
The Hazard Value: A Quantitative Network
Connectivity Measure Accounting for Failures

Pieter Cuijpers∗†, Stefan Schmid‡, Nicolas Schnepf†§ and Jiří Srba†
∗Eindhoven University of Technology, Netherlands

†Aalborg University, Denmark
‡TU Berlin, Germany & University of Vienna, Austria
§Université de Lorraine, CNRS Inria, Loria, France

Abstract—To meet their stringent requirements in terms of
performance and dependability, communication networks should
be “well connected”. While classic connectivity measures typically
revolve around topological properties, e.g., related to cuts, these
measures may not reflect well the degree to which a network
is actually dependable. We introduce a more refined measure
for network connectivity, the hazard value, which is developed
to meet the needs of a real network operator. It accounts
for crucial aspects affecting the dependability experienced in
practice, including actual traffic patterns, distribution of failure
probabilities, routing constraints, and alternatives for services
with preferences therein. We analytically show that the hazard
value fulfills several fundamental desirable properties that make
it suitable for comparing different network topologies with one
another, and for reasoning about how to efficiently enhance the
robustness of a given network. We also present an optimised
algorithm to compute the hazard value and an experimental
evaluation against networks from the Internet Topology Zoo and
classical datacenter topologies, such as fat trees and BCubes.
This evaluation shows that the algorithm computes the hazard
value within minutes for realistic networks, making it practically
usable for network designers.

Index Terms—network, fault-tolerance, routing, resilience,
metric

I. INTRODUCTION

Communication networks have become a critical infras-
tructure of our digital society, as also highlighted during the
ongoing pandemic. In order to meet the resulting stringent
dependability and performance requirements, networks should
be “well connected”. However, defining the notion of con-
nectivity is challenging: while classic measures, related to
cuts [26], number of disjoint paths [3], expansion [1], [35], or
even risk management [36], provide interesting insights into
the topological robustness of a network, they do not account
for several additional aspects which matter in practice, and
their usefulness may hence be limited in specific scenarios.

We identify the following aspects of availability and de-
pendability to be of relevance to network service providers,
and aim to develop a more general notion of connectivity that
takes these aspects into account:
• Traffic patterns. Traffic patterns over a large network are

often skewed in practice. Certain endpoint pairs may need
to communicate much more frequently, or more reliably,
than others. For example, in datacenters, traffic matrices
are often sparse [4], which implies that not all endpoint

pairs are equally important from a connectivity point of
view.

• Distribution of failure probabilities. With the increasing
scale of communication networks, failures are becom-
ing more likely [16]. These failures may either occur
randomly or depend on each other, e.g., in shared risk
link groups [31]. A practical connectivity measure should
hence account for link failures and reflect the likelihood
of corresponding failure scenarios and their effect on the
connectivity within the network.

• Routing constraints. Routing paths in networks are often
constrained, for example due to network policies and
business considerations [22], or due to the type of routing
mechanism that is being used. These constraints may
limit the connectivity within a network, even though the
underlying physical network may be highly connected.

• Alternatives for service and preferences therein. Net-
works often come with choice. First, services are typically
offered at multiple places, which is for example leveraged
by DNS anycast; other examples include key-value stores
which allow for replica selection and content distribution
applications [25], [33]. Redundancy may also be offered
in terms of different routes from a given entry point to
a given exit point, in terms of alternative entry and exit
points, or because a client requesting a traffic flow is
connected to multiple nodes. Given such alternatives, net-
work operators and their clients may have a preference for
one alternative over another. Using a different alternative
may influence the value of the service.

A. Operator’s Distributed Datacenter

As a use case and running example throughout this paper,
we consider a geographically distributed datacenter which we
obtained from our collaboration with a network operator1, see
Figure 1. The network consists of two sites, where each site
relies on a 3-level topology. The two sites (visually separated
via the dashed vertical line) are connected via two wide-
area links (using a Layer-2 network, so services/VMs can
be migrated transparently). In the lowest level of the left
site are the leaf switches li, in the middle level the spine
switches si, and at the top the datacenter edge router c

1Namely NORDUnet, a network operator in the Nordic countries.

`4`3`2`1

s1 s2

c

`′1 `′2 `′3 `′4

s′1 s′2

c′

Figure 1. Use case: geographically distributed datacenter network (two sites)

(henceforth simply called core switch); these switches are
connected to the corresponding switches l′i, s

′
i, c
′ on the right

site. Traffic is usually either datacenter internal, i.e., originates
and terminates at the leaf switches (where the servers are
attached), or external, arriving/leaving through one of the core
switches from/to the Internet.

The operator is interested in knowing how failures can
affect the services provided by the network. This depends on
a number of parameters. First, connectivity is restricted due to
routing constraints: a typical routing constraint in networks
is to ensure valley freedom, i.e., traffic inside the Layer-2
network could stay on the leaf switch, or be switched on
the spine switch; a packet between two leaf switches will
first only travel up the network, up to a certain level, and
afterwards only travel down towards the destination. Second,
the possibility of alternative routes enhances the dependability
of a network. In our example, a leaf may route traffic toward
the Internet through either of the two core switches; hence,
it is sufficient if one of the two core switches is available.
However, network operators may specify preferences among
alternatives; for example, it may be preferable to route traffic
through core switch c instead of c′ because it is physically
closer, because it provides a higher bandwidth, because it is
part of a data replication group, or because of legislation or
financial concerns. The preference among alternatives can also
be dependent on the demand and actual amount of traffic
arising between endpoints. If there is a significant demand
for traffic between leaf pairs on the left site, but hardly any
traffic in the right site, a link failure in the left site can have
more severe consequences than in the right site.

B. Our Contributions

We introduce a novel connectivity metric, the hazard value,
to assess the dependability of a network accounting for all the
above properties. As an input, this metric takes a description
of the network (a directed graph), a description of the routing
constraints (a regular language over sequences of links in the
graph), a probability distribution over possible link failure
scenarios, and a family of service weight functions that model
the preferences between routing alternatives mentioned earlier.
As an output, the hazard value returns the expected percentage

of the total service weight that is lost due to connectivity prob-
lems arising from node or link failures and routing constraints.

A network operator can use the hazard value to compare
different options to fortify a network. By comparing the
hazard value for different network topologies (e.g. adding
redundant links or nodes), routing strategies (e.g. enforcing
valley freedom or not), and measures that influence failure
probabilities (e.g. choosing more reliable hardware), one can
make quantitative statements about how much a certain fortifi-
cation is expected to improve the dependability of a network.

In order to verify that the hazard value provides a suitable
metric for this purpose, we start out by proving a number of
desirable mathematical properties:
• it is a topological notion, meaning that isomorphic graphs

have equal hazard value;
• it is a compositional notion, in that the hazard value for a

given set of service weights is the same as the weighted
sum of the hazard values for each of the individual service
weights;

• it is monotonically decreasing when introducing addi-
tional links, and monotonically increasing when tighten-
ing the routing restrictions (adding link redundancy or
removing routing restrictions decreases the hazard);

• it is not strictly monotone, as the removal of links or
nodes that are not used to achieve any of the serviced
connections, does not affect the hazard value;

• it increases when independent sources of failure are added
to the failure model;

• and finally, the hazard value is a generalization of tradi-
tional connectivity, as assuming a non-zero service weight
between all pairs of nodes, and assuming that there is no
probability of failure, leads to a hazard value of 0 if and
only if the network is totally connected.

As a second step in verifying the usefulness of our met-
ric, we perform a number of experiments. We present an
efficient way to compute the hazard value by restricting the
enumeration of failure scenarios to only those cuts that can
disconnect maximally rewarded pairs of nodes, and consider-
ing subsets of those cuts for refinement of the approximation.
Even though we show that already deciding whether the
hazard value is equal to 0 is (in the worst-case) NP-hard, our

2

algorithmic approach renders the hazard value computationally
feasible for realistic scenarios from the Internet Topology Zoo
database [23] as well as some classical datacenter topologies
including fat-tree [6] and BCube [18]. The performance is par-
ticularly good if we consider failure probability distributions
in which all link failures are independent and the maximum
number of link failures is restricted. However, our theory is
developed for any probabilistic distribution of failures that
includes node failures, shared-risk link groups as well as
chained failures.

II. PRELIMINARIES

We view a network as a directed (multi-)graph, in which the
vertices represent nodes of the network and edges represent
links from one node to another.

Definition 1 (Network). A network is a directed (multi)-
graph G = 〈V,E, src, dst〉 consisting of a finite set of nodes
(vertices) V , a finite set of links (edges) E, a source mapping
function src : E 7→ V and a target mapping function
dst : E 7→ V .

We regard a network as a service that provides connectivity
between nodes to tenants (henceforth simply called customers)
by choosing a path from some node s (the source), to a node
t (the target).

Definition 2 (Path). Given a network G = 〈V,E, src, dst〉,
a path is a sequence of links σ = σ1σ2 · · ·σn ∈ E+ where
|σ| = n such that dst(σi) = src(σi+1) for all i, 1 ≤ i < |σ|.
The set of all paths of a graph is denoted by Paths .
• A path σ starts in node s ∈ V if src(σ1) = s and it ends

in node t ∈ V if dst(σ|σ|) = t. We write Paths(s, t) for
the set of all paths that start in s and end in t.

• A path σ traverses a link e, written as e ∈ σ, if there is
i, 1 ≤ i ≤ |σ|, such that σi = e.

• A path σ visits a node v if there is an i, 1 ≤ i ≤ |σ| such
that src(σi) = v or dst(σi) = v.

• A path σ is simple if it visits any node v ∈ V at most
once.

In a network with routing policies, the number of paths that
are available for connecting two nodes is often restricted by
the routing mechanisms, and perhaps by other routing policies
as well. Instead of describing the routing mechanisms that
are used in a network explicitly, we abstract from the precise
technology and assume the possible routes through a network
are given simply as a subset of all paths.

Definition 3 (Routing language). Given a routing language
R ⊆ E+, i.e. a set of allowed routes, we say an entry point
v can be routed to an exit point w if there exists a path σ ∈
R ∩ Paths from v to w.

When we consider the actual computation of the hazard
value, we usually find that realistic routing scenarios can
be captured as regular expressions over E. For example, to
describe that all routes in a network must traverse some link
e, we can write R = E∗ · e ·E∗. Similarly, to describe that all

routes in a network must traverse some node n (e.g. a firewall
or other waypoint), we can write R = E∗·

(∑
n=dest(e) e

)
·E∗.

In our experimental section, we consider connectivity in the
topology of a large set of real-world networks (the Topology
Zoo [23]), to which we apply additional constraints of 0,
1 or 2 waypoints (with 0 waypoints corresponding to pure
connectivity). We also consider service chaining in those net-
works, where two given nodes must be visited in a predefined
order. All such path constraints can be defined using regular
expressions.

Definition 4 (Failures). Given a set F ⊆ E of failed links
we write PathsF for the maximum set of paths that do not
traverse any edge from F .

We treat failures in a probabilistic fashion, assuming that
there is a distribution function that determines the likelyhood
of a certain set of failures occurring at the same time.

Definition 5 (Distribution of failure probabilities (DFP)). A
distribution of failure probabilities or DFP is a probability
distribution φ : 2E → [0, 1] that assigns a likelihood φ(F)
to each possible set of failed edges F ⊆ E, such that∑
F⊆E φ(F) = 1.

In our experiments, we assume that all link failures are
independent and have a probability p = 0.01 of occurring.
This gives rise to the distribution

φp(F) = p|F |(1− p)(|E|−|F |)

where |H| denotes the number of links in a set H ⊆ E.
However, the theory is developed for arbitrary probability
distributions. Furthermore, we consider the independent failure
of links under the condition that at most k failures occur
in total, which (according to Bayes’ theorem) is given by
φkp(F) = 0 when |F | > k and

φkp(F) =
p|F |(1− p)(|E|−|F |)∑

|H|≤k p
|H|(1− p)(|E|−|H|)

when |F | ≤ k.
In Section IV we discuss how independent causes of fail-

ures, each with their own distribution, can be convoluted into a
combined failure distribution, and how the hazard value which
we define in Section III is compositional with respect to this
convolution.

III. DEFINITION OF THE HAZARD VALUE

We shall now define the connectivity requirements, provide
a formal definition of the hazard value and instantiate the
definition to our running example.

A. Connectivity Requirements

Considering a network as a service, a customer (or tenant)
may express a demand X for connectivity and assign a certain
weight w to (or offer a reward for) the connection of a pair of
nodes (s, t) that satisfy this demand. The weight then indicates
the importance of having that demand met through a route

3

from s to node t. In this paper we denote this by WX(s, t) =
w. In the face of failures, it may be possible that the missing
connectivity between s and t can be replaced by sending the
traffic from an altenative source s′ to an alternative target t′.
The customer may also specify a weight w′ for such alternative
connections, usually smaller than the weight w if the customer
has a preference for the original connection. This ultimately
leads to a function WX : V × V → R≥0 representing the
demand reward of X .

In our running example, the Internet traffic generated at
one of the leaf nodes li is intended to be delivered to core
c, but can alternatively also be delivered to core c′. Hence
for every i where `i is a leaf node we define the demand
reward as Wi(x, y) = 3 if x = `i and y = c or y = c′,
and W(i,I)(x, y) = 0 elsewhere. The value 3 is the weight of
having such a connection (the higher the value the higher is
the importance of having the connection).

Given a weight function WX , the network operator attempts
to maximize the weight by providing the best route possible
in case of failures. For an implemented route σ ∈ E+ starting
in v and ending in v′, we overload notation and simply define
WX(σ) = WX(v, v′) to denote the weight associated with
the start and end point of σ. For implementing a set of routes
S ⊆ E+, the obtained weight for a customer X then is written
as WX(S) = maxσ∈SWX(σ). Given a routing language R
in the face of a failure scenario F , the obtained weight for X
is then WX(R ∩ PathsF).

Finally, a network may serve multiple customers, or multiple
demands from the same customer. In our running example,
there is traffic expected between each of the leaf nodes in the
same site and from each of the leaf nodes to the Internet. We
define a separate weight function for each of these demands
given by the set D, leading to a family of weight functions
WX indexed by the set of individual demands X ∈ D.

Definition 6 (Connectivity requirement). On a network G =
〈V,E, src, dst〉, a connectivity requirement is a (finite) family
W = {WX : V × V → N | X ∈ D} of weight functions over
an index set D of all demands.

As mentioned in the introduction, we consider as inputs to
our metric: a network G, a routing language R, a DFP φ, and
a family WX of weight functions indexed over a set X ∈ D
of demands. We call such an input a connectivity scenario.

Definition 7 (Connectivity scenario). A connectivity scenario
S = 〈G,R, φ,W,D〉, consists of a network G, routing
language R, distribution of failure probabilities φ, and con-
nectivity requirement W over an index set D.

B. The Hazard Value

Given a connectivity scenario, the network operator tries to
optimize the sum of the weights of each of the individual
customers considering the distribution of failures. In other
words, the network operator tries to optimize the expected
connectivity weight.

Definition 8 (Expected connectivity weight). Given a con-
nectivity scenario 〈G,R, φ,W,D〉, the expected connectivity
weight is given by

µ(G,R, φ,W,D) =
∑
F⊆E

∑
X∈D

φ(F) ·WX(R ∩ PathsF) .

We can express the expected efficiency of a network as a
percentage by dividing the expected connectivity weight by the
maximum achievable weight in case all endpoints are con-
nected: µ(G,R, φ,W,D)/

∑
X∈Dmaxv,w∈V WX(v, w). In

practice, as we strive to get the expected efficiency close
to 1, we obtain a more human-readable metric if we consider
instead the hazard value, i.e., the expected loss of efficiency
due to connection failures.

Definition 9 (Hazard value). Given a connectivity scenario
〈G,R, φ,W,D〉 its hazard value is defined as:

γ(G,R, φ,W,D) = 1− µ(G,R, φ,W,D)∑
X∈Dmaxv,w∈V WX(v, w)

.

Hence if the hazard value is 0, we expect no connectivity
loss in the given connectivity scenario and a value higher than
0 gives the potential percentage loss of connectivity reward
due to failures in the network.

C. The Hazard Value of the Operators Distributed Datacenter

Let us now consider an application of the hazard value
for the datacenter network in Figure 1. The operator aims
to improve the connectivity of this network by investing in
an additional link that can connect the two distributed parts
of the datacenter. The operator has the following information
about the current network:
• The network G topology is given in Figure 1.
• The routes R in the network are “valley-free”, meaning

that traffic originating from a leaf is first only for-
warded upward in the datacenter hierarchy (if at all)
and subsequently (if at all) only routed downward to
its destination. Traffic originating from a core switch is
only routed downwards and traffic from leaves to core
only upwards. Formally, this is achieved by splitting
the set E into two subsets, the upwards-edges Up =
{(li, sk), (sk, c), (sk, c′), (l′i, s′k), (s′k, c′), (s′k, c) | 1 ≤
i ≤ 4, 1 ≤ k ≤ 2} and the downward-edges Down =
{(sk, li), (c, sk), (c′, sk), (s′k, l′i), (c′, s′k), (c, s′k) | 1 ≤
i ≤ 4, 1 ≤ k ≤ 2}, and defining R as the regular routing
language

R = Up∗ ·Down∗ .

• As a DFP, we assume independent link failures where
each link has the failing probability of p = 10−3, and
use the distribution given in the preliminaries: φp(F) =
p|F |(1− p)(|E|−|F |) for all F ⊆ E.

• Finally, we define the demand set D =
{(li, lj), (l′i, l′j), (li, {c, c′}, (l′i, {c, c′}))|1 ≤ i, j ≤
4, i 6= j} assuming a traffic between any two leaves
in each of the two parts of the datacenter as well as
between each leaf and core router (here the operator

4

allows for alternatives). For any two leaf indexes
1 ≤ i, j ≤ 4 with i 6= j there is medium demand
(assigned the weight 10) of traffic both in the left site
and in the right site given by W(li,lj)(x, y) = 10 if
x = li and y = lj , and W(li,lj)(x, y) = 0 otherwise, and
similarly W(l′i,l

′
j)
(x, y) = 10 if x = l′i and y = l′j , and

W(li,lj)(x, y) = 0 otherwise.
The demand rewards for the traffic between leaves and
core routers in the left-hand part of the datacenter are
given by W(li,{c,c′})(li, c) = 20 and W(li,{c,c′})(li, c

′) =
15 and W(li,I)(x, y) = 0 otherwise, for any 1 ≤ i ≤ 4.
This assigns a higher reward of 20 for maintaining the
connection to the core router c and a lower reward of
15 for the core router c′ that is located in the right-
hand part of the datacenter. In the right-hand site, the
demand for Internet traffic is less, and there is no rout-
ing preference between the core routers, expressed by
W(l′i,{c,c′})(x, y) = 5 whenever x = l′i and y = c
or y = c′, and W(j,I)(x, y) = 0 otherwise, for any
1 ≤ i ≤ 4.
Between the other nodes in the network, no traffic is
generated, and no weight functions are needed to describe
the demand. In particular, the spine switches and cores
do not generate any traffic themselves, and there is no
leaf-to-leaf connectivity requirement across sites.

Given this datacenter network and configuration, we compute
the hazard value to be 1.21349 ·10−4, meaning that we expect
a 0.01213% loss of reward due to failure in the network,
compared to the reward gained by a fully connected network.

The operator has two options how to increase the connec-
tivity of the network:

1) Scenario 1: Add a link from s2 to c′.
2) Scenario 2: Add a link from s′1 to c.

Computing the hazard value for the two options, the operator
obtains an expected 0.01203% reward loss for Scenario 1
and 0.01205% reward loss for Scenario 2, both of them
clearly improving the expected loss in the current network
topology. Hence, as intuitively expected, both additions lead
to an improvement of the dependability of the network, but
adding an extra link from the left part of the datacenter where
there is more traffic towards the core routers (reflected by a
higher weight) is more beneficial as it causes a more significant
drop in the hazard value and hence allows for more reliable
operation of the datacenter.

In the next section, we shall substantiate the intuition that
adding links leads to a decrease in hazard value, as part of
our results regarding expected mathematical properties of the
metric.

IV. MATHEMATICAL PROPERTIES AND ANALYSIS

In this section we establish monotonicity and composition-
ality properties of the hazard value.

A. Monotonicity

As indicated, the hazard value is intended for comparing
different network layouts, different routing strategies, different

DFP, and changing demands. Intuitively, the hazard value
should not increase when edges or nodes are added to a net-
work, as long as the remaining connectivity scenario remains
the same. Also, when routing restrictions are lifted, or failure
probabilities decrease, one expects the hazard value not to
increase. When additional sources of failure are considered,
hazard values may increase. And finally, when certain links in
a network are not traversed by any path with positive weight
(given by the set of demands), and similarly when nodes are
never visited by such paths, they can be removed from the
routing language and even from the network itself, without
affecting the hazard value at all.

We now argue that the chosen definition of hazard value
indeed satisfies these intuitions. As we show, there is no need
to consider each of these properties one-by-one. Instead, we
can state many of them in one general claim by explointing
homomorphisms, i.e. link preserving mappings, between net-
works.

Definition 10 (Homomorphism). A homomorphism from net-
work G = 〈V,E, src, dst〉 to network G′ = 〈V ′, E′, src′, dst ′〉
is a pair (f, g) of functions f : V → V ′ and g : E → E′

such that f(src(e)) = src′(g(e)) and f(dst(e)) = dst ′(g(e))
for all e ∈ E.

Mapping one network to another using a homomorphism
allows us to consider the relationships between the routing
tables, DFPs, and weight functions of the two networks. For
example, if we remove an unconnected node x from the set
of nodes V of a network G, this leads to a set of nodes
V̂ = V/{x} in a network Ĝ, while keeping the set of edges
Ê = E unchanged. This removal can be captured by a natural
homomorphism from Ĝ to G, taking the identity functions for
f : V̂ → V and g : Ê → E. Similarly, if we add an edge e to
the set of edges E of a network G, this leads to a new network
G with the same set of nodes V = V and an extended set of
edges E = E ∪ {e}, and we obtain a natural homomorphism
f : V → V , g : E → E by again using the identity functions.
Having identity functions as homomorphisms simply means
that all the paths in the left-hand network are also paths in
the right-hand network. Having more complicated functions
as homomorphisms, means that some nodes or edges are
merged, i.e. the routing functions of two nodes or edges in
the left network are merged in a single node or edge with the
combined functionality in the right network.

As an example, Figure 2 shows a network homomorphism
in which two nodes are merged, and one node is added, but
no link merges take place. This results in a homomorphism
in which g is injective but h is not. Note, that when thinking
about failure scenarios in such networks, it is easy to imag-
ine how separate link failures in the left network result in
corresponding link failures in the right network. However, to
understand how node failures are transferred, one needs to
realize that—in our way of modelling failures—a node failure
cannot be distinguished from a simultaneous failure of all
corresponding links in the network. A network homomorphism
treats node failures simply as if they are coinciding failures

5

1 α

2 β

3 γ

a

b

a′ b′

c′ d′

h(1)

h(2)

h(3)

g(a)

g(b)

Figure 2. Example of a homomorphism between two networks. Notice how
a route from 1 to 3 in the left network is mapped to a route from α via β
back to α in the right network.

of all connected links. This means that, if there are additional
links in the right network, a node failure of the lower node
on the left in Figure 2 may lead to a failure scenario on the
right that cannot be immediately interpreted as a node failure
as well.

Regardless of what a homomorphism looks like, it tells us
how the paths in the left network compare to the paths in
the right network. So, given a homomorphism f : V → V ′

and g : E → E′, from a network G to a network G′,
and a set of routes R in network G, the function g of a
homomorphism maps these routes to a set g(R) of paths the
right network. We can then verify that these paths are still
routes by making the comparison g(R) ⊆ R′ to the routes R′

in network G′ (or more precisely g(R∩Paths) ⊆ R′∩Paths ′
if we want to capture that we only consider routes that are
not only part of the regular language of allowed routes, but
also actually present as paths through the graph). We can
also verify that the weight of a connection between nodes s
and t has not changed, by comparing the weight functions:
WX(s, t) = W ′X(f(s), f(t)). If a homomorphism between
two networks G and G′ lives up to a number of such checks
regarding the connectivity scenarios associated with G and G′,
we can draw conclusions about possible changes in the hazard
value from this.

Theorem 1 (Hazard decrease). Let 〈G,R, φ,W,D〉 and
〈G′, R′, φ′,W ′, D〉, with W and W ′ having the same index
set D are two connectivity scenarios, and let (f, g) be a
homomorphism from G to G′ where g an injective function.
If the connectivity scenarios are such that for all X ∈ D,
(s, t) ∈ V × V :

i) WX(s, t) ≤W ′X(f(s), f(t));
ii) maxv,w∈V WX(v, w) = maxv′,w′∈V ′W

′
X(v′, w′);

iii) g(R ∩ Paths) ⊆ R′ ∩ Paths ′, lifting g to E∗;
iv) φ(F) ≥∑g−1(F ′)=F φ′(F ′), for all ∅ ⊂ F ⊆ E

then the hazard value of G′ is not larger than that of G, i.e.
γ(G,R, φ,W,D) ≥ γ(G′, R′, φ′,W ′, D).

Theorem 1 states that, if we do not merge any edges
(i.e. the function g in the homomorphism is injective) and
if the weight between any two nodes and for any demand

increases (condition i: WX(s, t) ≤W ′X(f(s), f(t))), while the
maximum attainable weight for any demand remains the same
(condition ii: maxv,wWX(v, w) = maxv′,w′W

′
X(v′, w′)),

then the hazard value does not increase. Also, if we do not
merge any edges and the number of valid routes increases
(condition iii: g(R∩Paths) ⊆ R′ ∩Paths ′), the hazard value
cannot increase. Finally, if we do not merge any edges and
the probability of any set of failures decreases (condition iv:
φ(F) ≥ ∑

g−1(F ′)=F φ′(F ′), except when F = ∅), the
hazard value cannot increase.

The reason for requiring that we do not merge any links (i.e.
require g to be injective), is that merging links may directly
result in merging of set of failures that were previously inde-
pendent. This increased dependency between failure scenarios
may cause a rise in the hazard value, as illustrated next.

A rise in hazard value can occur when two nodes are
merged, but also when the weight between any two nodes
and for any demand decreases, while the maximum attainable
weight for any demand remains the same. Also, if we have a
homomorphism from G to G′ and all the ‘new’ routes in G′

have weight 0, the hazard value does not decrease because of
those new routes. And finally, if the probability of all failures
increases (except the empty failure in which nothing fails),
the hazard value increases as well. Note, however, that these
increases can even be concluded if edges are merged in the
process of going from G to G′.

Theorem 2 (Hazard increase). Let 〈G,R, φ,W,D〉 and
〈G′, R′, φ′,W ′, D〉 with W and W ′ having the same index
set D be two connectivity scenarios, and let (f, g) be a
homomorphism from G to G′. If the connectivity scenarios
are such that for all X ∈ D and (s, t) ∈ V × V :

i) WX(s, t) ≥W ′X(f(s), f(t));
ii) maxv,w∈V WX(v, w) = maxv′,w′∈V ′W

′
X(v′, w′);

iii) W ′X(σ′) = 0 unless there exists σ ∈ R ∩ Paths with
g(σ) = σ′;

iv) φ(F) ≤∑g−1(F ′)=F φ′(F ′), for all ∅ ⊂ F ⊆ E
then the hazard value of G′ is not smaller than that of G, i.e.
γ(G,R, φ,W,D) ≤ γ(G′, R′, φ′,W ′, D).

As a corollary, when the conditions of both theorems hold,
the hazard value remains equal. In particular, this is the case
if we have an isomorphism between networks, i.e. if the
networks are the same up to the router and link names.

B. Compositionality

Apart from the monotonicity properties discussed in the
previous section, our definition of hazard value is also com-
positional.

Theorem 3 (Compositional connectivity requirements). Con-
sider connectivity scenario S = 〈G,R, φ,W,D〉 with hazard
value γ, and connectivity scenario S′ = 〈G,R, φ,W ′, D′〉
with hazard value γ′. Note that the scenarios share the same
network, routing, and DFP, and assume D and D′ disjoint. The

6

hazard value of the combined scenario S′′ = 〈G,R, φ,W ∪
W ′, D ∪D′〉 is given by

γ′′ =
W

W +W ′
γ +

W ′

W +W ′
γ′

where W =
∑
X∈Dmaxv,w∈V WX(v, w) denotes the maxi-

mum achievable sum of weights in a scenario.

Furthermore, the hazard value is—to a certain degree—
compositional with respect to the combination of independent
DFPs. To show this, we first have to consider what it means
to combine two different DFPs.

Let φ and φ′ represent two DFPs defined on the same
network G. When both failures can occur independently of
one another, this leads to a combined DFP defined by the
convolution:

(φ⊗ φ′)(F) =
∑

K∪H=F

φ(K) · φ′(H) .

While it is impossible to consider at a general level what
the exact effect is of combining two DFPs in this way on the
hazard value, it is possible to determine a bound. After all, we
expect that introducing a new source of failure may increase
the hazard value. Furthermore, we can show that the combined
hazard value is never larger than the weighted sum of hazard
values of the separate scenario, where the weights represent
the condition that the failures occur in isolation.

Theorem 4 (Compositional DFPs). Consider connectivity
scenario S = 〈G,R, φ,W,D〉 with hazard value γ, and
connectivity scenario S′ = 〈G,R, φ′,W,D〉 with hazard
value γ′. Note that the scenarios only differ in their failure
distribution. The hazard value γ′′ of the combined scenario
S′′ = 〈G,R, φ⊗φ′,W,D〉 is then bounded by: max{γ, γ′} ≤
γ′′ ≤ φ′(∅)γ + φ(∅)γ′.

Note, that given a DFP φ, an additional source of failure for
a single link e ∈ E with probability p leads to the convolution
φ⊗ψe,p, where ψe,p is given by ψe,p(∅) = 1−pe, ψe,p({e}) =
p, and ψe,p(F) = 0, elsewhere. Interestingly, from the fact
that max{γ, γ′} ≤ γ′′ in the theorem above, we can then
already conclude that this added source of failure may lead to
a larger or equal hazard value. This gives us another type of
monotonicity that cannot be readily deduced from Theorems
1 and 2. This monotonicity can, for example, be exploited
in the calculation of the hazard value, as it tells us that we
can approximate complex DFPs by, for example, first only
considering only upto n failures. This will give an increasingly
good approximation as n rises.

V. COMPUTING THE HAZARD VALUE

We shall now discuss the algorithmic issues related to
computing the hazard value for a given connectivity scenario.
In order to be able to pass a connectivity scenario as an input
to an algorithm, we shall assume that the routing language
R is regular and represented by a regular expression, or
equivalently by a nondeterministic finite automaton (NFA). All
examples of routing languages that we use in this paper are

Algorithm 1 Baseline algorithm for the hazard value
1: Input: A connectivity scenario 〈G,R, φk,W,D〉, where
G = (V,E, src, dst) is the network, the path constraint
R is represented by an NFA A, and k is the maximum
number of failed links.

2: Output: The hazard ratio of the network
3: sum := 0.0
4: for all F ⊆ E s.t. |F | ≤ k, and X ∈ D do
5: m := 0
6: for all (s, t) ∈ V × V do
7: if WX(s, t) > m∧reachF(s, t) then m :=W (s, t)

8: sum := sum+ φk(F) ·m
9: optimum :=

∑
X∈Dmaxs,t∈XW (s, t)

10: return 1− sum
optimum

regular. We shall also study more fine-grained DFPs, where
we consider only up-to-k concurrent link failures, φk(F) =

φ(F)∑
|H|≤k φ(H) when |F | ≤ k and φk(F) = 0 elsewhere, as

discussed in Section II.
We are now interested in the question, how expensive is it

to compute the hazard value for up-to-k failures in a given
connectivity scenario 〈G,R, φk,W,D〉. The problem whether
γ(G,R, φk,W,D) ≤ δ for a given δ is clearly decidable in
PSPACE by brute-force enumeration of all failure scenarios
(while reusing the space). In this way the exact hazard value
can be computed and compared to the given threshold value
δ. On the other hand, we can prove by reduction from 3SAT
that already the question whether the hazard value is nonzero
becomes NP-hard (and this decision problem is also in NP as
we can guess the failure that makes the hazard value nonzero
and verify this in a polynomial time).

Theorem 5. Consider a connectivity scenario
〈G,R, φk,W,D〉, with φk the up-to-k independent DFP.
The problem to decide whether γ(G,R, φk,W,D) 6= 0 is
NP-complete.

A. Efficient Computation of Hazard Value

A direct way of computing the hazard function consists in
enumerating all possible failure scenarios of size at most k and
to sum the weight of the demands which remains connected.
This is the approach described in Algorithm 1. To ensure that
paths from a source to a destination respect a given set of
constraints captured by a given nondeterministic automaton,
we propose a standard Algorithm 2 that in an on-the-fly
manner returns true if and only if it is possible to reach t from
s under the given path constraints, by iteratively annotating
each node in the network by the set of control states the NFA
can be in when reaching the node. The correctness of the
baseline algorithm should be clear as it very closely mimics
the definition of the hazard value.

As already checking if the hazard value is nonzero is NP-
hard, we cannot expect to find a polynomial-time algorithm
for computing the value of the hazard function. However, we

7

Algorithm 2 Boolean function reachF (s, t)

1: Input: Failure scenario F and two nodes s, t ∈ V
such that s 6= t. The NFA A = (Q,E, δ, q0, Qf) rep-
resenting regular language over E and the graph G =
(V,E, src, dst) are implicitly given.

2: Output: reachF (s, t) = true if t is reachable from s
under the path constraints defined by the language of A
and without using edges in F , false otherwise

3: Let τ : V → 2Q be initialized s.t. τ(s) = ∅ for all s ∈ V
4: pending := {s}
5: τ(s) := {q0}
6: while pending 6= ∅ do
7: Remove u from pending
8: for e ∈ E r F s.t . src(e) = u do
9: v := dst(e)

10: X := ∪q∈τ(u)δ(q, e)
11: if X 6⊆ τ(v) then
12: pending := pending ∪ {v};
13: τ(v) := τ(v) ∪X
14: if v = t and τ(v)∩Qf 6= ∅ then return true

15: return false

can significantly speed up the computation for average case
complexity as we now show and document by our experiments.

Our efficient algorithm relies on enumerating all possible
cuts with at most k edges that decrease the overall reward
in the network. The algorithm is based on the set of all cuts
CutsA(s, t) = {F ⊆ 2E | PathsF (s, t) ∩ L(A) = ∅} that
disconnect the nodes s and t under the constraint A. Given a
set of failed edges F ⊆ E and a set of unfailing edges U ⊆ E
such that F ∩ U = ∅, we also define the capacity of a cut
c ∈ CutsA(s, t) as follows:

CUF (c) =

∑
e∈c C

U
F ({e}) if |c| > 1

∞ if |c| = 1 and c ⊆ U
0 if |c| = 0 or c ⊆ F
1 otherwise.

Based on this definition, we can now introduce the strategic
cut enumeration described in Algorithm 3 where mincut is a
function returning the min cut (set of edges that disconnet a
source s from the target t) under a capacity function C.

The algorithm uses a stack storing sets of edges to enumer-
ate all possible failure scenarios. Initially, all edges have an
unknown status and once they are pushed on the stack, they are
marked as absent (part of a failure). During the backtracking,
all edges are one by one swapped from absent to present
(line 31 to 33), meaning that we now assume that they are
present in the network and can be used for forwarding packets.
Instead of pushing individual edges on the stack, we push
sets of them (representing the minimal cuts that disconnet the
largest achievable rewards for the selected demand X) at the
same time. This allows us to speed up the computation and
skip the enumeration of a large number of failure scenarios
that either (i) cannot disconnect the highest achievable reward
of the demand X , in which case these accumulated rewards

can be added to sum at line 15 by calling the function
compute_prob, or (ii) those that already disconnected the
source and target nodes in the demand X and hence cannot
contribute to the overall reward, irrelevant whether the edges
with unknown status are present or absent (line 20).

Theorem 6. Algorithm 3 returns the same value as the
baseline Algorithm 1 and hence computes correctly the hazard
value for the given connectivity scenario.

VI. HAZARD VALUE EXPERIMENTS

We implemented our strategic search algorithm for comput-
ing the hazard value as well as the baseline brute-force search
algorithm. Our empirical results show that our algorithm is
by several orders of magnitude faster and that it is suitable
for computing the hazard values for network topologies of
realistic sizes. We also analyze the computed hazard values for
the Internet Topology Zoo networks and datacenter networks,
and show that the computed values correspond to the intuitive
understanding of connectivity in networks. A reproducibility
package is available at [10].

A. Methodology

To evaluate the practical performance of our strategic search
algorithm, we conduct experiments on a wide range of wide-
area networks (ISP networks) from the Internet Topology
Zoo [23] representing sparse and irregular types of topologies
with several hundred of nodes, as well as on the classic
datacenter topologies fat-tree [6] and BCube [18].

In order to generate flow demands for the Topology Zoo
networks, we select 10% of all node pairs with the largest
distance between them and consider two types of regular path
constraints: (i) waypointing with 0, 1 and 2 waypoints (no
waypoint corresponds to pure reachability) and (ii) service
chaining with two given nodes that must be visited in a
predefined order.

For the fat-tree, we distinguish between core, aggregator
and edge nodes, using a parameter n: we initialize a fat tree
with n2

4 core nodes and n disjoint pods of n
2 aggregators

and n
2 edges. Each aggregator is connected to n

2 core routers;
similarly each edge router is connected to all n

2 aggregators
of its pod. We consider the BCube topology in a hierarchical
manner, with core routers and sites: for an integer n we create
n core nodes and n sites containing one router and n leaves
connected to it; the i-th core node is again connected to the i-
th leaf of each site. For both datacenter topologies, we create
demands between any pair of two distinct leafs/edge nodes
in the same site and from each leaf to the core routers. We
consider two types of regular path constraints: (i) reachability
without any restriction and (ii) valley-free routing as described
earlier in this paper.

In all experiments, we consider failures for varying numbers
of failed links k ranging from 1 up to 10 concurrently failed
links for ISP topologies and up to 20 failed links for the
datacenter topologies. The probability of each failure depends

8

Algorithm 3 Strategic algorithm for the γ hazard function
1: Input: A connectivity scenario 〈G,R, φk,W,D〉 where G = (V,E, src, dst) is the network, the path constraint R is

represented by an NFA A, and k is the maximum number of failed links.
2: Output: The hazard value of the network
3: sum := 0.0
4: for all X ∈ D do
5: E′ := {e ∈ E | ∃(s, t) ∈ X. ∃π ∈ Paths(s, t) ∩ L(A). e ∈ π}
6: Let status : E′ 7→ {unknown, absent , present} be s.t. status(e) := unknown for all e ∈ E′
7: Initialize stack to empty stack where its elements are sequences of edges from E′

8: Define unused(stack) := E′ \⋃c∈stack c
9: Define F (stack) := {e ∈ stack | status(e) = absent}

10: Define U(stack) := {e ∈ stack | status(e) = present}
11: repeat
12: (s, t) := argmax(s,t)∈X{WX(s, t) | (s, t) ∈ X.∃π ∈ Paths(s, t) ∩ L(A).∀e ∈ π.e 6∈ F (stack)} *** max∅ = 0

13: c := argminc∈CutsA(s,t) C
U(stack)
F (stack) (c)

14: if |F (stack)|+ C
U(stack)
F (stack) (c) > k then

15: sum := sum+W (s, t) · compute_prob(unused(stack), F (stack))
16: backtrack(stack)
17: else
18: status(ei) := absent for all ei ∈ c
19: stack .push(c)
20: if ¬

(
∃s, t ∈ X s.t. reachF (stack)(s, t)

)
then backtrack(stack)

21: until |stack | = 0

22: optimum :=
∑
X∈Dmax(s,t)∈XW (s, t)

23: return 1− sum
optimum

24:
25: backtrack(stack) =
26: while |stack | > 0 ∧ status(e) = present for all e ∈ stack .peek() do
27: status(e) := unknown for all e ∈ stack .peek()
28: stack .pop()

29: if |stack | > 0 then
30: Let c := stack .peek()
31: Let ei ∈ c s.t. status(ei) = absent and status(ej) = present for all i < j ≤ |c|
32: status(ei) := present
33: status(ej) := absent for all i < j ≤ |c|
34:
35: compute_prob(unused , F)= return

∑
F ′⊆unused,|F∪F ′|≤k φk(F ∪ F ′)

on the probability of 0.001 that a single edge fails (independent
of the failure probability of the other edges).

For each scenario and different k values, we run both our
baseline brute-force enumeration algorithm and the strategic
enumeration algorithm with a 10 minute timeout and 16 GB
memory limit. The experiments are executed on AMD EPYC
7551 processors running at 2.55 GHz with boost disabled.

For visualizing the relative performance of the baseline
algorithm and our strategic enumeration, we use cactus plots
(see e.g. [5]), where for each of the methods, we record the
runtime on each instance of the problem. Then we (indepen-
dently for each algorithm) sort the instances by increasing
runtime and plot them as two curves. Note that the y-axis is on
logarithmic scale. While cactus plots do not provide instance-
to-instance comparison, they deliver an overall picture of the

relative performance of the algorithms.

B. Performance Results

In Figure 3 we can see the performance of the baseline
algorithm and our strategic one for the CPU time (in seconds)
needed to compute the hazard values on the networks from the
Topology Zoo database, both for the service chaining routing
language as well as the waypointing with up to 2 waypoints.
Already in the service chaining scenario, we are two orders
of magnitude faster than the baseline on the largest instance
that the baseline can solve. The advantage of our algorithm is
even more clear for the waypointing path restriction scenario
where we see several orders of magnitude improvement. The
situation is analogous for the datacenter experiments presented
in Figure 4 where both for the basic reachability as well as

9

0 250 500 750 1000 1250 1500 1750
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

Strategic
Brute-force

0 1000 2000 3000 4000 5000 6000
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

Strategic
Brute-force

Figure 3. Topology Zoo with service chaining (left) and waypointing (right)

0 50 100 150 200 250 300 350
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

Strategic
Brute-force

0 50 100 150 200 250
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

Strategic
Brute-force

Figure 4. Datacenter with basic reachability (left) and valley-free routing (right)

50 100 150 200 250
Networks

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Ha
za

rd
 va

lue

Figure 5. Hazard values for the Topology Zoo (k = 3)

Figure 6. GlobalCenter (left) with γ=0.00000 for k = 3 and Sogo (right)
with γ=0.01134 for k = 3

for valley-free routing (discussed earlier) the two curves open
even faster than in the case of ISP topologies.

In conclusion, our strategic algorithm is applicable to real
ISP and datacenter topologies, and the current implementation
(in Python) allows us to compute in about 5 minutes the
hazard value for 2 to 3 failed links on Topology Zoo networks

of sizes up to couple of hundred of nodes and 300-400
links. For the more regular datacenter topologies, we can
within 5 minutes compute the hazard value for similarly sized
topologies in the number of nodes but with up to 1000 links
and for a larger number of failed links (between 10 to 20).
As a result, our method is (in its prototype implementation)
already applicable to medium size networks, and we expect
that additional optimizations can further improve the scaling.

C. Hazard Values for ISP Topologies

Finally, we analyze the hazard values for ISP topologies
from the Topology Zoo for k = 3 number of failed links. The
distribution of the hazard values for these network topologies
is depicted in Figure 5. We can notice that there are few highly
connected networks with hazard value zero, meaning that
there is no failure scenario with up to 3 failed links that can
disconnect any of the demands, meaning the these networks
are highly resilient for failures. An example of such a network
is GlobalCenter with the hazard value zero as depicted2 in
Figure 6. More than 200 out of 260 topologies have a hazard
value below 0.002, meaning they only suffer a loss in value of
0.2% compared to the maximal achievable reward by a fully
connected network. However, there are a few topologies with
relatively high hazard value. In case of the Sogo network in
Figure 6, the hazard value is 0.01, meaning that connection
failures are expected to lead to a 1% loss in reward value.

2The Topology Zoo graphs are taken from http://www.topology-zoo.org/

10

http://www.topology-zoo.org/

It is clear that in such a network topology, there is a large
number of failure scenarios that can completely disconnect
the end-points in the network. Hence, the computed hazard
values correspond to the intuitive understanding of more or
less resilient types of network topologies.

VII. RELATED WORK

There exists literature on the empirical characteristics
of failures, e.g., in datacenters [16], [37], state-wide net-
works [34], or IP backbones [20]. This is highly valuable for
the comparison of existing networks, but does not directly
solve the problem of comparing network designs that are
not yet implemented. On the other hand, empirical research
provides valuable inputs to the method described in this paper.

In the graph-theory community, the connectivity of a graph
is often measured in terms of its minimum cut or the number
of available disjoint paths, which are common measures not
only for the throughput achievable in a network but also for
its resilience [2], [3], [35]; cuts also form the basis for the
frequently used expansion measures [19]. Another approach,
primarily used by the parallel-computing community, is to
measure how many failures a network can sustain while still
being able to emulate its ideal counterpart with a certain
maximal overhead (e.g., a constant slowdown) [24], [29]. Both
worst-case scenarios—in which adversarial failures cause a
loss of connection—as well as average-case scenarios—in
which the probability of loss of connection is computed—are
well understood [2]. However, these generic graph-theoretic
metrics treat all the connections in a graph as equal, and do not
consider the fact that for a network operator some connections
are more important than others.

Within the networking community, additional specific met-
rics are considered. Some of them, such as the protection
ratio [15], revolve around single failures (asking how many
individual failures are protected), while we in this paper are
particularly interested in multiple failures; other metrics, such
as the loop ratio [9], are concerned with the detailed network
behavior during convergence after failures, while during the
consideration of alternative topologies, the details of the
routing mechanism are not always known in sufficient detail to
consider such metrics—which is why we assume fast rerouting
in this paper. Two interesting connectivity measures in the
context of scenarios with multiple failures, and accounting
for the locality constraints imposed by fast rerouting, are the
perfect [11]–[13] and the ideal [8], [14] resilience. However,
these measures only account for locality constraints, but not
any of the other aspects considered in this paper, nor do they
provide similar powerful properties.

Our work is also related to survivable network design, a
classic topic in operations research [17], [28]. A general and
powerful approach to design networks which are robust to
failures, uses mathematical programming, and in particular,
(integer) linear programming. A well-known platform which
also provides benchmarks for telecommunication networks is
SNDlib [27]. However, we are not aware of any existing

approach in this context which accounts, e.g., for alternatives
or more complex routing constraints and DFPs.

There further exists interesting literature on the impact
of routing constraints on connectivity, for example, in the
context of inter-domain routing (in the absence of failures),
where routing policies typically need to be compatible with
business considerations [22]; or in the context of fast rerout-
ing where failover rules are inherently local and can harm
connectivity [7]. Our paper accounts for the physical topology
explicitly, among other properties, and we model the routing
with constraints. Our approach is hence orthogonal to work
on resilient routing mechanisms [30]. It is also orthogonal to
work studying how to verify and maintain routing and policy
constraints under failures [21], [32].

We are not aware of any connectivity measure explicitly
accounting for differences in demand on different connections,
choice between connections to resolve a given demand, pref-
erences and priorities in resolving that choice, and specific
failures. With this work, we aim to fill this gap and make a
proposal for a measure which meets a number of desirable
properties, and which can be computed efficiently.

VIII. CONCLUSION

Assessing whether a network is sufficiently robust depends
on more than its topological connectivity. Motivated by this
observation, in collaboration with a local network operator, we
developed a more general network connectivity measure, the
hazard value, which allows to account for specific demands
and distributions of failure probabilities, alternatives, routing
constraints and priorities. We have shown how the hazard value
can be computed efficiently, and can provide interesting new
insights into the connectivity of existing networks.

Regarding the required input parameters to the hazard value
computation, the traffic patterns can be derived from network
monitoring and historical data, using either the worst-case
scenario or dividing the daily traffic into a finite number
of time slices and analyzing them separately. Distribution
of failure probabilities can be derived also from historical
data and combining the independent link, node and shared-
link groups failure probabilities. The routing constraints are
by default assuming basic reachability but it can be further
restricted by the input from the network operators that may
require waypointing on some routers, valley-free routing poli-
cies, blacklisting of certain routers etc. Finally, the alternative
destinations and the weights of each demand also require an
input from the network operator but can be in the first iteration
approximated by e.g., the amount of traffic for each demand
(more traffic implying higher weight). A further research
direction is to try to automate the collection of the input data
needed for the computation of the hazard value.
Acknowledgments. We would like to thank Henrik Thostrup
Jensen from NORDUnet for many inputs and discussions. This
research was supported by the Vienna Science and Technology
Fund (WWTF), project WHATIF, ICT19-045, 2020-2024,
DFF project QASNET, the Villum Investigator Project S4OS,
and the ERC Advanced Grant Project LASSO.

11

REFERENCES

[1] A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler.
The effect of faults on network expansion. Theory of Computing
Systems, 39(6):903–928, 2006.

[2] A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler.
The effect of faults on network expansion. Theory of Computing
Systems, 39(6):903–928, 2006.

[3] A. Bagchi, A. Chaudhary, C. Scheideler, and P. Kolman. Algorithms for
fault-tolerant routing in circuit switched networks. In Proc. 14th Annual
ACM symposium on Parallel Algorithms and Architectures (SPAA),
pages 265–274, 2002.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. ACM SIGCOMM Computer Communica-
tion Review, 40(1):92–99, 2010.

[5] M. N. Brain, J. H. Davenport, and A. Griggio. Benchmarking solvers,
SAT-style. In Proceedings of the 2nd International Workshop on
Satisfiability Checking and Symbolic Computation co-located with the
42nd International Symposium on Symbolic and Algebraic Computation
(ISSAC’17), volume 1974 of CEUR, pages 1–15. CEUR-WS.org, 2017.

[6] Charles E. Leiserson. Fat-trees: Universal networks for hardware-
efficient supercomputing. IEEE Transactions on Computers,
34(10):892–901, 1985.

[7] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid. A
survey of fast-recovery mechanisms in packet-switched networks. IEEE
Communications Surveys and Tutorials (COMST), 2021.

[8] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker. On the resiliency of static forwarding
tables. IEEE/ACM Transactions on Networking, 25(2):1133–1146, 2016.

[9] F. Clad. Disruption-free routing convergence: computing minimal link-
state update sequences. PhD thesis, Strasbourg, 2014.

[10] P. Cuijpers, S. Schmid, N. Schnepf, and J. Srba. Repro-
ducibility package for: The hazard value: A quantitative net-
work connectivy measure accounting for failures, Mar. 2022.
https://doi.org/10.5281/zenodo.6394782.

[11] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla. Brief announcement: On the resilience of routing tables. In
Proceedings of the 2012 ACM symposium on Principles of distributed
computing, pages 237–238, 2012.

[12] K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan.
On the feasibility of perfect resilience with local fast failover. In
Proc. SIAM Symposium on Algorithmic Principles of Computer Systems
(APOCS), 2021.

[13] K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan.
On the price of locality in static fast rerouting. In Proc. 52nd IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2022.

[14] K.-T. Foerster, A. Kamisinski, Y.-A. Pignolet, S. Schmid, and G. Tredan.
Improved fast rerouting using postprocessing. IEEE Transactions on
Dependable and Secure Computing, 2020.

[15] P. Francois and O. Bonaventure. An evaluation of ip-based fast reroute
techniques. In Proceedings of the 2005 ACM conference on emerging
network experiment and technology, pages 244–245, 2005.

[16] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: measurement, analysis, and implications. In Proceedings
of the ACM SIGCOMM 2011 conference, pages 350–361, 2011.

[17] M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable
networks. Handbooks in operations research and management science,
7:617–672, 1995.

[18] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
S. Lu, and G. Lv. Bcube: A high performance, server-centric network
architecture for modular data centers. In ACM SIGCOMM. Association
for Computing Machinery, Inc., August 2009.

[19] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–
561, 2006.

[20] G. Iannaccone, C.-n. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot.
Analysis of link failures in an ip backbone. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, pages 237–242,
2002.

[21] P. G. Jensen, M. Konggaard, D. Kristiansen, S. Schmid, B. C. Schrenk,
and J. Srba. Aalwines: A fast and quantitative what-if analysis tool
for mpls networks. In Proc. 16th ACM International Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2020.

[22] R. Klöti, V. Kotronis, B. Ager, and X. Dimitropoulos. Policy-compliant
path diversity and bisection bandwidth. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 675–683. IEEE, 2015.

[23] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE Journal
on, 29:1765 – 1775, 11 2011.

[24] F. T. Leighton, B. M. Maggs, and R. K. Sitaraman. On the fault tolerance
of some popular bounded-degree networks. SIAM Journal on computing,
27(5):1303–1333, 1998.

[25] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review, 45(3):52–
66, 2015.

[26] W. Najjar and J.-L. Gaudiot. Network resilience: A measure of network
fault tolerance. IEEE Transactions on Computers, 39(2):174–181, 1990.

[27] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib
1.0–Survivable Network Design Library. In Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007. http://sndlib.zib.de, extended version accepted in
Networks, 2009.

[28] P. Pavon-Marino and J.-L. Izquierdo-Zaragoza. Net2plan: an open
source network planning tool for bridging the gap between academia
and industry. IEEE Network, 29(5):90–96, 2015.

[29] C. Scheideler. Models and techniques for communication in dynamic
networks. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 27–49. Springer, 2002.

[30] S. Schmid, N. Schnepf, and J. Srba. Resilient capacity-aware routing.
In Proceedings of the 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’21),
volume 12651 of LNCS, pages 411–429. Springer-Verlag, 2021.

[31] P. Sebos, J. Yates, G. Hjalmtysson, and A. Greenberg. Auto-discovery
of shared risk link groups. In OFC 2001. Optical Fiber Communication
Conference and Exhibit. Technical Digest Postconference Edition (IEEE
Cat. 01CH37171), volume 3, pages WDD3–WDD3. IEEE, 2001.

[32] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev. Prob-
abilistic verification of network configurations. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 750–764, 2020.

[33] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail
latency in cloud data stores via adaptive replica selection. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 513–527, 2015.

[34] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California
fault lines: understanding the causes and impact of network failures. In
Proceedings of the ACM SIGCOMM 2010 Conference, pages 315–326,
2010.

[35] E. Upfal. Tolerating linear number of faults in networks of bounded
degree. In Proceedings of the eleventh annual ACM symposium on
Principles of distributed computing, pages 83–89, 1992.

[36] K. Vajanapoom, D. Tipper, and S. Akavipat. A risk management
approach to resilient network design. In International Congress on
Ultra Modern Telecommunications and Control Systems, pages 622–
627. IEEE, 2010.

[37] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy, and
T. Anderson. Understanding and mitigating packet corruption in data
center networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 362–375, 2017.

12

	Introduction
	Operator's Distributed Datacenter
	Our Contributions

	Preliminaries
	Definition of the Hazard Value
	Connectivity Requirements
	The Hazard Value
	The Hazard Value of the Operators Distributed Datacenter

	Mathematical Properties and Analysis
	Monotonicity
	Compositionality

	Computing the Hazard Value
	Efficient Computation of Hazard Value

	Hazard Value Experiments
	Methodology
	Performance Results
	Hazard Values for ISP Topologies

	Related Work
	Conclusion
	References

