
Compact Oblivious Routing

Harald Räcke, Stefan Schmid

Fakultät für Informatik
TU München

18. Jun. 2019

Harald Räcke 1/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)

ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)

ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

1

2

1

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

1

2

1

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

2

1

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

1

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

0 18. Jun. 2019

Harald Räcke 2/31



Routing in Networks

Input:

ñ undirected network

G = (V , E)
ñ source/target pairs

(si, ti)
ñ demand di for i-th pair

Output:

ñ flow of value di for every

pair

s3

t3

s1

t1

s2

t2

0 18. Jun. 2019

Harald Räcke 2/31



Oblivious Routing

ñ optimization problem:

routing

algorithm

demands

network

path system with

close to optimal

cost ?
ñ difficult to implement in a distributed fashion

ñ ideally paths should be independent of demands

0 18. Jun. 2019

Harald Räcke 3/31



Oblivious Routing

ñ optimization problem:

routing

algorithm

demands

network

path system with

close to optimal

cost ?
ñ difficult to implement in a distributed fashion

ñ ideally paths should be independent of demands

0 18. Jun. 2019

Harald Räcke 3/31



Oblivious Routing

ñ optimization problem:

routing

algorithm

demands

network

path system with

close to optimal

cost ??
ñ difficult to implement in a distributed fashion

ñ ideally paths should be independent of demands

0 18. Jun. 2019

Harald Räcke 3/31



Oblivious Routing

Oblivious Routing Scheme:

ñ specifies unit flow for every source/target pair without

knowing any demands

ñ when demand di appears the unit flow between si and ti is

scaled by demand

very natural concept

0 18. Jun. 2019

Harald Räcke 4/31



Oblivious Routing

Competitive ratio of algorithm A:

max
demandd

{
cost(A,d)

opt(d)

}

0 18. Jun. 2019

Harald Räcke 5/31



Cost Measures

What do we want to optimize?

load

ñ total traffic in the network

ñ
∑
e `(e) · flow(e)

congestion

ñ maximum traffic along a network link

ñ maxe{flow(e)/c(e)}

add explanation for length and capacity

0 18. Jun. 2019

Harald Räcke 6/31



Oblivious Routing

Upper Bounds

load

ñ Shortest Path Routing is oblivious

ñ =⇒ competitive ratio: 1

congestion (undirected graphs)

ñ [R. 2002]

competitive ratio: O(log3n)
ñ [Harrelson, Hildrum, Rao 2003]

competitive ratio: O(log2n log logn)
ñ [R. 2008]

competitive ratio: O(logn)

0 18. Jun. 2019

Harald Räcke 7/31



Oblivious Routing

Lower Bounds

congestion

ñ [Bartal, Leonardi 1997]

competitive ratio: Ω(logn) on undirected graphs

ñ [Ene, Miller, Pachocki, Sidford, 2016]

competitive ratio: Ω(n) for directed graphs

0 18. Jun. 2019

Harald Räcke 8/31



Compact Oblivious Routing

Try to implement path selection scheme with small routing

tables.

Two variants:

A packet enters the network at the source with the unique name

of the destination.

labeled

the designer of the routing scheme can assign names

to the vertices of the network

name-independent

the node names are fixed and cannot be changed

0 18. Jun. 2019

Harald Räcke 9/31



Compact Routing for Load

Extensively analyzed!

Parameters:

space: size of largest routing table at a node in

the network

stretch: the competitive ratio w.r.t. cost-measure

load

Additional parameters: header-size, label-size.

0 18. Jun. 2019

Harald Räcke 10/31



Compact Routing for Load – Results

[Folklore]

stretch: 1, space: O(n logn).

[Thorup, Zwick 2001]

stretch: 4k− 5, space: Õ(n1/k), labelled

[Abraham, Gavoille, Malkhi, 2006]

stretch: O(k), space: Õ(n1/k), name-independent

0 18. Jun. 2019

Harald Räcke 11/31



Compact Routing for Congestion

No results!

Parameters:

space: size of largest routing table in the network;

goal: O(α(n) · deg(v)), i.e., we assume space at

nodes grows proportional to degree.

quality: the competitive ratio w.r.t. congestion

goal: O(polylogn)

label-size: the size of assigned labels

goal: O(polylogn)

header-size: the size of routing headers

goal: O(polylogn)

0 18. Jun. 2019

Harald Räcke 12/31



Compact Routing for Congestion

Oblivious routing schemes with good competitive ratio:

based on hierarchical decomposition

ñ [R. 2002]

competitive ratio: O(log3n)
ñ [Harrelson, Hildrum, Rao 2003]

competitive ratio: O(log2n log logn)
ñ [R., Shah, Täubig 2014]

competitive ratio: O(log4n)

based on tree embedding

ñ [R. 2008]

competitive ratio: O(logn)

Mark the scheme that we are using.

0 18. Jun. 2019

Harald Räcke 13/31



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



Underlying Path Selection Scheme

x

rx x

x x x z x x



A Single Cluster S

Messages have following form:

1. route between cluster distribution and random border edge

of sub-cluster, or

2. route between cluster distribution and random border edge

of cluster



A Single Cluster S

Messages have following form:

1. route between cluster distribution and random border edge

of sub-cluster, or

2. route between cluster distribution and random border edge

of cluster



A Single Cluster S

Messages have following form:

1. route between cluster distribution and random border edge

of sub-cluster, or

2. route between cluster distribution and random border edge

of cluster



A Single Cluster S

Messages have following form:

1. route between cluster distribution and random border edge

of sub-cluster, or

2. route between cluster distribution and random border edge

of cluster



A Single Cluster S

CMCF-problem for cluster

Every edge leaving a sub-cluster injects one unit of flow and

sends it to a random of these edges.



Competitive Ratio of Hierarchical Approach

[R. 2002]

There is a hierarchical decomposition such that every

CMCF-problem can be routed with congestion at most O(log2n)
inside the respective cluster.

=⇒ congestion O(log3n) for all CMCF-problems

=⇒ competitive ratio O(log3n)

[Harrelson, Hildrum, Rao 2003]

There is a hierarchical decomposition such that all

CMCF-problems together can be routed with congestion at most

O(log2n log logn).

=⇒ competitive ratio O(log2n log logn)

0 18. Jun. 2019

Harald Räcke 17/31



Variant A: naive encoding of CMCF-solutions

Encode a solution to the CMCF-problem for every cluster.

Every edge of the cluster-distribution gets two IDs, as it belongs

to the border of two sub-clusters (or to one sub-cluster and the

border of the whole cluster).

Every sub-cluster has a consecutive range of IDs.

A vertex of a cluster stores the ID-ranges of all sub-clusters and

the ID-range for the whole cluster (border). Note that ID-ranges

for different CMCF-problems are different.

0 18. Jun. 2019

Harald Räcke 18/31



Variant A: naive encoding of CMCF-solutions
Label node by its path from the root in the decomposition tree.

Routing:

ñ given source and destination label compute path in the

decomposition tree

ñ send packet to random edge incident to source s (i.e.,

distribute according to cluster distribution of {s})
ñ for every upward edge ((Si, Si+1))

ñ cluster distribution of Si -→ border distribution of Si
routed according to CMCF-solution for Si

ñ border distribution of Si -→ cluster distribution of Si+1

routed according to CMCF-solution for Si+1

ñ for every downward edge ((Si+1, Si))
ñ cluster distribution of Si+1 -→ border distribution of Si

routed according to CMCF-solution for Si+1

ñ border distribution of Si -→ cluster distribution of Si
routed according to CMCF-solution for Si



Variant A: naive encoding of CMCF-solutions

Encode an optimum all-to-all multicommodity flow for every

cluster with precision ε.

ñ competitive ratio: O(height(T) log2n)
ñ labels encode path in the decomposition tree;

label size: O(height(T) log(deg(T)))
ñ header encodes path between source and target in the tree;

id of target in current routing step

header size: O(height(T) log(deg(T)))+O(logm)
ñ a node stores for every flow a probability distribution over

outgoing edges;

table size: O(m2 height(T)deg(v) log(1/ε)) very poor

in addition it stores the ranges for sub-clusters;

size: deg(T)height(T) log(m)



Variant B: encode single-commodity flows to

sub-clusters

Encode a flow from every sub-cluster border to the

cluster-distribution (and back) (≤ 2 deg(T) flows for every

cluster)

ñ competitive ratio: O(height(T)deg(T) log2n)
ñ labels encode path in the decomposition tree;

label size: O(height(T) log(deg(T)))
ñ header encodes path between source and target in the tree;

header size: O(height(T) log(deg(T)))
ñ a node stores for every flow a probability distribution over

outgoing edges;

table size: O(deg(T)height(T)deg(v) log(1/ε))

0 18. Jun. 2019

Harald Räcke 21/31



Variant C: hypercube embedding (unweighted graph)

Edges are assigned IDs as in Variant A. Assume that the number

of IDs is 2d.

Embed d-dimensional hypercube by solving a CMCF-problem.

Can be embedded with congestion O(d log2n) as any

permutation can be embedded with congestion O(log2n).

Apply randomized rounding:

ñ decompose the flow for every commodity into a distribution

over paths

ñ pick a single path from this distribution

ñ with high probability the load on any edge increases by at

most an additive O(logn)

0 18. Jun. 2019

Harald Räcke 22/31



Variant C: hypercube embedding

When routing from ID 1 to ID 2 we route along edges of the

hypercube using a random intermediate destination.

This induces constant expected load on an edge of the

hypercube (provided the overall demand can be routed with

congestion 1).

0 18. Jun. 2019

Harald Räcke 23/31



Variant C: hypercube embedding

d = O(logm) is dimension of cube

ñ competitive ratio: O(height(T)d log2n)
ñ labels encode path in the decomposition tree;

label size: O(height(T) log(deg(T)))
ñ header encodes path between source and target in the tree;

in addition it stores intermediate target(s) in the cube

header size: O(height(T) log(deg(T)))+O(d)
ñ a node stores its hypercube IDs and for every path a path-id

and an outgoing edge;

table size:

O(height(T)deg(v)(log(m)+ d log2n · log(deg(v))))

in addition it stores the ranges for sub-clusters...

0 18. Jun. 2019

Harald Räcke 24/31



Variant C: hypercube embedding

Round every range to a power of 2.

Sort the subclusters according to the size of their range.

Let R ≤ deg(T)+ 1 denote the number of ranges; (number of

sub-clusters + 2). Let S ≤ logm denote the number of different

range classes.

We store separators between range classes, and for every

separator the start ID of the range class. Requires at most

O(logm · (log(deg(T))+ logm)) bits.

range of cube

i-th range

start id
first child



Variant D: weights 1 and W

Task: embed all-to-all flow between subset of edges

Challenge:

ñ Randomized rounding of all-to-all flow generates path of

weight 1.

ñ A heavy edge may see W of these paths.



Variant D: weights 1 and W

Sub-problem

Route all-to-all between subset of light vertices.

Idea

Use cut-matching game [KRV] to embed expander between light

vertices.

Cut-matching game embeds an expander as a set of polylog(n)
arbitrary matchings between subsets.

s t

0 18. Jun. 2019

Harald Räcke 27/31



Variant D: weights 1 and W

We can store one-directional routing paths along a matching

very efficiently.

s t

The paths arise from decomposing an integral single-commodity

flow.

store separation



Variant D: weights 1 and W

We can store one-directional routing paths along a matching

very efficiently.

s t

The paths arise from decomposing an integral single-commodity

flow.

store separation



Variant D: weights 1 and W

We can store one-directional routing paths along a matching

very efficiently.

s t

The paths arise from decomposing an integral single-commodity

flow.

store separation



Variant D: weights 1 and W

Instead of embedding a matching we embed two directional

matchings in every round.

This is sufficient to get an expander. Congestion O(log2n) for

every round of the cut-matching game.

In this expander we embed a hypercube; this can be done with

congestion O(log2n) and path of logarithmic length (inside the

expander).

We can store this embedding by storing the whole path at every

source. In total O(logm) bits for every incident hypercube edge.



Variant D: weights 1 and W

If the light vertices are in the majority the heavy vertices can first

route to light vertices (via a multi-commodity flow) and use the

hypercube there.

Can also be extended to the case when the heavy vertices are in

the majority.

0 18. Jun. 2019

Harald Räcke 30/31



Open Problems:

ñ General weighted graphs?

ñ For which graphs do we have decomposition trees with

small degree?

ñ Generally, what is the loss in quality if we want to establish

a multi-commodity flow solution with small routing tables?

ñ Name-independent case?

0 18. Jun. 2019

Harald Räcke 31/31


