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Misleading Stars: What Cannot Be Measured in the Internet?

Yvonne-Anne Pignolet · Stefan Schmid · Gilles Tredan

Abstract Traceroute measurements are one of the main in-
struments to shed light onto the structure and properties of
today’s complex networks such as the Internet. This arti-
cle studies the feasibility and infeasibility of inferring the
network topology given traceroute data from a worst-case
perspective, i.e., without any probabilistic assumptions on,
e.g., the nodes’ degree distribution. We attend to a scenario
where some of the routers are anonymous, and propose two
fundamental axioms that model two basic assumptions on
the traceroute data: (1) each trace corresponds to a real path
in the network, and (2) the routing paths are at most a factor
1/α off the shortest paths, for some parameter α ∈ (0, 1].
In contrast to existing literature that focuses on the cardi-
nality of the set of (often only minimal) inferrable topolo-
gies, we argue that a large number of possible topologies
alone is often unproblematic, as long as the networks have
a similar structure. We hence seek to characterize the set
of topologies inferred with our axioms. We introduce the
notion of star graphs whose colorings capture the differ-
ences among inferred topologies; it also allows us to con-
struct inferred topologies explicitly. We find that in general,
inferrable topologies can differ significantly in many impor-
tant aspects, such as the nodes’ distances or the number of
triangles. These negative results are complemented by a dis-
cussion of a scenario where the trace set is best possible, i.e.,
“complete”. It turns out that while some properties such as
the node degrees are still hard to measure, a complete trace
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set can help to determine global properties such as the con-
nectivity.

1 Introduction

Surprisingly little is known about the structure of many im-
portant complex networks such as the Internet. One reason
is the inherent difficulty of performing accurate, large-scale
and preferably synchronous measurements from a large
number of different vantage points. Another reason are pri-
vacy and information hiding issues: for example, network
providers may seek to hide the details of their infrastructure
to avoid tailored attacks.

Knowledge of the network characteristics is crucial for
many applications as well as for an efficient operation of the
network (e.g., for traffic engineering purposes [27], multi-
path TCP applications [19], reliable multicast [22], or ISP-
enhanced CDN assignments [25], to just give some ex-
amples). Consequently, the research community has imple-
mented many measurement tools to analyze at least the main
properties of the network. Results of such measurements can
then, e.g., be used to design more efficient network protocols
in the future.

This article focuses on the most basic characteristic of
the network: its topology. The classic tool to study topolog-
ical properties is traceroute. Traceroute allows us to collect
traces from a given source node to a set of specified destina-
tion nodes. A trace between two nodes contains a sequence
of identifiers describing a route between source and destina-
tion. However, not every node along such a path is config-
ured to answer with its identifier. Rather, some nodes may
be anonymous in the sense that they appear as stars (‘∗’)
in a trace. Anonymous nodes exacerbate the exploration of
a topology because already a small number of anonymous
nodes may increase the spectrum of inferrable topologies
that correspond to a trace set T .
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This article is motivated by the observation that the mere
number of inferrable topologies alone does not contradict
the usefulness or feasibility of topology inference; if the set
of inferrable topologies is homogeneous in the sense that
the different topologies share many important properties, the
generation of all possible graphs can be avoided: an arbitrary
representative may characterize the underlying network ac-
curately. Therefore, we identify important topological met-
rics such as diameter or maximal node degree and examine
how “close” the possible inferred topologies are with respect
to these metrics.

1.1 Related Work

Arguably one of the most influential measurement studies
on the Internet topology was conducted by the Faloutsos
brothers [14] who show that the Internet exhibits a skewed
structure: the nodes’ out-degree follows a power-law distri-
bution. Moreover, this property seems to be invariant over
time. These results complement discoveries of similar distri-
butions of communication traffic which is often self-similar,
and of the topologies of natural networks such as human res-
piratory systems. The power-law property allows us to give
good predictions not only on node degree distributions but
also, e.g., on the expected number of nodes at a given hop-
distance. Since [14] was published, many additional results
have been obtained, e.g., [4,5,13,21], also by conducting
a distributed computing approach to increase the number of
measurement points [11]. However, our understanding of the
Internet’s structure remains preliminary, and the topic con-
tinues to attract much attention from the scientific commu-
nities. In contrast to these measurement studies, we pursue a
more formal approach, and a complete review of the empir-
ical results obtained over the last years is beyond the scope
of this article.

The tool traceroute has been developed to investigate
the routing behavior on the Internet. [11,15,20,23,26] Pax-
son [23] used traceroute to analyze pathological condi-
tions, routing stability, and routing symmetry. To give an-
other example, Gill et al. [15] demonstrate that large con-
tent providers (e.g., Google, Microsoft, Yahoo!) are deploy-
ing their own wide-area networks, bringing their networks
closer to users, and bypassing Tier-1 ISPs on many routing
paths.

Traceroute is also used to discover Internet topolo-
gies [12]. Unfortunately, there are several problems with this
approach that render topology inference difficult, such as
aliasing (a node appears with different identifiers on differ-
ent interfaces) or load-balancing, which has motivated re-
searchers to develop new tools such as Paris Traceroute [8,
18].

There are several results on traceroute sampling and its
limitations. In their famous papers, Lakhina et al. [21] (by

simulation) and Achlioptas et al. [4] (mathematically) have
shown that the degree distribution under traceroute sampling
exhibits a power law even if the underlying degree distri-
bution is Poisson. Dall’Asta et al. [13] show that the edge
and vertex detection probability depends on the between-
ness centrality of each element and they propose improved
mapping strategies. Another interesting result is due to Bar-
ford et al. [9] who experimentally show that when perform-
ing traceroute-like methods to infer network topologies, it is
more useful to increase the number of destinations than the
number of trace sources.

One drawback of using traceroute to determine the net-
work topology stems from the fact that routers may appear
as stars (i.e., anonymous nodes) in the trace since they are
overloaded or since they are configured not to send out any
ICMP responses. [28] The lack of complete information in
the trace set renders the accurate characterization of Internet
topologies difficult.

This article attends to the problem of what information
on the underlying topology can be inferred despite anony-
mous nodes and assumes a conservative, “worst-case” per-
spective that does not rely on any assumptions on the under-
lying network.

An early work on this subject is by Yao et al. [28] who
study possible candidate topologies for a given trace set and
compute the minimal topology, that is, the topology with the
minimal number of anonymous nodes. Answering this ques-
tion turns out to be NP-hard. Subsequently, different heuris-
tics addressing this problem have been proposed [16,18].

Our work is motivated by a series of papers by Acharya
and Gouda. In [3], a network tracing theory model is in-
troduced where nodes are “irregular” in the sense that each
node appears in at least one trace with its real identifier.
In [1], hardness results on finding the minimal topology are
derived for this model. However, as pointed out by the au-
thors themselves, the irregular node model—where nodes
are anonymous due to high loads—is less relevant in prac-
tice and hence they consider strictly anonymous nodes in
their follow-up studies [2]. Moreover, as proved in [2], the
problem is still hard (in the sense that there are many min-
imal networks corresponding to a trace set), even for net-
works with only two anonymous nodes, symmetric routing
and without aliasing.

In contrast to the line of research on cardinalities of
minimal networks, we are interested in the network proper-
ties of inferrable topologies. If the inferred topologies share
the most important characteristics, the negative results on
cardinalities in [1,2] may be of little concern. Moreover,
we believe that a study limited to minimal topologies only
may miss important redundancy aspects of the Internet. Un-
like [1,2], our work is constructive in the sense that algo-
rithms can be derived to compute inferred topologies.
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More remotely, our work is also related to the field of
network tomography, where topologies are explored using
pairwise end-to-end measurements, without the cooperation
of nodes along these paths. This approach is quite flexi-
ble and applicable in various contexts, e.g., in social net-
works. For a good discussion of this approach as well as re-
sults for a routing model along shortest and second shortest
paths see [7]. For example, [7] shows that for sparse random
graphs, a relatively small number of cooperating participants
is sufficient to determine the network topology fairly well.

Finally, researchers have recently also been interested
in topology inference by graph or virtual network embed-
dings [24] (rather than exploration of single paths), as well
as in the orthogonal question of inferring capacities or
weights on a topology (see, e.g., [10,17], and [6] for a re-
sult on multi-agent exploration). .

1.2 Our Contribution

This article initiates the study and characterization of
topologies that can be inferred from a given trace set com-
puted with the traceroute tool. While existing literature as-
suming a worst-case perspective has mainly focused on the
cardinality of minimal topologies, we go one step further
and examine specific topological graph properties.

We introduce a formal theory of topology inference by
proposing basic axioms (i.e., assumptions on the trace set)
that are used to guide the inference process. We present a
novel definition for the isomorphism of inferred topologies
which is aware of traffic paths; it is motivated by the obser-
vation that although two topologies look equivalent up to a
renaming of anonymous nodes, the same trace set may re-
sult in different paths. Moreover, we propose the study of
two extremes: in the first scenario, we only require that each
link appears at least once in the trace set; interestingly, how-
ever, it turns out that this is often not sufficient, and we pro-
pose a “best case” scenario where the trace set is, in some
sense, complete: it contains paths between all pairs of non-
anonymous nodes.

The main result of the article is a negative one. It is
shown that already a small number of anonymous nodes in
the network renders topology inference difficult. In particu-
lar, we prove that in general, the possible inferrable topolo-
gies differ in many crucial aspects, e.g., the maximal node
degree, the diameter, the stretch, the number of triangles and
the number of connected components.

We introduce the concept of the star graph of a trace
set that is useful for the characterization of inferred topolo-
gies. In particular, colorings of the star graphs allow us
to constructively derive inferred topologies. (Although the
general problem of computing the set of inferrable topolo-
gies is related to NP-hard problems such as minimal graph

coloring and graph isomorphism, some important instances
of inferrable topologies can be computed efficiently.) The
chromatic number (i.e., the number of colors in the minimal
proper coloring) of the star graph defines a lower bound on
the number of anonymous nodes from which the stars in the
traces could originate from. And the number of possible col-
orings of the star graph—a function of the chromatic polyno-
mial of the star graph—gives an upper bound on the number
of inferrable topologies. We show that this bound is tight in
the sense that trace sets with that many inferrable topologies
indeed exist. In particular, there are problem instances where
the cardinality of the set of inferrable topologies equals the
Bell number. This insight complements existing cardinality
results and generalizes topology inference to arbitrary, not
only minimal, inferrable topologies.

Finally, we examine the scenario of fully explored net-
works for which “complete” trace sets are available. As ex-
pected, the inferrable topologies are more homogenous in
this case and can be characterized well with respect to many
properties such as the distances between nodes. However,
we also find that some other properties are inherently diffi-
cult to estimate. Interestingly, our results indicate that full
exploration is often useful to derive bounds on global prop-
erties (such as connectivity) while it does not help much for
bounds on more local properties (such as node degrees).

1.3 Organization

The remainder of this article is organized as follows. Our
axioms for topology inference and some definitions are in-
troduced in Section 2. Our main contributions are presented
in Sections 3 and 4 where we derive bounds on inferrable
topologies for general trace sets and fully explored net-
works, respectively. In Section 5, the article concludes with
a discussion of our results and directions for future research.

2 Model

Let T denote the set of traces obtained from probing (e.g.,
by traceroute) a network G0 = (V0, E0) with nodes or ver-
tices V0 (the set of routers) and undirected links or edgesE0.
We assume that G0 is static during the probing time (or that
probing is instantaneous), but we do not required that G0 is
connected. Each trace T (u, v) ∈ T describes a path con-
necting two nodes u, v ∈ V0; when u and v do not matter or
are clear from the context, we simply write T . Moreover, let
dT (u, v) denote the distance (number of hops) between two
nodes u and v in trace T . We define dG0(u, v) to be the cor-
responding shortest path distance in G0. Note that a trace
between two nodes u and v may not describe the shortest
path between u and v in G0.
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The nodes in V0 fall into two categories: anonymous
nodes and non-anonymous (or shorter: named) nodes. As it
is the case in most related literature, We assume these cate-
gories to be permanent over time and traces: a node is either
consistently anonymous or consistently non-anonymous.
This is motivated by the fact that while sometimes nodes can
be anonymous due to temporary events such as high loads,
most of the time the cause are static configurations, see [28]:
Some routers are configured to not send out ICMP responses
while others use the destination addresses of traceroute
packets instead of their own addresses as source addresses
for outgoing ICMPv6 packets. In both cases, the presence
of a router, but not its address, can be detected by tracer-
oute. Also, IPv4 and IPv6 routers with ICMP disabled, as
well as IPv6 routers not configured with global addresses,
appear as anonymous. Such router configurations exist for
numerous reasons, e.g., administrative overhead or security
reasons.

Each trace T ∈ T hence describes a sequence of sym-
bols representing anonymous and non-anonymous nodes.
We make the natural assumption that the first and the last
node in each trace T is non-anonymous. Moreover, we as-
sume that traces are given in a form where non-anonymous
nodes appear with a unique, anti-aliased identifier (i.e., the
multiple IP addresses corresponding to different interfaces
of a node are resolved to one identifier); an anonymous node
is represented as ∗ (“star”) in the traces. For our formal anal-
ysis, we assign to each star in a trace set T a unique iden-
tifier i: ∗i. (Note that except for the numbering of the stars,
we allow identical copies of T in T , and we do not make
any assumptions on the implications of identical traces: they
may or may not describe the same paths.) Thus, a trace
T ∈ T is a sequence of symbols taken from an alphabet
Σ = ID ∪ (

⋃
i ∗i), where ID is the set of non-anonymous

node identifiers (IDs): Σ is the union of the (anti-aliased)
non-anonymous nodes and the set of all stars (with their
unique identifiers) appearing in a trace set. The main chal-
lenge in topology inference is to determine which stars in
the traces may originate from which anonymous nodes.

Henceforth, let n = |ID| denote the number of non-
anonymous nodes and let s = |

⋃
i ∗i| be the number of stars

in T ; similarly, let a denote the number of anonymous nodes
in a topology. Let N = n+ s = |Σ| be the total number of
symbols occurring in T .

Table 1 gives some statistics for our variables from other
studies [23,15]: the number of traces |T | is between 372
and 27510, the number of named nodes n is between 615
and 1077, the number of stars s is between 62 and 4571, and
the number of edges in the trace set varies between 1026 and
10011. (See Section 1.1 for a short summary on the studies
collecting these trace sets.)

Clearly, the process of topology inference depends on
the assumptions on the measurements. In the following, we

postulate the fundamental axioms that guide the reconstruc-
tion. First, we make the assumption that each link of G0

is visited by the measurement process, i.e., it appears as a
transition in the trace set T . In other words, we are only in-
terested in inferring the (sub-)graph for which measurement
data is available.

AXIOM 0 (Complete Cover): Each edge of G0 appears
at least once in some trace in T .

The next fundamental axiom assumes that traces always
represent paths on G0.

AXIOM 1 (Reality Sampling): For every trace T ∈
T , if the distance between two symbols σ1, σ2 ∈ T is
dT (σ1, σ2) = k, then there exists a path (i.e., a walk without
cycles) of length k connecting two (named or anonymous)
nodes σ1 and σ2 in G0.

The following axiom captures the consistency of the
routing protocol on which the traceroute probing relies. In
the current Internet, policy routing is known to have in im-
pact both on the route length [26] and on the convergence
time [20].

AXIOM 2 (α-(Routing) Consistency): There exists an
α ∈ (0, 1] such that, for every trace T ∈ T , if dT (σ1, σ2) =
k for two entries σ1, σ2 in trace T , then the shortest path con-
necting the two (named or anonymous) nodes corresponding
to σ1 and σ2 in G0 has distance at least dαke.

Note that if α = 1, the routing is a shortest path routing.
Moreover, note that if α = 0, there can be loops in the paths,
and there are hardly any topological constraints, rendering
almost any topology inferrable. (For example, the complete
graph with one anonymous router is always a solution.)

Any topology G which is consistent with these axioms
(when applied to T ) is called inferrable from T .

Definition 1 (Inferrable Topologies) A topology G is (α-
consistently) inferrable from a trace set T if axioms AX-
IOM 0, AXIOM 1, and AXIOM 2 (with parameter α) are ful-
filled.

We will refer by GT to the set of topologies inferrable
from T . Please note the following important observation.

Remark 1 In the absence of anonymous nodes, it holds that
G0 ∈ GT , since T was generated from G0 and AXIOM 0,
AXIOM 1, and AXIOM 2 are fulfilled by definition. However,
there are instances where an α-consistent trace set for G0

contradicts AXIOM 0: as trace needs to start and end with a
named node, some edges cannot appear in an α-consistent
trace set T . In the remainder of this article, we will only
consider settings where G0 ∈ GT .
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data # traces n s # edges # named edges # src-dst pairs avg trace length
routes1 [21] 6219 746 513 2372 1576 893 14.81
routes2 [21] 27510 1077 4571 10011 2243 1417 15.57
xprobes [21] 6407 909 631 2688 1512 905 15.69

xroutes.1 [21] 615 673 62 1026 906 273 15.83
PAM [14] 372 1511 279 2685 2153 372 12.25

Table 1 This table gives an overview of the order of magnitudes of our model parameters in real life data. The number of edges refers to the
number of edges in the trace set (the underlying graphs are unknown). The number of named edges counts the number of edges between named
nodes. Some trace sets contain multiple queries for the same source-destination pairs, whereas others consist of one trace per pair.

Fig. 1 This table gives an overview of the order of magnitudes of our model parameters in real life data. The number of edges refers to the number
of edges in the trace set (the underlying graphs are unknown). The number of named edges counts the number of edges between named nodes.
Some trace sets contain multiple queries for the same source-destination pairs, whereas others consist of one trace per pair.
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Fig. 2 Two non-isomorphic inferred topologies, i.e., different mapping
functions lead to these topologies.

The main objective of a topology inference algorithm
ALG is to compute topologies which are consistent with
these axioms. Concretely, ALG’s input is the trace set T to-
gether with the parameter α specifying the assumed routing
consistency. Essentially, the goal of any topology inference
algorithm ALG is to compute a mapping of the symbols Σ
(appearing in T ) to nodes in an inferred topology G; or, in
case the input parameters α and T are contradictory, reject
the input. This mapping of symbols to nodes implicitly de-
scribes the edge set of G as well: the edge set is unique as
all the transitions of the traces in T are now unambiguously
tied to two nodes.

So far, we have ignored an important and non-trivial
question: When are two topologies G1, G2 ∈ GT different
(and hence appear as two independent topologies in GT )? In
this article, we pursue the following approach: We are not
interested in purely topological isomorphisms, but we care
about the identifiers of the non-anonymous nodes, i.e., we
are interested in the locations of the non-anonymous nodes
and their distance to other nodes. For anonymous nodes,
the situation is slightly more complicated: one might think
that as the nodes are anonymous, their “names” do not mat-
ter. Consider however the example in Figure 2: the two in-
ferrable topologies have two anonymous nodes, one where
{∗1, ∗2} plus {∗3, ∗4} are merged into one node each in the
inferrable topology and one where {∗1, ∗4} plus {∗2, ∗3}
are merged into one node each in the inferrable topology.
In this article, we regard the two topologies as different, for
the following reason: Assume that there are two paths in the
network, one u  ∗2  v (e.g., during day time) and one

u  ∗3  v (e.g., at night); clearly, this traffic has differ-
ent consequences and hence we want to be able to distin-
guish between the two topologies described above. In other
words, our notion of isomorphism of inferred topologies is
path-aware.

It is convenient to introduce the following MAP func-
tion. Essentially, an inference algorithm computes such a
mapping.

Definition 2 (Mapping Function MAP) LetG = (V,E) ∈
GT be a topology inferrable from T . A topology inference
algorithm describes a surjective mapping function MAP :

Σ → V . For the set of non-anonymous nodes in Σ, the
mapping function is bijective; and each star is mapped to
exactly one node in V , but multiple stars may be assigned to
the same node. Note that for any σ ∈ Σ, MAP(σ) uniquely
identifies a node v ∈ V . More specifically, we assume that
MAP assigns labels to the nodes in V : in case of a named
node, the label is simply the node’s identifier; in case of
anonymous nodes, the label is ∗β , where β is the concate-
nation of the sorted indices of the stars which are merged
into node ∗β .

With this definition, two topologies G1, G2 ∈ GT differ if
and only if they do not describe the identical (MAP-) labeled
topology. We will use this MAP function also forG0, i.e., we
will write MAP(σ) to refer to a symbol σ’s corresponding
node in G0.

AXIOM 1 implies a natural way to merge traces to derive
additional bounds on path lengths.

Lemma 1 For two traces T1, T2 ∈ T for which ∃σ1, σ2, σ3,
where σ2 refers to a named node, such that dT1

(σ1, σ2) = i

and dT2
(σ2, σ3) = j, it holds that the distance between two

nodes u and v corresponding to σ1 and σ2, respectively, in
G0, is at most dG0

(σ1, σ3) ≤ i+ j.

Proof Let T be a trace set, and G ∈ GT . Let σ1, σ2, σ3
s.t. ∃T1, T2 ∈ T with σ1 ∈ T1, σ3 ∈ T2 and σ2 ∈ T1 ∩
T2. Let i = dT1

(σ1, σ2) and j = dT2
(σ1, σ3). Since any

inferrable topology G fulfills AXIOM 1, there is a path π1
of length at most i between the nodes corresponding to σ1
and σ2 in G and a path π2 of length at most j between the
nodes corresponding to σ2 and σ3 in G. The combined path
can only be shorter, and hence the claim follows. �
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In the remainder of this article, we will often assume
that AXIOM 0 is given. Thus, to prove that a topology is in-
ferrable from a trace set it is sufficient to show that AXIOM 1
and AXIOM 2 are satisfied.

3 Inferrable Topologies

What insights can be obtained from topology inference with
minimal assumptions, i.e., with our axioms? Or what is the
structure of the inferrable topology set GT ? We first make
some general observations and then examine different graph
metrics in more detail.

3.1 Basic Observations

Although the generation of the entire topology set GT may
be computationally hard, some instances of GT can be com-
puted efficiently. The simplest possible inferrable topology
is the so-called canonic graph GC : the topology which as-
sumes that all stars in the traces refer to different anonymous
nodes. In other words, if a trace set T contains n = |ID|
named nodes and s stars, GC will contain |V (GC)| = N =

n+ s nodes.

Definition 3 (Canonic Graph GC) The canonic graph is
defined by GC(VC , EC) where VC = Σ is the set of (anti-
aliased) nodes appearing in T (where each star is considered
a unique anonymous node) and where {σ1, σ2} ∈ EC ⇔
∃T ∈ T , T = (. . . , σ1, σ2, . . .), i.e., σ1 follows after σ2
in some trace T (σ1, σ2 ∈ T can be either non-anonymous
nodes or stars). Let dC(σ1, σ2) denote the canonic distance
between two nodes, i.e., the length of a shortest path in GC
between the nodes σ1 and σ2.

Note that GC is indeed one inferrable topology. In this
case, MAP : Σ → Σ is the identity function.

Theorem 1 GC is inferrable from T .

Proof Fix T . We have to prove that GC fulfills AXIOM 0,
AXIOM 1 and AXIOM 2.

AXIOM 0: The axiom holds trivially: only edges from
the traces are used in GC .

AXIOM 1: Let T ∈ T and σ1, σ2 ∈ T . Let k =

dT (σ1, σ2). We show that GC fulfills AXIOM 1, namely,
there exists a path of length k in GC . Induction on k:
(k = 1:) By the definition of GC , {σ1, σ2} ∈ EC thus there
exists a path of length one between σ1 and σ2. (k > 1:)
Suppose AXIOM 1 holds up to k − 1. Let σ′1, . . . , σ

′
k−1

be the intermediary nodes between σ1 and σ2 in T : T =

(. . . , σ1, σ
′
1, . . . , σ

′
k−1, σ2, . . .). By the induction hypothe-

sis, in GC there is a path of length k − 1 between σ1 and
σ′k−1. Let π be this path. By definition ofGC , {σ′k−1, σ2} ∈

EC . Thus appending (σ′k−1, σ2) to π yields the desired path
of length k linking σ1 and σ2: AXIOM 1 thus holds up to k.

AXIOM 2: We have to show that dT (σ1, σ2) = k ⇒
dC(σ1, σ2) ≥ dα · ke. By contradiction, suppose that GC
does not fulfill AXIOM 2 with respect to α. So there exists
k′ < dα · ke and σ1, σ2 ∈ VC such that dC(σ1, σ2) = k′.
Let π be a shortest path between σ1 and σ2 in GC . Let
(T1, . . . , T`) be the corresponding (maybe repeating) traces
covering this path π in GC . Let Ti ∈ (T1, . . . , T`), and let
si and ei be the corresponding start and end nodes of π in
Ti. We will show that this path π implies the existence of
a path in G0 which violates α-consistency. Since G0 is in-
ferrable, G0 fulfills AXIOM 2, thus we have: dC(σ1, σ2) =∑`
i=1 dTi

(si, ei) = k′ < dα · ke ≤ dG0
(σ1, σ2) since

G0 is α-consistent. However, G0 also fulfills AXIOM 1,
thus dTi(si, ei) ≥ dG0(si, ei). Thus

∑`
i=1 dG0(si, ei) ≤∑`

i=1 dTi(si, ei) < dG0(σ1, σ2): we have constructed a
path from σ1 to σ2 in G0 whose length is shorter than the
distance between σ1 and σ2 in G0, leading to the desired
contradiction. �

Theorem 1 implies that with our axioms the canonic graph
is one of the possible topologies that could lead to a given
trace set. However, it does not imply that the stars of traces
from a given topology represent different nodes.

GC can be computed efficiently from T : represent each
non-anonymous node and star as a separate node, and for
any pair of consecutive entries (i.e., nodes) in a trace, add
the corresponding link. The time complexity of this con-
struction is linear in the size of T . Also note that there is
no inferrable graph in GT having a larger diameter than GC .

With the definition of the canonic graph, we can derive
the following lemma which establishes a necessary condi-
tion when two stars cannot represent the same node in G0

from constraints on the routing paths. This is useful for the
characterization of inferred topologies.

Lemma 2 Let ∗1, ∗2 be two stars occurring in some traces
in T . ∗1, ∗2 cannot be mapped to the same node, i.e.,
MAP(∗1) 6= MAP(∗2), without violating the axioms in the
following conflict situations:

(i) if ∗1 ∈ T1 and ∗2 ∈ T2, and T1 describes too a
long path between anonymous node MAP(∗1) and non-
anonymous node u, i.e., dα · dT1(∗1, u)e > dC(u, ∗2).

(ii) if ∗1 ∈ T1 and ∗2 ∈ T2, and there exists a trace T that
contains a path between two non-anonymous nodes u
and v and dα · dT (u, v)e > dC(u, ∗1) + dC(v, ∗2).

Proof The first proof is by contradiction. Assume
MAP(∗1) = MAP(∗2) represents the same node v of G0,
and that dα · dT1

(v, u)e > dC(u, v). Then we know from
AXIOM 2 that dC(v, u) ≥ dG0

(v, u) ≥ dα · dT1
(u, v)e >

dC(v, u), which yields the desired contradiction.
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Similarly for the second proof, assume for the sake
of contradiction that MAP(∗1) = MAP(∗2) represents the
same node w of G0, and that dα · dT (u, v)e > dC(u, ∗1) +
dC(v, ∗2) ≥ dG0

(u,w) + dG0
(v, w). Due to the triangle in-

equality, we have that dG0(u,w) + dG0(v, w) ≥ dG0(u, v)

and hence, dα · dT (u, v)e > dG0
(u, v), which contradicts

the fact that G0 is inferrable (Remark 1). �

Lemma 2 can be applied to show that a topology is not
inferrable from a given trace set because it merges (i.e.,
maps to the same node) two stars in a manner that violates
the axioms. Let us introduce a useful concept for our analy-
sis: the star graph that describes the conflicts between stars.

Definition 4 (Star Graph G∗) The star graph G∗(V∗, E∗)
consists of vertices V∗ representing stars in traces, i.e., V∗ =⋃
i ∗i. Two vertices are connected if and only if they must

differ according to Lemma 2, i.e., {∗1, ∗2} ∈ E∗ if and only
if at least one of the conditions of Lemma 2 hold for ∗1, ∗2.

Note that the star graph G∗ is unique and can be com-
puted efficiently for a given trace set T : Conditions (i)
and (ii) can be checked by computing GC . However, note
that while G∗ specifies some stars which cannot be merged,
the construction is not sufficient: as Lemma 2 is based on
GC , additional links might be needed to characterize the
set of inferrable and α-consistent topologies GT exactly. In
other words, a topologyG obtained by merging stars that are
adjacent inG∗ is never inferrable (G 6∈ GT ); however, merg-
ing non-adjacent stars does not guarantee that the resulting
topology is inferrable.

What do star graphs look like? The answer is arbitrar-
ily: the following lemma states that the set of possible star
graphs is equivalent to the class of general graphs. This
claim holds for any α.

Lemma 3 For any graph G = (V,E), there exists a trace
set T such that G is the star graph for T .

Proof First we show how to construct a topology
G0 = (V0, E0) for a given star graph G = (V,E)

and then describe a trace set of G0 that generates the star
graph G. The node set V0 consists of |V | anonymous nodes
and |V | · (1+ τ) named nodes, where τ = d3/(2α)− 1/2e.
The first building block of G0 is a copy of G. To each
node vi in the copy of G we add a chain consisting of
2 + τ nodes, first appending τ non-anonymous nodes
w(i,k) where 1 ≤ k ≤ τ , followed by an anonymous
node ui and finally a named node w(i,τ+1). More for-
mally, we can describe the link set as E0 = E ∪

⋃|V |
i=1(

{vi, w(i,1)}, {w(i,1), w(i,2)}, . . . , {w(i,τ), ui}, {ui, w(i,τ+1)}
)
.

The trace set T consists of the following |V |+ |E| shortest
path traces: the traces T` for ` ∈ {1, . . . , |V |}, are given
by T`(w(`,τ), w(`,τ+1)) (for each node in V ), and the
traces T` for ` ∈ {|V | + 1, . . . , |V | + |E|}, are given by

T`(w(i,τ), w(j,τ)) for each link {vi, vj} in E. Note that
G0 = GC as each star appears as a separate anonymous
node. The star graph G∗ corresponding to this trace set
contains the |V | nodes ∗i (corresponding to ui). In order
to prove the claim of the lemma we have to show that
two nodes ∗i, ∗j are conflicting according to Lemma 2
if and only if there is a link {vi, vj} in E. Case (i)

does not apply because the minimum distance between
any two nodes in the canonic graph is at least one, and
dα · dTi

(∗i, w(i,τ))e = 1 and dα · dTi
(∗i, w(i,τ+1))e = 1. It

remains to examine Case (ii): “⇒” if MAP(∗i) = MAP(∗j)
there would be a path of length two between w(i,τ) and
w(j,τ) in the topology generated by MAP; the trace set
however contains a trace T`(w(i,τ), w(j,τ)) of length
2τ + 1. So dα · dT`

(w(i,τ), w(j,τ))e = dα · (2τ + 1)e =

dα · (2d3/(2α) − 1/2e + 1e) ≥ 3, which violates the
α-consistency (Lemma 2 (ii)) and hence {∗i, ∗j} ∈ E∗
and {vi, vj} ∈ E. “⇐”: if {vi, vj} 6∈ E, there is no
trace T (w(i,τ), w(j,τ)), thus we have to prove that no
trace T`(w(i′,τ), w(j′,τ)) with i′ 6= i and j′ 6= j and
j′ 6= i leads to a conflict between ∗i and ∗j . We show
that an even more general statement is true, namely
that for any pair of distinct non-anonymous nodes
x1, x2, where x1, x2 ∈ {vi′ , vj′ , w(i′,k), w(j′,k)|1 ≤
k ≤ τ + 1, i′ 6= i, j′ 6= i, j′ 6= j}, it holds that
dα · dC(x1, x2)e ≤ dC(x1, ∗i) + dC(x2, ∗j). Since
GC = G0 and the traces contain shortest paths only,
the trace distance between two nodes in the same trace
is the same as the distance in GC . The following tables
contain the relevant lower bounds on distances in GC and
µ(x1, x2) = dC(x1, ∗i) + dC(x2, ∗j).

If x1 6= w(j′,k2) then it holds for all x1, x2 that
dT`

(x1, x2) ≤ 2τ + 1 whereas µ(x1, x2) = dC(x1, ∗i) +
dC(x2, ∗j) ≥ 2τ + 2. In all other cases it holds at least
that dC(x1, x2) < µ(x1, x2). Thus dα · dC(x1, x2)e ≤
dC(x1, ∗i) + dC(x2, ∗j). Consequently, we have conflicts
if and only if {vi, vj} ∈ E, which concludes the proof. �

The problem of computing inferrable topologies is re-
lated to the vertex colorings of the star graphs. We will use
the following definition which relates a vertex coloring of
G∗ to an inferrable topology G by contracting independent
stars in G∗ to become one anonymous node in G. For ex-
ample, observe that a maximum coloring treating every star
in the trace as a separate anonymous node describes the in-
ferrable topology GC .

Definition 5 (Coloring-Induced Graph) Let γ denote a
coloring of G∗ which assigns colors 1, . . . , k to the vertices
of G∗: γ : V∗ → {1, . . . , k}. We require that γ is a proper
coloring of G∗, i.e., that different anonymous nodes are as-
signed different colors: {u, v} ∈ E∗ ⇒ γ(u) 6= γ(v). Gγ
is defined as the topology induced by γ. Gγ describes the
graph GC where nodes of the same color are contracted:
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dC(·, ·) ≥ vi′ vj′ w(i′,k1) w(j′,k1)

vi′ 0 1 k1 k1 + 1

vj′ 1 0 k1 + 1 k1
w(i′,k2) k2 k2 + 1 |k2 − k1| k1 + 1 + k2
w(j′,k2) k2 + 1 k2 k1 + 1 + k2 |k2 − k1|
∗i τ + 2 τ + 1 2 + τ + k1 τ − k1 + 1

∗j τ + 2 τ + 2 2 + τ + k1 2 + τ + k1

µ(·, ·) ≥ vi′ vj′ w(i′,k1) w(j′,k1)

vi′ 2τ + 4 2τ + 3 4 + 2τ + k1 4 + 2τ + k1
vj′ 2τ + 3 2τ + 4 2τ + 3 + k1 3 + 2τ + k1

w(i′,k2) 4 + 2τ + k2 4 + 2τ + k2 4 + 2τ + k1 + k2 4 + 2τ + k1 + k2
w(j′,k2) 2τ − k2 + 3 2τ − k2 + 3 2τ + 3 + k1 − k2 2τ + k1 − k2 + 3

Table 1 Proof of Lemma 3: lower bounds for the distances in GC , and lower bounds for µ(x1, x2) = dC(x1, ∗i) + dC(x2, ∗j).Fig. 3 Proof of Lemma 3: lower bounds for the distances in GC , and lower bounds for µ(x1, x2) = dC(x1, ∗i) + dC(x2, ∗j).
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Fig. 4 Visualization for proof of Lemma 4. Solid lines denote links,
dashed lines denote paths (of annotated length).

two vertices u and v represent the same node in Gγ , i.e.,
MAP(∗i) = MAP(∗j), if and only if γ(∗i) = γ(∗j).

The following two lemmas establish an intriguing rela-
tionship between colorings of G∗ and inferrable topologies.
Also note that Definition 5 implies that two different color-
ings ofG∗ define two non-isomorphic inferrable topologies.

We first show that while a coloring-induced topology al-
ways fulfills AXIOM 1, the routing consistency is sacrificed.

Lemma 4 Let γ be a proper coloring of G∗. The coloring
induced topology Gγ is a topology fulfilling AXIOM 2 with
a routing consistency of α′ > 0, for an arbitrarily small α′.

Proof We have to show that the paths in the traces corre-
spond to paths in Gγ . Let T ∈ T , and σ1, σ2 ∈ T . Let π
be the sequence of nodes in T connecting σ1 and σ2. This
is also a path in Gγ : since α > 0, for any two symbols
σ1, σ2 ∈ T , it holds that MAP(σ1) 6= MAP(σ2) as α > 0.
Since the traces we consider are finite, the ratio of the short-
est path between two nodes and length of the longest trace
always exceeds zero and thus α′ > 0.

We now construct an example showing that the
α′ for which Gγ fulfills AXIOM 2 can be arbitrar-
ily small. Consider the graph represented in Figure 4.
Let T1 = (s, . . . , t), T2 = (s, ∗1, . . . ,m1), T3 =

(m1, . . . , ∗2,m2), T4 = (m2, ∗3, . . . ,m3), T5 =

(m3, . . . , ∗4, t). We assume α = 1. By changing parameters

k = dC(s, t) and k′ = dC(m1, ∗1) = dC(m1, ∗2) =

dC(m3, ∗3) = dC(m3, ∗4), we can modulate the links of
the corresponding star graph G∗. Using dT1

(s, t) = k,
observe that k > 2 ⇔ {∗1, ∗4} ∈ E∗. Similarly,
k > 2(k′ + 1) ⇔ {∗1, ∗3} ∈ E∗ ∧ {∗2, ∗4} ∈ E∗ and
k > 2(k′ + 2) ⇔ {∗1, ∗2} ∈ E∗ ∧ {∗3, ∗4} ∈ E∗.
Taking k = 2k′ + 4, we thus have E∗ =

{{∗1, ∗3}, {∗2, ∗4}, {∗1, ∗4}}.
Thus, we here construct a situation where ∗1 and ∗2

as well as ∗3 and ∗4 can be merged without breaking the
consistency requirement, but where merging both simulta-
neously leads to a topology G′ that is only 4/k-consistent,
since dG′(s, t) = 4. This ratio can be made arbitrarily small
provided we choose k′ = (k − 4)/2. �

An inferrable topology always defines a proper coloring
on G∗.

Lemma 5 Let T be a trace set and G∗ its corresponding
star graph. If a topology G is inferrable from T , then G

induces a proper coloring on G∗.

Proof For any α-consistent inferrable topology G there ex-
ists some mapping function MAP that assigns each symbol
of T to a corresponding node inG (cf Definition 2), and this
mapping function gives a coloring on G∗ (i.e., merged stars
appear as nodes of the same color inG∗). The coloring must
be proper: due to Lemma 2, an inferrable topology can never
merge adjacent nodes of G∗. �

The colorings of G∗ allow us to derive an upper bound
on the cardinality of GT .

Theorem 2 Given a trace set T sampled from a network
G0 and GT , the set of topologies inferrable from T , it holds
that:

|V∗|∑
k=γ(G∗)

P (G∗, k)/k! ≥ |GT |,
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where γ(G∗) is the chromatic number of G∗ and P (G∗, k)
is the number of colorings ofG∗ with k colors (known as the
chromatic polynomial of G∗).

Proof The proof follows directly from Lemma 5 which
shows that each inferred topology has proper colorings, and
the fact that a coloring of G∗ cannot result in two differ-
ent inferred topologies, as the coloring uniquely describes
which stars to merge (Lemma 4). In order to account for
isomorphic colorings, we need to divide by the number of
color permutations. �

Note that the fact that G∗ can be an arbitrary graph
(Lemma 3) implies that we cannot exploit some special
properties of G∗ to compute colorings of G∗ and γ(G∗).
Also note that the exact computation of the upper bound is
hard, since the minimal coloring as well as the chromatic
polynomial of G∗ (in P]) is needed. To complement the up-
per bound, we note that star graphs with a small number of
conflict edges can indeed result in a large number of inferred
topologies.

Theorem 3 Regardless of α > 0, there is a trace set for
which the number of non-isomorphic colorings ofG∗ equals
|GT | ≤ Bs, where GT is the set of inferrable and α-
consistent topologies, s is the number of stars in T , and Bs
is the Bell number of s. Such a trace set can originate from
a G0 network with one anonymous node only.

Proof Consider a trace set T = {(σi, ∗i, σ′i)i=1,...,s} (e.g.,
obtained from exploring a topology G0 where one anony-
mous center node is connected to 2s named nodes). The
trace set does not impose any constraints on how the stars
relate to each other, and hence, G∗ does not contain any
edges at all; even when stars are merged, there are no con-
straints on how the stars relate to each other. Therefore, the
star graph for T has Bs =

∑s
j=0 S(s,j) colorings, where

S(s,j) = 1/j! ·
∑j
`=0(−1)`

(
j
`

)
(j − `)s is the number of

ways to group s nodes into j different, disjoint non-empty
subsets (known as the Stirling number of the second kind).
Each of these colorings also describes a distinct inferrable
topology as MAP assigns unique labels to anonymous nodes
stemming from merging a group of stars (cf Definition 2).
�

Using these observations it is now possible to design an
algorithm extracting GT : first, i) construct Gc and G∗ us-
ing T and the parameter α. Then, ii) compute all the non
isomorphic proper colorings of G∗. Each such coloring γ
defines which vertices to merge in Gc to obtain a color-
induced topology Gγ . Finally, iii) for each color-induced
graph Gγ , test whether it is α-consistent with respect to T .
Note that each color of a proper coloring γ yields an anony-
mous router inGγ . Thus, if one is only interested in minimal

topologies, it is possible to compute only the minimal col-
orings of G∗ on step ii). More formally, Algorithm 1 sum-
marizes the steps required to produce the set of all inferrable
topologies GT .

Algorithm 1 Given traces T :
1: Compute G∗ and GC
2: GT ← ∅
3: for all proper colorings γ of G∗ do
4: Gγ ← GC
5: for all pairs {∗i, ∗j} do
6: if γ(∗i) = γ(∗i) then
7: merge ∗i and ∗j in Gγ
8: end if
9: end for

10: GT ← GT ∪Gγ
11: end for
12: return GT

3.2 Properties

Even if the number of inferrable topologies is large, study-
ing trace sets can still be useful if one is mainly interested in
some properties of G0 and if the ensemble GT is homoge-
nous with respect to these properties; for example, if “most”
of the instances in GT the properties are close to G0, it may
be an option to conduct an efficient sampling analysis on
random representatives. Therefore, in the following, we will
take a closer look on how much the members of GT differ in
various aspects.

Important metrics to characterize inferrable topologies
are, for instance, the graph size, the diameter DIAM(·),
the number of triangles C3(·) of G. In the following, let
G1 = (V1, E1), G2 = (V2, E2) ∈ GT be two arbitrary rep-
resentatives of GT .

The possible difference and ratio of inferrable graph
sizes is at most linear in the number of stars.

Theorem 4 It holds that |V1| − |V2| ≤ s− γ(G∗) ≤ s− 1

and |V1|/|V2| ≤ (n + s)/(n + γ(G∗)) ≤ (2 + s)/3.
Moreover, |E1| − |E2| ≤ 2(s − γ(G∗)) and |E1|/|E2| ≤
(ν+2s)/(ν+2) ≤ s, where ν denotes the number of edges
between non-anonymous nodes. There are traces with in-
ferrable topology G1, G2 reaching these bounds.

Proof In the worst-case, each star in the trace represents a
different node inG1, so the maximal number of nodes in any
topology in GT is the total number of non-anonymous nodes
plus the total number of stars in T . This number of nodes is
reached in the topologyGC . According to Definition 4, only
non-adjacent stars in G∗ can represent the same node in an
inferrable topology. Thus, the stars in trace T must originate
from at least γ(G∗) different nodes. As a consequence |V1|−
|V2| ≤ s−γ(G∗), which can reach s−1 for a trace set T =
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{Ti = (v, ∗i, w)|1 ≤ i ≤ s}. Analogously, |V1|/|V2| ≤
(n+ s)/(n+ γ(G∗)) ≤ (2 + s)/3.

Observe that each occurrence of a node in a trace de-
scribes at most two edges. If all anonymous nodes are
merged into γ(G∗) nodes in G1 and are separate nodes
in G2 the difference in the number of edges is at most
2(s−γ(G∗)). Analogously, |E1|/|E2| ≤ (ν+2s)/(ν+2) ≤
s. The trace set T = {Ti = (v, ∗i, w)|1 ≤ i ≤ s} reaches
this bound. �

Observe that inferrable topologies can also differ in the
number of connected components. This implies that the
shortest distance between two named nodes can differ ar-
bitrarily between two representatives in GT .

Theorem 5 Let COMP(G) denote the number of con-
nected components of a topology G. Then, |COMP(G1) −
COMP(G2)| ≤ n/2. There are traces with inferrable topol-
ogy G1, G2 reaching these bounds.

Proof Consider the trace set T = {Ti, i = 1 . . . bn/2c} in
which Ti = {n2i, ∗i, n2i+1}. Since i 6= j ⇒ Ti ∩ Tj = ∅,
we have |E∗| = 0. Take G1 as the 1-coloring of G∗: G1

is a topology with one anonymous node connected to all
named nodes. Take G2 as the bn/2c-coloring of the star
graph: G2 has bn/2c distinct connected components (con-
sisting of three nodes).

Upper bound: For the sake of contradiction, suppose
∃T s.t. |COMP(G1) − COMP(G2)| > bn/2c. Let us as-
sume that G1 has the most connected components: G1 has
at least bn/2c+1 more connected components than G2. Let
C refer to a connected component of G2 whose nodes are
not connected in G1. This means that C contains at least
one anonymous node. Thus, C contains at least two named
nodes (since a trace T cannot start or end by a star). There
must exist at least bn/2c+ 1 such connected component C.
ThusG2 has to contain at least 2(bn/2c+1) ≥ n+1 named
nodes. Contradiction. �

Another aspect of the usefulness of topology inference
depends on the distortion of shortest paths.

Definition 6 (Stretch) The maximal ratio of the distance of
two non-anonymous nodes in G0 and a connected topology
G is called the stretch ρ:

ρ = max
u,v∈ID(G0)

max

{
dG0(u, v)

dG(u, v)
,
dG(u, v)

dG0
(u, v)

}
.

From Theorem 5 we already know that inferrable topolo-
gies can differ in the number of connected components, and
hence, the distance and the stretch between nodes can be ar-
bitrarily wrong. Hence, in the following, we will focus on
connected graphs only. However, even if two nodes are con-
nected, their distance in inferrable topologies can be much
longer or shorter than in G0.

u

v w

kk
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v w

kk
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Fig. 5 Due to the lack of a trace between v and w, the stretch of an
inferred topology can be large.

Figure 5 gives an example. Both topologies are in-
ferrable from the traces T1 = (v, ∗, v1, . . . , vk, u) and
T2 = (w, ∗, w1, . . . , wk, u). One inferrable topology is the
canonic graph GC (Figure 5 left), whereas the other topol-
ogy merges the two anonymous nodes (Figure 5 right). The
distances between v and w are 2(k + 2) and 2, respectively,
implying a stretch of k + 2.

Theorem 6 Let u and v be two arbitrary named nodes
in the connected topologies G1 and G2. Then, even for
only two stars in the trace set, it holds for the stretch that
ρ ≤ (N − 1)/2. There are traces with inferrable topologies
G1, G2 reaching these bounds.

Proof A “lower bound” example follows from Figure 5. Es-
sentially, this is also the worst case: note that the difference
in the shortest distance between a pair of nodes u and v in
G1 and G2 is only greater than 0 if the shortest path be-
tween them involves at least one anonymous node. Hence
the shortest distance between such a pair is two. The longest
shortest distance between the same pair of nodes in another
inferred topology visits all nodes in the network, i.e., its
length is bounded by N − 1. �

We now turn our attention to the diameter and the de-
gree.

Theorem 7 For connected topologies G1, G2 it holds that
DIAM(G1)− DIAM(G2) ≤ (s− 1)/s · DIAM(GC) ≤ (s−
1)(N −1)/s and DIAM(G1)/DIAM(G2) ≤ s, where DIAM

denotes the graph diameter and DIAM(G1) > DIAM(G2).
There are instances G1, G2 that reach these bounds.

Proof Upper bound: As GC does not merge any stars, it
describes the network with the largest diameter. Let π be a
longest path between two nodes u and v in GC . In the ex-
treme case, π is the only path determining the network diam-
eter and π contains all star nodes. Then, the graph where all
s stars are merged into one anonymous node has a minimal
diameter of at least DIAM(GC)/s.

Instances meeting the bound: Consider the trace set
T = {(u1, . . . , ∗1, . . . , u2), (u2, . . . , ∗2, . . . , u3), . . . ,

(us, . . . , ∗s, . . . , us+1)} with x named nodes and star in
the middle between ui and ui+1 (assume x to be even, x
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Fig. 6 Estimation error for diameter.

does not include ui and ui+1). It holds that DIAM(GC) =

s · (x+ 2) whereas in a graph G where all stars are merged,
DIAM(G) = x+2. There are n = s(x+1) non-anonymous
nodes, so x = n/s− 1. Figure 6 depicts an example. �

Theorem 8 For the maximal node degree DEG, we
have DEG(G1) − DEG(G2) ≤ 2(s − γ(G∗)) and
DEG(G1)/DEG(G2) ≤ s− γ(G∗) + 1. There are instances
G1, G2 that reach these bounds.

Proof Each occurrence of a node in a trace describes at most
two links incident to this node. For the degree difference we
only have to consider the links incident to at least one anony-
mous node, as the number of links between non-anonymous
nodes is the same in G1 and G2. If all anonymous nodes
can be merged into γ(G∗) nodes in G1 and all anonymous
nodes are separate in G2 the difference in the maximum de-
gree is thus at most 2(s − γ(G∗)), as there can be at most
s− γ(G∗)+1 nodes merged into one node and the minimal
maximum degree of a node inG2 is two. This bound is tight,
as the trace set Ti = {vi, ∗, wi} for 1 ≤ i ≤ s containing
s stars can be represented by a graph with one anonymous
node of degree 2s or by a graph with s anonymous nodes
of degree two each. For the ratio of the maximal degree we
can ignore links between non-anonymous nodes as well, as
these only decrease the ratio. The highest number of links
incident at node v with one endpoint in the set of anony-
mous nodes is s−γ(G∗)+1 for non-anonymous nodes and
2(s− γ(G∗)+ 1) for anonymous nodes, whereas the lowest
number is two. �

The number of triangles is another important topology
characteristic that indicates how well meshed a network is.

Theorem 9 Let C3(G) be the number of cycles of length 3

of the graphG. It holds that C3(G1)−C3(G2) ≤ 2s(s−1),
which can be reached. The relative error C3(G1)/C3(G2)

can be arbitrarily large unless the number of links between
non-anonymous nodes exceeds n2/4 in which case the ratio
is upper bounded by 2s(s− 1) + 1.

Proof Upper bound: Each node which is part of a triangle
has at least two incident edges. Thus, a node v can be part
of at most

(DEG(v)
2

)
triangles, where DEG(v) denotes v’s de-

gree. As a consequence the number of triangles containing
an anonymous node in an inferrable topology with a anony-
mous nodes u1, . . . ua is at most

∑a
j=1

(DEG(uj)
2

)
. Given s,

this sum is maximized if a = 1 and DEG(u1) = 2s as 2s is

the maximum degree possible due to Theorem 8. Thus there
can be at most s·(2s−1) triangles containing an anonymous
node inG1. The number of triangles with at least one anony-
mous node is minimized inGC because in the canonic graph
the degrees of the anonymous nodes are minimized, i.e, they
are always exactly two. As a consequence there cannot be
more than s such triangles in GC .

If the number of such triangles in GC is smaller by x,
then the number of of triangles with at least one anonymous
node in the topologyG1 is upper bounded by s·(2s−1)−x.
The difference between the triangles in G1 and G2 is thus at
most s(2s− 1)− x− s+ x = 2s(s− 1).

Example meeting this bound: If the non-anonymous
nodes form a complete graph and all star nodes can be
merged into one node in G1 and G2 = GC , then the dif-
ference in the number of triangles matches the upper bound.
Consequently it holds for the ratio of triangles with anony-
mous nodes that it does not exceed (s(2s−1)−x)/(s−x).
Thus the ratio can be infinite, as x can reach s. However,
if the number of links between n non-anonymous nodes ex-
ceeds n2/4 then there is at least one triangle, as the densest
complete bipartite graph contains at most n2/4 links. �

4 Full Exploration

So far, we assumed that the trace set T contains each node
and link of G0 at least once. At first sight, this seems to be
the best we can hope for. However, sometimes traces explor-
ing the vicinity of anonymous nodes in more than one trace
yields additional information that help to characterize GT
better.

This section introduces the concept of fully explored net-
works: A trace set T fully explores a network if contains suf-
ficiently many traces such that the distances between non-
anonymous nodes can be estimated accurately.

Definition 7 (Fully Explored Topologies) A topology G0

is fully explored by a trace set T if it contains all nodes
and links of G0 and for each pair {u, v} of non-anonymous
nodes in the same component of G0 there exists a trace T ∈
T containing both nodes u ∈ T and v ∈ T .

A trace set for a fully explored network is the optimal
input for generic topology inference in the sense that as-
pects that cannot be inferred well in a fully explored topol-
ogy model are infeasible to infer without additional assump-
tions on G0. Put differently, a fully exploring set of traces
has the property that adding any additional traces does not
change the set of topologies which are consistent with the
given traces. Thus, this section provides “upper bounds” on
what can be learned from topology inference. However, in
the following, we will make the simplifying assumption that
routing occurs along shortest paths only (α = 1).
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Let us again study the properties of the family of in-
ferrable topologies fully explored by a trace set. Obviously,
all the upper bounds from Section 3 are still valid for fully
explored topologies. In the following, let G1, G2 ∈ GT be
arbitrary representatives of GT for a fully explored trace set
T . A direct consequence of the Definition 7 concerns the
number of connected components and the stretch. (Recall
that the stretch is defined with respect to named nodes only,
and since α = 1, a 1-consistent inferrable topology cannot
include a shorter path between u and v than the one that
must appear in a trace of T .)

Corollary 1 It holds that COMP(G1) = COMP(G2) (=
COMP(G0)) and the stretch is 1.

The proofs for the following theorems are analogous to
our former proofs, as the main difference is the fact that
there might be more conflicts, i.e., edges in G∗.

Theorem 10 For fully explored networks it holds that |V1|−
|V2| ≤ s − γ(G∗) ≤ s − 1 and |V1|/|V2| ≤ (n + s)/(n +

γ(G∗)) ≤ (2+s)/3. Moreover, |E1|−|E2| ∈ 2(s−γ(G∗))
and |E1|/|E2| ≤ (ν + 2s)/(ν + 2) ≤ s, where ν denotes
the number of links between non-anonymous nodes. There
are traces with inferrable topologies G1, G2 reaching these
bounds.

Theorem 11 For the maximal node degree, we
have DEG(G1) − DEG(G2) ≤ 2(s − γ(G∗)) and
DEG(G1)/DEG(G2) ≤ s− γ(G∗) + 1. There are instances
G1, G2 that reach these bounds.

Proof The proof for the upper bound is analogous to the the
proof for arbitrary trace sets. To prove that this bound can be
reached for fully explored networks, we need to add traces
to the trace set to ensure that all pairs of named nodes appear
in the trace but does not change the degrees of anonymous
nodes. To this end we add a named node u for each pair
{v, w} that is not in the trace set yet to G0 and a trace T =

{v, u, w}. This does not increase the maximum degree and
guarantees full exploration. �

From Corollary 1 we know that fully explored scenar-
ios yield a perfect stretch of one. However, regarding the
diameter, the situation is different since distances between
anonymous nodes play a role.

Theorem 12 Let DIAM denote the graph diameter and
DIAM(G1) > DIAM(G2). For connected topologiesG1, G2

it holds that DIAM(G1)/DIAM(G2) ≤ 2, and there are in-
stancesG1, G2 that reach this bound. Moreover, it holds that
DIAM(G1) − DIAM(G2) ≤ s/2, and there are instances
with DIAM(G1)− DIAM(G2) = s/2.

Proof We first prove the upper bound for the relative case.
Note that the maximal distance between two anonymous

nodes MAP(∗1) and MAP(∗2) in an inferred topology com-
ponent cannot be larger than twice the distance of two
named nodes u and v: from Definition 7 we know that there
must be a trace in T connecting u and v, and the maximal
distance δ of a pair of named nodes is given by the path
of the trace that includes u and v. Therefore, and since any
trace starts and ends with a named node, any star can be
at a distance at a distance δ/2 from a named node. There-
fore, the maximal distance between MAP(∗1) and MAP(∗2)
is δ/2+δ/2 to get to the corresponding closest named nodes,
plus δ for the connection between the named nodes. As ac-
cording to Corollary 1, the distance between named nodes is
the same in all inferred topologies, the diameter of inferred
topologies can vary at most by a factor of two.

We now construct an example that reaches this bound.
Consider a topology consisting of a center node c and four
rays of length k. Let u1, u2, u3, u4 be the “end nodes”
of each ray. We assume that all these nodes are named.
Now add two chains of anonymous nodes of length 2k +

1 between nodes u1 and u2, and between nodes u3 and
u4 to the topology. The trace set consists of the min-
imal trace set to obtain a fully explored topology: six
traces of length 2k + 1 between each pair of end nodes
u1, u2, u3, u4. Now we add two traces of length 2k + 1 be-
tween nodes u1 and u2, and between nodes u3 and u4. These
traces explore the anonymous chains and have the follow-
ing shape: T7 = (u1, ∗1, . . . , ∗k, σ, ∗k+1, . . . , ∗2k, u2) and
T8 = (u3, ∗2k+1, . . . , ∗3k, σ′, ∗3k+1, . . . , ∗4k, u4), where σ
and σ′ are stars. Let G1 = GC and G2 be the inferrable
graph where σ and σ′ are merged. The resulting diameters
are DIAM(G1) = 4k + 2 and DIAM(G2) = 2k + 1. Since
s = 4k + 2, the difference can thus be as large as s/2. Note
that this construction also yields the bound of the relative
difference: DIAM(G1)/DIAM(G2) = (4k+ 2)/(2k+ 1) =

2.

Finally, it remains to prove the absolute upper
bound. For the sake of contradiction, let us assume that
DIAM(G1) − DIAM(G2) > s/2. Let u, v be two nodes
whose distance in G1 constitutes G1’s diameter, i.e.,
DIAM(G1) = dG1

(u, v). Since we attend to a fully explor-
ing trace set T , DIAM(G1) 6= DIAM(G2) implies that at
least one of the nodes u, v must be anonymous. We first as-
sume that u is a named node, and v is anonymous; the case
where u is anonymous and v is non-anonymous is symmet-
ric. We define ∗v = v. Let Tu ∈ T be the trace that includes
∗v , and let w be the closest named node to ∗v in Tu, i.e.,
w = argminx∈ID dTu

(x, ∗v). Since fully exploring trace
sets yield unique distances between named nodes if α = 1,
dG1(u,w) = dG2(u,w) and dG1(u,w) + dG1(w, ∗v) ≥
dG1

(u, ∗v) due to the triangle inequality. With the definition
of the diameter (DIAM(G2) = maxx,y dG2

(x, y)), we ob-
tain DIAM(G2)+dG1(w, ∗v) ≥ dG1(u,w)+dG1(w, ∗v) ≥
dG1

(u, ∗v) = DIAM(G1) > s/2+DIAM(G2) and therefore
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dG1(w, ∗v) > s/2. However, since s is the total number of
stars in T , we have that dG1

(w, ∗v) ≤ bs/2c which yields
the desired contradiction.

It remains to consider the case where both u and v

are anonymous. Let us call the corresponding nodes in
G1 be ∗u and ∗v . We assume that dG1

(∗u, ∗v) > s/2 +

DIAM(G2). Let Tu and Tv be the traces containing ∗u
and ∗v , and let xu = argminx∈ID dTu(x, ∗u) and xv =

argminx∈ID dTv
(x, ∗v) the closest non-anonymous nodes.

(If ∗u and ∗v occur in the same trace, the longest dis-
tance is assumed between named nodes.) We have that
dG1(∗u, xu) + dG1(∗v, xv) + dG1(xu, xv) ≥ dG1(∗u, ∗v)
due to the triangle inequality. Therefore, dG1

(∗u, xu) +

dG1
(∗v, xv) > s/2. Let su denote the number of stars in

Tu and let sv be the number of stars in Tv . It holds that
dG1

(∗u, xu) ≤ b(su − 1)/2c and dG1
(∗v, xv) ≤ b(sv −

1)/2c, so s/2 < dG1
(∗u, xu) + dG1

(∗v, xv) ≤ b(su −
1)/2c+ b(sv − 1)/2c ≤ s/2. Contradiction. �

The number of triangles with anonymous nodes can still
not be estimated accurately in the fully explored scenario.

Theorem 13 There exist graphs whereC3(G1)−C3(G2) =

s(s − 1)/2, and the relative error C3(G1)/C3(G2) can be
arbitrarily large.

Proof Given the number of stars s, we construct a trace set
T with two inferrable graphs such that in one graph the num-
ber of triangles with anonymous nodes is s(s− 1)/2 and in
the other graph there are no such triangles. As a first step
we add s traces Ti = (vi, ∗i, w) to the trace set T , where
1 ≤ i ≤ s. To make this trace set fully explored we add
traces for each pair vi, vj to T as a second step, i.e., traces
Ti,j = (vi, vj) for 1 ≤ i ≤ s and 1 ≤ j ≤ s. The resulting
trace set contains s stars and none of the stars are in conflict
with each other. Thus the graph G1 merging all stars into
one anonymous node is inferrable from this trace and the
number of triangles where the anonymous node is part of is
s(s−1)/2. LetG2 be the canonic graph of this trace set. This
graph does not contain any triangles with anonymous nodes
and hence the difference C(G1)− C(G2) is s(s− 1)/2.

To see that the ratio can be unbounded look at the trace
set {(v, ∗1, w), (u, ∗2, w), (u, v)}. This set is fully explored
since all pairs of named nodes appear in a trace. The graph
where the two stars are merged has one triangle and the
canonic graph has no triangle. �

5 Conclusion

Our work is to be viewed as a first step to shed light onto the
similarity of inferrable topologies if the trace sets are based
on very basic axioms and no assumptions on the underlying
network are taken (e.g., assumptions on power-law proper-
ties of the degree distribution). In other words, we consider

the worst case: arbitrary networks. Using our formal frame-
work we show that the topologies for a given trace set may
differ significantly. Thus, it is impossible to accurately char-
acterize topological properties of complex networks. Note
that while this is a negative result from the perspective of
application designers who may want to exploit the topology,
certain players in the Internet (e.g., ISPs) are interested in
keeping their topology as a business secret. [25]

To complement the general analysis, we propose the no-
tion of fully explored networks or trace sets, as a “best pos-
sible scenario”. As expected, we find that fully exploring
traces allow us to determine several properties of the net-
work more accurately; however, it also turns out that even
in this scenario, other topological properties are inherently
hard to compute. Our results are summarized in Figure 7.

Our work opens several directions for future research.
So far we have only investigated fully explored networks
with short path routing (α = 1), and a scenario with sub-
optimal routes might lead to different results. One may also
study whether the minimal inferrable topologies considered
in, e.g., [1,2], share more similarities than the whole set
of inferrable graphs. More importantly, while this article
merely presented bounds for the general worst-case, it is
of great interest to devise (efficient) algorithms that com-
pute, for a given trace set, worst-case bounds for the prop-
erties under consideration. For example, such approximate
bounds would be helpful to decide whether additional mea-
surements are needed. Moreover, such algorithms may even
give advice on the locations at which such measurements
would be most useful. Finally, it would also be interesting to
study whether the additional knowledge that a network must
belong to a certain graph family (e.g., types of backbone
networks) may render inference more efficient and accurate.
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This article focuses on the most basic characteristic of the network: its topology. The
classic tool to study topological properties is traceroute. Traceroute allows us to collect
traces from a given source node to a set of specified destination nodes. A trace between
two nodes contains a sequence of identifiers describing a route between source and destina-
tion. However, not every node along such a path is configured to answer with its identifier.
Rather, some nodes may be anonymous in the sense that they appear as stars (‘∗’) in a trace.
Anonymous nodes exacerbate the exploration of a topology because already a small number
of anonymous nodes may increase the spectrum of inferrable topologies that correspond to
a trace set T .

This article is motivated by the observation that the mere number of inferrable topolo-
gies alone does not contradict the usefulness or feasibility of topology inference; if the
set of inferrable topologies is homogeneous in the sense that the different topologies share
many important properties, the generation of all possible graphs can be avoided: an arbitrary
representative may characterize the underlying network accurately. Therefore, we identify
important topological metrics such as diameter or maximal node degree and examine how
“close” the possible inferred topologies are with respect to these metrics.

Property/Scenario Arbitrary Fully Explored (α = 1)
G1 −G2 G1/G2 G1 −G2 G1/G2

# of nodes ≤ s− γ(G∗) ≤ (n+ s)/(n+ γ(G∗)) ≤ s− γ(G∗) ≤ (n+ s)/(n+ γ(G∗))
# of links ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2) ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2)
# of connected components ≤ n/2 ≤ n/2 = 0 = 1
Stretch - ≤ (N − 1)/2 - = 1
Diameter ≤ (s− 1)/s · (N − 1) ≤ s ≤ s/2 ≤ 2
Max. Deg. ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1 ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1
Triangles ≤ 2s(s− 1) ∞ ≤ 2s(s− 1)/2 ∞
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