctness: 

Complexity? 

y x z 

y x z 

y x z 

 Connectivity preserved: paths via missing edge still exist  

 Closure: no changes in linearized setting 

 Convergence:  

 Triple always exists if not linearized 

 Firing triple reduces potential: Φ = Σ len(e), edges get shorter 



Types of Schedulers 
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The FULL Scheduler: full set of triples okay 

Only maximal independent set (MIS Scheduler): 

2 1 4 3 6 5 

Triple 1 

7 

Problem: many changes at single node (e.g., two new edges at node 2, but up to n-1) 

8 

Triple 2 

Triple 3 

enabled triples 

affected 

not affected 

2 1 4 3 6 5 

Triple 1 

7 8 

Triple 2 
Each node involved in at 
most one triple! 



Concrete MIS Schedulers (Hypothetical!) 
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Worst / Best Case MIS Scheduler 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Worst/best sets of MIS triples such that 
complexity max/minimized 

Random MIS Scheduler 
 

 

 

 

 

 

 

 

 

 

 Random MIS triples 

Greedy MIS Scheduler 
 
 E.g., select highest (remaining) degree 

node first (“least linearized guy”) 

 And for this node, fire triple with most 
remote neighbors on side with higher 
degree (“most progress”) 

3 2 5 4 7 6 

Triple 1 

8 9 

Triple 2 

1 

highest degree 
furthest neighbors 



The Algorithm LIN-MAX 
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The LIN-MAX Algorithm: each node proposes furthest triple on each side 

2 1 4 3 6 5 

Triple 1 

7 

Triple 2 

Under a greedy MIS scheduler, LIN-MAX 
has a time complexity of O(n log n). 



Analysis LIN-MAX 
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Under a greedy MIS scheduler, LIN-MAX 
has a time complexity of O(n log n). 

Proof 
  Consider potential function Φ = Σ len(e). 

 Clearly, initially Φ < O(n3), each edge at most n long, 
and when fully linearized, Φ = O(n).  

 We show: in each round where triple still exists, 
potential is multiplied by factor 1- Ω(1/n) 

 When triple right-linearized by x, Φ reduced by at least 
dist(x,z)-dist(y,z)=dist(x,y) 

 Due to greedy degree scheduling, and since LIN-MAX 
takes furthest neighbors: dist(x,y) >=  deg(x)/2-1 >= 
deg(x)/4. 

 Due to this triple, how many other triples cannot be fired 
in this round (“blocked potential”): overall potential at 
most O(n)*deg(x). So we reduce a 1/n fraction of the 
total potential. QED.  

y x z 

y x z 



Blocked Potential 
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 “Due to the triple (x,y,z), at most O(n)*deg(x) remaining 
potential is blocked.”  

x 

Triple 

y 

highest degree 
furthest neighbors 

blocked 

edge 

blocked 

edge 

blocked 
edge 

blocked 
z 

 Look at remaining components and neighbors w of x, y, or z 

 Case A: if remaining component is line, cannot linearize further in this step, but 
line has blocked potential n, plus potential for edge to w (at most n as well) 

 Case B: if remaining component still has triples that can fire in this round, account 
for them later. But lose edge to w (potential n).  

 Since max(deg(y), deg(z)) =< deg(x), max 6 deg(x) neighbors on both sides 

 So we block at most 6*deg(x) edges and components of potential 2n.  

w w 

blocked line 

not blocked: 
do later in 
this round! 

w w w 



A Lower Bound 
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Even under an optimal MIS scheduler, 
LIN-MAX has a time complexity of Ω(n). 

Proof 
 e 

 

Length of edge e is reduced by one only 
per round: no parallelism. 
 

QED 
 



A Better Lower Bound 
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Under worst scheduler, time Ω(n2) for 
LIN-MAX algorithm. 

QED 
 

Initially complete 
bipartite graph. 
 



Talk Overview 
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 Primo Piatto: Linearization 

 

 Main Dish: The Skip+ Graph 

 

 Desert: Delaunay Graphs & Co. 

 

 Digestive: from Self-Stabilization to Self-Optimization 



Skip Graphs 

26 

 Attractive distributed data structure: logarithmic height, logarithmic degree 

 Distributed variant of skip list…: connect to nearest neighbors on log(n) many levels 

 Nodes v have identifier v.id and random string v.rs 

 Nodes sorted according to v.id (range search), and organized in layers according to v.rs 

a c e m n o r s u v w x z 

e m n v z 

a c o r s u w x 

e m n 

v z 

a 

c 

o 

r s u 

w x 

0 

1 

00 

01 

10 

11 



Skip+ Motivation: Local Checkability 

 For fast self-stabilization, we use a different variant of the Skip graph 

 Additional edges for (1) local checkability and (2) efficiency 

Problem: The following graph looks “locally correct”!  
 

 Such a Skip graph does not work: node a only has two neighbors c (on level 0) and u (on level 1) 

 But neither a, c, or u are aware of n: the graph looks correct locally: everyone has its nearest neighbors! 

27 Stefan Schmid (T-Labs) 



Skip+: Solution By Additional Edges 
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 Add additional edges to all nodes on this level, until nearest neighbor of the prefix 

 Node c can now realize that u is not a nearest neighbor of a, and tell it to a! 

Stefan Schmid (T-Labs) 



Definition of Skip+ 
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In words: a white node is interested in all nodes until first black node (inclusive); if white node 
does not have white neighbor yet on that side, it is interested in all black nodes until white again 
(exclusive). 

Define predecessors and 
successors on each level 

Define ranges in which nodes are 
interested on a level i: all up to end 
of opposite color 

range(e,i) 

range(n,i) 

Stefan Schmid (T-Labs) 



Properties of Skip+ 

30 

The diameter and degree of Skip+ is 
O(log n), w.h.p. 

 The height and diameter is not larger than in the original Skip graph 

 Interestingly, also the degree does not increase asymptotically 

 Probability that there are k neighbors on level i: 2-k 

 Union bound over all possible distributions of degrees over levels:  
 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Principles 

 Never delete any edges! Only forward or merge 
with existing ones (preserves connectivity) 

 Four simple rules: all executed at all times  

 No phase changes (“first clique, then…”: not self-
stabilizing) 

 But analysis in phases okay! 

 Preprocessing / transition step between rules: 
make things bi-directed, etc. 

 Do not introduce unnecessary edges (degree!) 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Pre-Processing / Transition 

 Receive requests  

 Make links bi-directed and send state / neighborhood 

2 1 

3 

4 

2 1 

3 

4 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Rule 1: Range Reduction  
 Distinguish: stable and temporary neighbor 

 Stable = out-neighbor in-range on some level i; temporary = not 

 Note: in-range at level i implies in-range at level j>i (if prefix still fits: on 
higher levels less nodes as more prefix bits required) 

 For every level i, for any stable vЄN(u) and pfx-i (v)=pfx-i(w) and v interested 
in w, u requests new stable (v,w), plus if also stable: (w,v) 

u v w 

ρ0 

le
v
e
l 
i 

u 

v w 

w Є range(v,i) 

Rule 1 ensures a fast “pointer doubling” until first interesting nodes are 
found! (Initially: unbounded ranges!) 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Rule 2: Forward Edges 

 Node u forwards non-interesting / temporary edge to (u,v) to the 
stable neighbor with the largest common prefix with v  

 W must exist, otherwise (u,v) would be stable 

v 

le
v
e
l 

i 

u 
v 

range(u) 

u 

w v 

range(u) 

j 

w 

Rule 2 used to quickly propagate edges to nodes where they are more  
useful (otherwise vanish / merge) 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Rule 3: Local Closure («intro all») 

 Whenever the stable neighborhood of a node u changes, e.g., even if 
only the level at which some edge is stable, u introduces edges 
between all its neighbors 

v 
x 

u x 

w 

Rule 3 quickly propagates new edges in neighborhood and ensures 
that already connected components stay connected in future. 

Stefan Schmid (T-Labs) 



Distributed Self-Stabilization: Algorithm ALG+ 
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Rule 4: Linearize 

 Every node u on every level i: for all stable neighbors, link neighbors 
according to order of identifier ID (not random string rs!)   

Rule 4 sorts nodes according identifiers: gives desired search structure. 

w v 

u 

x 

u 

Stefan Schmid (T-Labs) 



Proof Overview (1) 
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 Think in “phases”! 

 Bottom-up phase (time log2 n) 

 From layer 0 upward, Gρ components arise: 

 

 

 

 Trivial for empty prefix (connected) 

 Induction: each node with ρ0 finds buddy: node of opposite color 
ρ1 on same level | ρ |.  

 Given a buddy and connected Vρ, we quickly get connected 
graphs Gρ0 and Gρ1. 

 

 

Gρ= (Vρ, Eρ) where Vρ is set of nodes with prefix ρ and Eρ are 
edges between Vρ nodes. 

ρ0 

ρ1 ρ 
powered 
by Rule 1 
and Rule 3  

Gρ 

Gρ0 Gρ1 

Stefan Schmid (T-Labs) 



Proof Overview (1) 

 Think in “phases”! 

 Top-down phase (time log n) 

 From level H downward 

 Level i contains all edges of Gρ (stable “little Skip graph”) 

 Level H trivial: single nodes 

 Then, by Rule 1, two i-finished components zip together to (i-1)-
finished component 

 

Gρ0 Gρ1 

Gρ 

Gρ 

Gρ0 Gρ1 

O(1) 

Stefan Schmid (T-Labs) 



Bottom-Up Phase (1) 
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 Lemma: If weakly connected at t0, nodes will have buddy at 
t0+O(log n) w.h.p. 

 By Rule 1 (pointer doubling until in-range node!) 

 Concept of pre-component / pre-connected: 

 

 

 

 

(σ,k)-pre-component 

Nodes a, b with prefix σ=ρx but in different Gσ components are 
(σ,k)-pre-connected if (1) Gρ is weakly connected, (2) every node in 
Gρ0 and Gρ1 has at least one neighbor in the opposite component, 
(3) a and b are either directly connected, σ-V-linked, or if there 
exists a stable (σ,k’)-bridge with k’=<k. 

Shaded nodes are 

(ρ0,k)-pre-component: 

bridge 

V-linked 



Bottom-Up Phase (2) 

 Lemma: Once pre-connected, stays pre-connected. 

 Lemma: If in (σ,k)-pre-component at t, σ-connected at t+4. 

 Mostly due to Rule 1 and 3 

 

 

 Lemma: Evolution of bridges 

 The level of temporary bridge edge grows 
quickly: endpoints share larger prefix in 
each round (Forwarding Rule 2 plus 
existence of buddy) 

 Then, bridge edge stabilizes, and can 
serve for forwarding as well.  

 This yields new stable bridges at lower 
levels. 

 
 Lemma: Once Gρ connected at time t, 

Gρ0 and Gρ1 also connected at time 
t+O(log n). 

 So summing over all levels: O(log2 n). 

Stefan Schmid (T-Labs) 



Other Features of Skip+ 
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Individual joins/leaves can be handled 
locally, with polylog work. 

Stefan Schmid (T-Labs) 



Talk Overview 
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 Primo Piatto: Linearization 

 

 Main Dish: The Skip+ Graph 

 

 Desert: Delaunay Graphs & Co. 

 

 Digestive: from Self-Stabilization to Self-Optimization 



Delaunay Graphs 
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There exists a self-stabilizing algorithm 
for Delaunay graph with time complexity 
of O(n3). 

Idea 
  More geometric 

 Always compute local Delaunay graph of (outgoing) neighbors plus “local hull”: stable edges 

 Greedily route temporary edges towards node closest to edge destination (“distance compass 
routing”): maintain connectivity 



Talk Overview 
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 Primo Piatto: Linearization 

 

 Main Dish: The Skip+ Graph 

 

 Desert: Delaunay Graphs & Co. 

 

 Digestive: from Self-Stabilization to Self-Optimization 



From “Optimal” Networks to Self-Adjusting Networks 
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 Networks become more and more dynamic (e.g., flexible SDN control) 

 

 Vision: go beyond classic “optimal” static networks 

 

 Example: Peer-to-peer 

Chord, Pastry, SHELL  Koorde, ... Pancake 

 
 Hypercubic  
 Log diameter 
 Log degree 
 Log routing 
 
 
 

 Constant degree 
 Log routing 
 
 

 Log/loglog degree and 
    log/loglog routing 
 
 

Stefan Schmid (T-Labs) 



From “Optimal” Networks to Self-Adjusting Networks 
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 Networks become more and more dynamic (e.g., flexible SDN control) 

 

 Vision: go beyond classic “optimal” static networks 

 

 Example: Peer-to-peer 

Chord, Pastry, SHELL  Koorde, ... Pancake 

 
 Hypercubic  
 Log diameter 
 Log degree 
 Log routing 
 
 
 

 Constant degree 
 Log routing 
 
 

 Log/loglog degree and 
    log/loglog routing 
 
 

What if networks could self-adjust depending  

on communication pattern? 

Stefan Schmid (T-Labs) 



An Old Concept: Move-to-front, Splay Trees, … 
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 Classic data structures: lists, trees 

 

 Linked list: move frequently accessed elements to front!  

 

 

 

 

 Trees: move frequently accessed elements closer to root 

Stefan Schmid (T-Labs) 



An Old Concept: Move-to-front, Splay Trees, … 
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 Classic data structures: lists, trees 

 

 Linked list: move frequently accessed elements to front!  

 

 

 

 

 Trees: move frequently accessed elements closer to root 

Stefan Schmid (T-Labs) 



An Old Concept: Move-to-front, Splay Trees, … 
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 Classic data structures: lists, trees 

 

 Linked list: move frequently accessed elements to front!  

 

 

 

 

 Trees: move frequently accessed elements closer to root 

Stefan Schmid (T-Labs) 

Splay Trees! 



The Vision: Splay Networks (“Distributed Splay Trees”) 
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 Most simple self-adjusting tree network: Binary Search Tree (BST) 

 

Stefan Schmid (T-Labs) 



The Vision: Splay Networks (“Distributed Splay Trees”) 
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 Most simple self-adjusting tree network: Binary Search Tree (BST) 

 

Stefan Schmid (T-Labs) 



The Vision: Splay Networks (“Distributed Splay Trees”) 
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 Most simple self-adjusting tree network: Binary Search Tree (BST) 

 

Stefan Schmid (T-Labs) 

Communication between peer pairs! 

(Not only lookups from root…) 



The Vision: Splay Networks (“Distributed Splay Trees”) 
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 Most simple self-adjusting tree network: Binary Search Tree (BST) 

 

Stefan Schmid (T-Labs) 

Why BST?!  
- Most simple generalization of 

classic data structure 
- Allows for local routing! 
- Allows for algebraic gossip 



Model: Self-Adjusting SplayNets 
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Input: 

 communication pattern: 

   (static or dynamic) graph 

 

Stefan Schmid (T-Labs) 

Output: 

 sequence of network adjustments 

 

Cost metric: 

 expected path length 

 # (local) network updates  

 
“Host Graph” 

“Guest Graph” 



The Optimal Offline Solution 
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Dynamic program 

 Binary search: 

    decouple left from right! 

 Polynomial time 

    (unlike MLA!) 

 So: solved M”BST”A  

 

See also: 

 Related problem of 

    phylogenetic trees 

 

OPT 

OPT OPT 



The Online SplayNets Algorithm  
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From Splay tree to SplayNet: 



The Online SplayNets Algorithm  

57 

From Splay tree to SplayNet: 



The Online SplayNets Algorithm  

58 

From Splay tree to SplayNet: 

Least Common 

Ancestor 

Local rotations! 



Analysis: Basic Lower and Upper Bounds 
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Adaption of Tarjan&Sleator 

A-Cost < H(X) + H(Y) 

Upper Bound 

where H(X) and H(Y) are 
empirical entropies of sources 
resp. destinations 

A-Cost > H(X|Y) + H(Y|X) 

Lower Bound 

where H( | ) are conditional 
entropies. 

Assuming that each node is 
the root for “its tree” 

Therefore, our algorithm is optimal, e.g., if communication pattern 
describes a product distribution!  



Properties: Convergence 
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Nodes communicate within local 
clusters only! 

Over time, nodes will form 
clusters in BST! No paths 
“outside”. 

Cluster scenario: 

IDs 



Properties: Optimal Solutions 
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Will converge to optimum: 
Amortized costs 1. 

Laminated scenario: 

IDs 

Will converge to optimum: 
Amortized costs 1. 

Non-crossing matching (= “no 
polygamy”) scenario: 

IDs 



Properties: Optimal Solutions 
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Multicast scenario (BST): Example 

Invariant over “stable” subtrees 
(from right): 



Improved Lower Bounds (and More Optimality) 
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Cut of interval: entropy 
yields amortized costs! 

Via interval cuts or conductance entropy: 

IDs 

Grid: 



Simulation Results 
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 Facebook component with 63k nodes and 800k edges 

 SplayNet exploit random walk locality, to less extent also matching  



Multiple BSTs: OBST 
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 Static: 

 Not much help for lookup model 

 Much help for routing model! 

 

 

 

 

 

 

 

 

 

 

 Dynamic: yes  



Conclusion 
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 Topological self-stabilization 

 Linearization, Skip Graph, Delaunay 

 Take-home messages: local checkability, only one single phase possible, 
compute “local” version but ensure connectivity, … 

 

 Self-optimization 

 Beating the lower bounds 

 First look into trees 

 Related to entropy 

 

 Papers: PODC 2009, ISAAC 2009, LATIN 2010, IPDPS 2013, P2P 2013, etc. 

 

Thank you! Questions? 


