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Abstract10

We introduce a novel method for the rigorous quantitative evaluation of online algorithms that11

relaxes the “radical worst-case” perspective of classic competitive analysis. In contrast to prior work,12

our method, referred to as randomly infused advice (RIA), does not make any assumptions about13

the input sequence and does not rely on the development of designated online algorithms. Rather,14

it can be applied to existing online randomized algorithms, introducing a means to evaluate their15

performance in scenarios that lie outside the radical worst-case regime.16

More concretely, an online algorithm ALG with RIA benefits from pieces of advice generated by17

an omniscient but not entirely reliable oracle. The crux of the new method is that the advice is18

provided to ALG by writing it into the buffer B from which ALG normally reads its random bits,19

hence allowing us to augment it through a very simple and non-intrusive interface. The (un)reliability20

of the oracle is captured via a parameter 0 ≤ α ≤ 1 that determines the probability (per round)21

that the advice is successfully infused by the oracle; if the advice is not infused, which occurs with22

probability 1 − α, then the buffer B contains fresh random bits (as in the classic online setting).23

The applicability of the new RIA method is demonstrated by applying it to three extensively24

studied online problems: paging, uniform metrical task systems, and online set cover. For these25

problems, we establish new upper bounds on the competitive ratio of classic online algorithms that26

improve as the infusion parameter α increases. These are complemented with (often tight) lower27

bounds on the competitive ratio of online algorithms with RIA for the three problems.28
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1 Introduction33

Competitive ratio is a widely used metric for evaluating the performance of online algorithms.34

It measures the ratio between the performance of an online algorithm and that of an optimal35

offline (clairvoyant) algorithm, assuming a worst-case (i.e., adversarial) input sequence. Early36

on, it has been observed (see, e.g., [52]) that in practice, many online algorithms outperform37

their theoretical worst-case guarantees. Indeed, in realistic scenarios, the online algorithms38

tend to “enjoy a good fortune” and rarely encounter the theoretical pitfalls that realize the39

competitiveness lower bounds (cf. [40]).40

This phenomenon has led to extensive research on the analysis of online algorithms41

beyond the extreme worst-case nature of traditional competitive analysis (see [37] for a recent42

survey). A prominent approach in this regard is to restrict the power of the adversary that43

decides on the input sequence, giving rise to the methods of locality of reference [3, 7, 2],44

access graph [20], smoothed analysis [46, 15], random arrival order [4, 6, 5], independent45

sampling [27], diffused adversaries [40], and distributional analysis [47, 33]. Another approach46

is to relax the competitive analysis definition, as done in resource augmentation [49], loose47

competitiveness [52], and competitiveness with high probability [38]. See also the surveys [29,48

23] for additional measures.49

In this paper, we wish to advance the study of (randomized) online algorithms beyond50

worst-case competitive analysis by offering a radically new point of view on the concept of51

“enjoying a good fortune” (in terms of avoiding the competitiveness pitfalls). Our approach52

does not restrict the power of the adversary, hence we do not need to justify any assumptions53

on the request sequence. Moreover, we use the standard definition of competitive analysis54

(with no relaxations). Last but not least, in contrast to some existing “beyond worst-case”55

methods, which are limited to certain types of online problems (e.g., locality of reference and56

access graph), our new method is very general and can be applied to seemingly any online57

problem.58

So, how do we interpret “good fortune” on behalf of a randomized online algorithm ALG59

without making any assumptions on ALG’s input sequence? The answer is simple: we look60

at the outcome of ALG’s random coin tosses. That is, to make ALG more fortunate, all we61

have to do is to increase the chances of getting good such outcomes.62

This raises another question: what makes one outcome of ALG’s random coin tosses63

better than another? To answer this question, we recruit an omniscient oracle that generates64

advice for ALG in each round of the execution. The crux of our method, called randomly65

infused advice (RIA), is that the oracle attempts to write this advice into the buffer B from66

which ALG normally reads its random bits. To quantitatively control ALG’s good fortune,67

we introduce an infusion parameter 0 ≤ α ≤ 1, which determines the probability that the68

advice is (successfully) infused by the oracle in each round (independently); if the advice is69

not infused — an event occurring with probability 1− α — then the buffer B contains fresh70

random bits (as in the classic online setting). Refer to Figure 1 for an illustration.71

We emphasize that the interface between the randomized online algorithm ALG and the72

oracle is “non-intrusive”, i.e., it is defined on top of the standard computational model of73

(randomized) online algorithms (a.k.a. request-answer games). Therefore, the RIA method is74

suitable for the analysis of existing online algorithms (including classic ones), facilitating75

the evaluation of their performance beyond the extreme worst-case nature of traditional76

competitive analysis. This is in contrast to other advice models for online algorithms77

(discussed in Section 1.2) in which the oracle-algorithm interface is based on a designated78

buffer (or tape) from which the algorithm reads the advice. As such, these models require79

the development of new, model-specific, algorithms and cannot be applied to existing ones.80
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Figure 1 In each round, the algorithm reads its random bits from buffer B. Under the RIA
model, the content of this buffer is replaced by the oracle’s advice for that round with probability α,
independently of other rounds.

Notice that the RIA model does not impose any limitations on the size of the buffer B,81

and through it, on the advice size (or the number of random bits) provided to ALG in82

each round. This raises the concern of making the online algorithm “too powerful” as the83

(successfully) infused advice may hold excessive information regarding the future requests. To84

overcome this concern, we restrict our attention to randomized online algorithms which are85

randomness-oblivious, namely, in each round, ALG has access to past requests, past answers,86

the current request, and the current content of the buffer B (which contains the current87

advice or random bits), however ALG cannot access the content of B in previous rounds.88

Indeed, all algorithms analyzed in this paper are randomness-oblivious.89

The main motivation for studying the RIA method comes from analyzing the performance90

of randomized online algorithms in scenarios that lie outside the “radical worst-case” regime,91

assumed in the classic online computation literature. In particular, this new method allows us92

to compare between different online algorithms that exhibit the same performance guarantees93

in worst-case scenarios, possibly separating between them in terms of their performance once94

the scenarios get “a little bit better”, and to so without making any explicit assumptions95

about the request sequence (or the probability distribution thereof).96

Another motivation is that the RIA model provides an abstraction for an unreliable97

predictor (whose role is assumed by the oracle) whose “mistakes” take a random (rather98

than worst-case) flavor, where the infusion parameter α indicates the (expected) fraction of99

rounds in which the predictor is correct. In this regard, the non-intrusive interface between100

the online algorithm and the oracle gives the RIA model a distinctive advantage over existing101

advice models for online algorithms as it enables the analysis of standard online algorithms102

in scenarios that include an unreliable predictor, while retaining their worst-case guarantees.103

1.1 Our Contribution104

On top of the conceptual contribution that lies in introducing the RIA model, we make the105

following technical contribution.106

Upper bounds. The applicability of the new RIA model is demonstrated on three exten-107

sively studied online problems: the paging problem [49], for which we analyze the classic108

RandomMark algorithm [31]; the uniform metrical task system (MTS) problem [21], for109

which we analyze the classic UnifMTS algorithm; and the unweighted online set cover110

problem [9], for which we analyze the influential primal-dual algorithm [24, Ch. 4] with111

randomized rounding (referred to as RandSC). In all cases, our findings are similar to what112

is called “robustness” and “consistency” in the literature dedicated to online algorithms with113

predictions [41, 45]: when augmented with RIA, the competitive ratio of these algorithms is114
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never worse than the original, and improves asymptotically as α→ 1. Our results are cast115

in the following three theorems, where we denote the k-th harmonic number by Hk ≈ log k;116

we emphasize that in all cases, neither the online algorithm nor the oracle are aware of the117

infusion parameter α.118

▶ Theorem 1.1. The competitive ratio of RandomMark augmented with RIA with infusion119

parameter 0 ≤ α ≤ 1 on instances of cache size k is at most min{2Hk, 2
α}.120

▶ Theorem 1.2. The competitive ratio of UnifMTS augmented with RIA with infusion121

parameter 0 ≤ α ≤ 1 on n-state instances is at most min{2Hn, 2
α + 2}.122

▶ Theorem 1.3. The competitive ratio of RandSC augmented with RIA with infusion123

parameter 0 ≤ α ≤ 1 on instances with n elements and maximum element degree d is at most124

O(min{log d log n, log n
α }).125

Lower bounds. On the negative side, we prove that the upper bound promised in The-126

orem 1.1 is asymptotically tight for the class of lazy algorithms, which are not allowed to127

change their cache configuration unless there is a page miss.128

▶ Theorem 1.4. There does not exist a lazy (randomness-oblivious) online paging algorithm129

augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances130

of cache size k is better than min{Hk, 1
α}.131

Omitting the restriction to lazy algorithms, we can establish a weaker lower bound.132

▶ Theorem 1.5. There does not exist a (randomness-oblivious) online paging algorithm133

augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances134

of cache size k is better than min{Hk, 1
k·α}.135

The uniform MTS problem generalizes the paging problem on instances that include136

n = k + 1 pages. As Theorems 1.4 and 1.5 hold (already) for such instances, their promised137

lower bounds are transferred to the uniform MTS problem, where laziness translates to online138

MTS algorithms that may switch state only when the processing cost is positive [32] (an139

algorithm class that includes UnifMTS).140

▶ Theorem 1.6. There does not exist a lazy (randomness-oblivious) online uniform MTS141

algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio142

on n-state instances is better than min{Hn−1, 1
α}.143

▶ Theorem 1.7. There does not exist a (randomness-oblivious) online uniform MTS algorithm144

augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on n-state145

instances is better than min{Hn−1, 1
(n−1)·α}.146

For online set cover, we establish a lower bound for lazy algorithms, namely, online147

algorithms which are allowed to buy a set only if it contains the current (uncovered) element148

(an algorithm class that includes RandSC).149

▶ Theorem 1.8. There does not exist a lazy (randomness-oblivious) unweighted online set150

cover algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive151

ratio on instances with maximum element degree d is better than min{ 1
2 log d, 1

2·α}.152
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1.2 Novelty and Additional Related Work153

Models of Advice. A well-known and suitable advice model for machine-learned predic-154

tions is the model of online algorithms with untrusted advice introduced by Lykouris and155

Vassilvitskii [41], where the existing literature includes papers on paging [41, 48, 36, 13],156

metrical task system [11], and online set cover via the primal-dual approach [12]. In this157

model, the predictor may be faulty, and the competitive ratio depends on its error so that158

for low error, the algorithm should perform close to the offline optimum (a.k.a. consistency),159

while even for large error, the algorithm should still fallback to guarantees similar to those of160

non-augmented online algorithms (a.k.a. robustness).161

Another well-known advice model is the perfect advice model [30, 18] under which many162

online problems have been studied, including paging, metrical task system [22], and online set163

cover [28]. In this model, the oracle is fully trustworthy, and its power is therefore quantified164

via the size (i.e., number of bits) of the advice provided to the online algorithm. This model165

is related to lookahead [34], where an algorithm is given some number of future requests in166

advance. The model of perfect advice was later extended to untrusted advice, retaining its167

focus on measuring the required advice size [10].168

Unlike these two advice models, the RIA model does not require any new algorithmic169

features (e.g., a designated advice tape) and is therefore applicable to existing (standard)170

online algorithms. Furthermore, our model does not limit the advice size, unlike the perfect171

advice model, and still allows to arrive at asymptotically tight lower bounds under natural172

assumptions, in contrast to the machine-learned prediction model where no general lower173

bounds are known.174

Online algorithms for paging, MTS, and set cover. Two optimally competitive175

algorithms for paging are known: PARTITION [42] and EQUITABLE [1]. For the uniform176

MTS problem, a (2Hn)-competitive algorithm was presented in [21], later improved to177

Hn + O(
√

log n) in [35]; the latter result nearly matches the Hn lower bound of [21].178

For online set cover, the state-of-the-art competitive ratio upper bounds are O(log m log n)179

for the weighted case [9] and O(log m log(n/OPT)) for the unweighted case [25], where m and180

n denote the number of sets (an upper bound on the maximum element degree d) and the181

number of elements, respectively; interestingly, both bounds can be realized by deterministic182

online algorithms. On the negative side, no (randomized) online algorithm has a competitive183

ratio better than Ω(log m) [39] and no deterministic online algorithm has a competitive ratio184

better than Ω(log m log n/(log log m + log log n)) [9]. If the (randomized) online algorithm is185

required to admit a polynomial time implementation, then the competitiveness lower bound186

improves to Ω(log m log n) assuming that NP ⊈ BPP [39].187

2 Online Algorithms with Randomly Infused Advice188

We begin by recalling standard definitions of online algorithms as request-answer games [17].189

Our model of online algorithms with randomly infused advice is then defined as a generaliza-190

tion of this model.191

2.1 Online Algorithms as Request-Answer Games192

Consider a finite sequence σ = ⟨r1, . . . , r|σ|⟩ of requests, where each request ri is taken from193

a set R. A solution for σ is a sequence λ = ⟨a1, . . . , a|σ|⟩ of answers, where each answer ai194

is taken from a set A. For a given minimization problem, the quality of a solution λ for195
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a request sequence σ is determined by means of a cost function f : R|σ| ×A|σ| → R ∪ {∞}.1196

Let OPT(σ) = infλ∈A|σ| f(σ, λ) denote the cost of an optimal solution for σ.197

In the realm of online algorithms, the requests are revealed one-by-one, in discrete rounds,198

so that upon receiving request ri in round i, a (randomized) online algorithm ALG outputs199

the (random) answer ai irrevocably. That is, the solution λALG = ⟨a1, . . . , a|σ|⟩ produced200

by ALG is defined so that each answer ai is computed as a function of (1) the request201

subsequence r1, . . . , ri; (2) the answer subsequence a1, . . . , ai−1; and (3) round i’s random bit202

string Bi ∈R {0, 1}L, where the parameter L ∈ Z≥0 is specified by the algorithm’s designer203

(possibly as a function of the parameters of the problem).2204

The performance of an online algorithm ALG is measured via competitive analysis: we say205

that ALG is c-competitive if there exists a constant b (that may depend on the parameters206

of the problem) such that E[ALG(σ)] ≤ c · OPT(σ) + b for any request sequence σ, where207

ALG(σ) is the random variable that takes on the cost of the solution produced by ALG in208

response to a request sequence σ. The request sequence σ is assumed to be determined by a209

malicious adversary; we stick to the convention of an oblivious adversary [19, Ch. 4] which210

means that the adversary knows ALG’s description, but is unaware of the outcome of ALG’s211

random coin tosses.212

2.2 Randomly Infused Advice213

In this paper, we introduce an extension of online algorithms, referred to as online algorithms214

with randomly infused advice (RIA). In the RIA model, an algorithm ALG is assisted by215

a powerful, yet not entirely reliable, oracle that has access to the entire request sequence σ.216

Formally, for any request sequence σ = ⟨r1, . . . , r|σ|⟩ and round 1 ≤ i ≤ |σ|, the oracle O217

is defined by an advice function Oσ,i : Ai−1 → {0, 1}L that maps each answer subsequence218

⟨a1, . . . , ai−1⟩ to a bit string Oσ,i(a1, . . . , ai−1) ∈ {0, 1}L, referred to as the round i’s advice.219

Notice that the length of the advice bit string is equal to the length L of ALG’s random bit220

string.221

The RIA model is associated with an infusion parameter 0 ≤ α ≤ 1 that quantifies the222

(un)reliability of the oracle O. Specifically, in each round i, the bit string Bi (provided223

to the online algorithm in that round) is now determined based on the following random224

experiment (independently of the other rounds): with probability α, the round i’s advice is225

infused into Bi, that is, Bi ← Oσ,i(a1, . . . , ai−1); with probability 1− α, the bit string Bi is226

picked uniformly at random, that is, Bi ∈R {0, 1}L.227

In other words, in each round i where the infusion is successful (an event occurring with228

probability α), the oracle’s advice “smoothly” substitutes the random bit string Bi before it229

is provided to ALG; if the infusion is not successful, then Bi remains a random bit string.230

We emphasize that ALG and O are not aware (at least not directly) of whether the advice is231

successfully infused in the round i, nor are they aware of the infusion parameter α itself.232

The competitive ratio of online algorithms ALG with RIA is typically expressed as233

a function of the infusion parameter α, where the extreme case of α = 0 corresponds to234

standard online computation (with no advice). The ultimate goal is to provide guarantees235

on the competitiveness of ALG for any 0 ≤ α ≤ 1.236

1 We restrict our attention to minimization problems as these are the problems addressed in the current
paper. Extending our setting to maximization problems is straightforward.

2 We use a single parameter L (that is often kept implicit in the online algorithm’s description) for
simplicity of the exposition; it can be easily generalized to a (not necessarily bounded) sequence
L1, L2, . . . of round-dependent parameters.
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2.3 Randomness-Oblivious Online Algorithms237

Recall that the aforementioned definition of online algorithms dictates that when the online238

algorithm ALG determines the answer ai associated with round i, it is aware of the requests239

ri′ and answers ai′ associated with past rounds i′ < i, as well as the request ri and random240

bit string Bi associated with the current round i, however it is not aware (at least not directly)241

of the random bit strings Bi′ associated with past rounds i′ < i. This model choice is made242

to prevent an online algorithm ALG with RIA from passing information received through243

the (successfully infused) advice to future rounds, thus over-exploiting the lack of an explicit244

(model specific) bound on the length of the random / advice bit strings. To distinguish the245

online algorithms that adhere to this formulation from general online algorithms (that may246

maintain a persistent memory that encodes past random bits), we refer to the former as247

randomness-oblivious online algorithms.248

3 Paging249

In the online paging problem [49], we manage a two-level memory hierarchy, consisting of250

a slow memory that stores the set of all n pages, and a fast memory, called the cache, that251

stores any size k subset of pages. We are given a sequence σ of requests to the pages. If252

a requested page is not in the cache, a page fault occurs, and the page must be moved to the253

cache. Since the cache is limited in size, we must specify which page to evict to make space254

for the requested page. The goal is to minimize the number of page faults.255

In this section, we analyze an elegant randomized online algorithm RandomMark, in-256

troduced by Fiat, Karp, Luby, McGeoch, Sleator and Young [31], in the randomly infused257

advice framework. The algorithm RandomMark maintains a bit associated with each page258

in the cache. Initially the bits of all pages are set to 0 (the pages are unmarked), and after259

requesting a page, we bring it to the cache if it is not in the cache yet, and we set its bit to 1260

(we mark the page). To bring a page to the cache, we may need to evict another page to261

make space for it. In such a case, RandomMark evicts a page uniformly at random chosen262

from the unmarked pages. If no unmarked page exists, we unmark all pages. This strategy263

has been shown to be 2Hk-competitive [31], where Hk is the harmonic number, and no264

randomized algorithm can be better than Hk-competitive.265

3.1 RandomMark With Infused Advice266

With help of randomness, the classic RandomMark decides on the final candidate to evict:267

a random node among unmarked pages. With infused advice, in some rounds the randomness268

source used by RandomMark contains advice instead of random bits. The presence of269

clairvoyent advice brings obvious advantages, but also brings challenges: not all pages can270

be evicted, only the unmarked ones.271

Unmarked Longest-Forward-Distance Oracle. An optimal offline algorithm for paging272

is to evict the item with the access time furthest in the future [16], also known as longest273

forward distance (LFD) algorithm. However, we cannot directly design an oracle for Ran-274

domMark around LFD, as it may advise to evict a marked page, but RandomMark never275

evicts marked pages. Hence, we propose a variant of this algorithm that can act as an oracle276

for RandomMark. Such an oracle, denoted OULF D, advises RandomMark to evict the page277

with the longest forward distance among the unmarked items of RandomMark.278
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Analysis of RandomMark. How well can RandomMark perform with infused advice?279

To find out, we consider the RandomMark algorithm assisted with the oracle OULF D, and280

we express the algorithm’s competitive ratio of in terms of the infusion parameter α (the281

probability of receiving advice in each round). Later in this paper, we will show that282

RandomMark with OULF D is asymptotically optimal (Theorem 5.4).283

▶ Theorem 3.1. The competitive ratio of RandomMark with the oracle OULF D with RIA on284

instances of cache size k (against the oblivious adversary) is at most min{2Hk, 2
α}, where285

Hk is the k-th harmonic number, and 0 ≤ α ≤ 1 is the infusion parameter.286

Before proving this theorem, we recall the definition of a k-phase partitioning of an input287

sequence, and we derive sufficient conditions to stop incurring further page faults in a phase.288

We begin by recalling basic definitions from the analysis of RandomMark by [31]. We289

consider the k-phase partition of the input sequence σ, following the notation from [19]:290

phase 0 is the empty sequence, and each phase i > 0 is the maximal sequence following the291

phase i− 1 that contains at most k distinct page requests since the start of the ith phase. In292

a phase of any marking algorithm, a page requested in the phase is stale if it is unmarked293

but was marked in the previous phase, and a page is clean if it is neither stale nor marked.294

In addition to these standard definitions, we define the set of vanishing pages as the set295

of the pages requested in the previous phase, but not in the current phase. We claim that296

after evicting all vanishing pages, marking algorithms incur no further cost in the phase,297

since a configuration is reached where all the remaining requests in the current phase are298

free (page hits).299

▶ Lemma 3.2. Fix an input sequence σ, consider its k-phase partition, and fix any phase P300

that is not the first or the last phase. Then, (1) we have exactly c vanishing pages, where301

c is the number of clean pages in the phase; and (2) after evicting all vanishing pages, no302

marking algorithm for paging incurs further cost in the phase.303

Proof. In the phase P , we have exactly k requests to distinct pages: to k − c stale pages304

and to c clean pages. Only the clean pages can replace the vanishing pages, hence we have305

exactly c vanishing pages. Hence, the first claim holds.306

If at any point all c vanishing pages are evicted, this means that all c clean pages were307

requested in the phase already. The remaining requests in the phase can concern only stale308

pages. As no vanishing pages remain in the cache, the cache consists of c clean pages and309

k − c stale pages. Hence, after evicting all vanishing pages, any marking algorithm incurs no310

further cost in the phase, and the second claim holds. ◀311

Finally, we prove our main claim for paging: RandomMark is min{2Hk, 2
α}-competitive.312

We repeat the classic arguments of [31] to arrive at the bound 2Hk, and we analyze the offline313

algorithm unmarked longest forward distance, employed by the oracle that probabilistically314

interacts with the oracle, to arrive at the bound 2
α .315

Proof of Theorem 3.1. Fix any input sequence σ and consider its k-phase partition. Con-316

sider any phase that is not the first or the last one. Let c be the number of clean pages in317

the phase.318

We claim that the expected number of page faults is upper bounded by c/α. If the319

algorithm incurs a page fault, and it receives the oracle’s advice, and there are still some320

vanishing pages in the cache, then the algorithm evicts a vanishing page; this follows since321

the vanishing pages are not requested in the current phase, hence they have larger forward322

distance than other stale pages, and the vanishing pages are unmarked. By Lemma 3.2,323
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evicting all vanishing pages means that no further cost is incurred throughout the phase,324

hence the number of page faults in the phase is upper bounded by the number of page faults325

until the algorithm receives c rounds of advice from the oracle (not necessarily consecutive).326

The expected number of page faults until receiving c rounds of advice is c/α, since this is327

the expected number of independent tosses of α-biased coin until getting c heads outcomes.328

Next, we repeat the classic arguments of [31]: the expected number of page faults of the329

algorithm is also upper bounded by c ·Hk. Consider an i-th request to a stale page in the330

phase for i = 1, 2, 3, . . . , s. Let c(i) denote the number of clean pages requested in the phase331

immediately before the i-th request to a stale page, and let S(i) denote the set stale pages332

that remain in the cache before the i-th request to a stale page, and let s(i) = |S(i)|. For333

i = 1, 2, 3, . . . , s, we compute the expected cost of the i-th request to a stale page. When334

the algorithm serves the i-th request to a stale page, exactly s(i) − c(i) of the s(i) stale335

pages are in the cache. The stale pages are in the cache with equal probability, say p, since336

these are never evicted with the help of advice, but are evicted uniformly from unmarked337

pages when a page fault occurs in rounds without advice. The vanishing pages are in the338

cache with probability at most p, since they can be evicted both in the rounds with and339

without the advice. For the all s(i) stale pages the probability of being in the cache sums to340

1, hence p ≤ 1/s(i). Fix a request to a stale page. The page is in the cache with probability341

(s(i)− c(i)) · p, hence the expected cost of the request is342

1− (s(i)− c(i)) · p ≤ 1− s(i)− c(i)
s(i) = c(i)

s(i) ≤
c

k − i + 1 .343

Hence, the total cost of the request to the stale pages is
∑s

i=1 c/(k − i + 1) ≤
∑k

i=2 c/i =344

c · (Hk − 1). The total cost in the phase includes the cost of serving the clean page and stale345

pages, in total c ·Hk.346

We conclude that the number of page faults of the algorithm in a phase is upper-bounded347

by both c ·Hk and c/α. By arguments of [31, Theorem 1], the amortized number of faults348

made by OPT during the phase is at least c/2. Summing over all phases but the first and the349

last one, the competitive ratio is at most min{2Hk, 2
α}. The first and the last phase incurs350

cost bounded by 2k, which we account in the additive in the competitive ratio. ◀351

The above analysis is asymptotically tight with the lower bound given in Theorem 5.3.352

However, for the special case n = k + 1, the result is tight: the competitive ratio of353

RandomMark with the oracle OULF D is min{Hk, 1
α}, since in each phase but the last phase,354

any offline algorithm pays at least 1, and the number of clean pages is also 1.355

The algorithm RandomMark with perfect advice (α = 1) is equivalent to an offline356

algorithm that evicts the unmarked item with the longest forward distance. The Theorem 3.1357

implies that this algorithm is optimal for n = k + 1, and a 2-approximation for any n.358

4 Set Cover359

In the set cover problem, we are given a universe U of n elements and a set F = {S1, . . . , Sm}360

of m subsets S1, . . . , Sm ⊆ U such that S1 ∪ · · · ∪ Sm = U . For each element e ∈ U , let361

F(e) = {S ∈ F | e ∈ S} be the collection of sets that cover it. In the online setting, a subset362

U ′ ⊆ U of elements arrive one by one in an arbitrary order.3 Upon the arrival of an element363

3 While our results in the current section are expressed in terms of the size of the universe n, it can be
modified to obtain the same asymptotic bounds in terms of the length of the element sequence |U ′|.
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e, the algorithm is required to cover it (i.e., if e was not previously covered by the algorithm,364

then the algorithm must select a set from F(e)). We emphasize that the algorithm does not365

know U ′ (or its size) in advance and that any previously selected set cannot be removed366

from the solution obtained by the online algorithm. The cost of a solution to the set cover367

problem is the number of sets selected.368

In the standard linear program (LP) relaxation for set cover, each set S ∈ F is associated369

with a variable xS . The objective is to minimize the sum
∑

S∈F xS subject to the constraints370 ∑
S∈F(e) xS ≥ 1 for each element e ∈ U ′, and xS ≥ 0 for all S ∈ F .371

Recall that in the context of set cover in the RIA model, we focus on lazy algorithms, i.e.,372

algorithms that adhere to the following restrictions upon the arrival of an elemnt e: (1) if e373

is already covered by the algorithm, then in the current round the algorithm does not select374

any additional sets to its solution; and (2) if e is not covered yet, then in the current round375

the algorithm may only select sets from F(e). Notice that this restriction prevents the trivial376

oracle strategy of simply advising to select all the sets of an optimal set cover at each round.377

We describe an online algorithm with RIA for set cover in three stages. First, we present378

an algorithm that obtains a fractional solution x to the relaxed LP. Then, we present an379

online randomized rounding scheme that can be incorporated into the fractional set cover380

algorithm to obtain an integral solution which is feasible with high probability. Finally, we381

present the oracle’s advice.382

Fractional set cover algorithm. We use the basic discrete algorithm presented by383

Buchbinder and Naor in [24, Chapter 4.2, Algorithm 1].4 The algorithm operates as follows.384

Initially, set xS = 0 for all S ∈ F . Upon arrival of an element e, if
∑

S∈F(e) xS < 1, then385

update xS ← 2 · xS + 1/|F(e)| for all S ∈ F(e). Observe that at the end of the round, it386

is guaranteed that the fractional primal solution maintained by the algorithm satisfies the387

constraint since the algorithm adds at least 1/|F(e)| to the variable xS for each set S ∈ F(e).388

Let d = maxe∈U ′ |F(e)| be the maximum degree of an element. The following assertion389

on the competitive ratio is established by Buchbinder and Naor in [24].390

▶ Lemma 4.1 ([24]). The fractional set cover algorithm is O(log d)-competitive.391

Randomized rounding. An online rounding scheme that randomly obtains an integral392

solution from the fractional set cover algorithm was constructed by Alon et al. in [8]. The393

solution produced by the rounding scheme of [8] is feasible with high probability while394

incurring a multiplicative factor of O(log n) to the expected cost. However, this rounding395

method does not fit our advice framework. This is because all random coins are tossed in the396

beginning to compute a threshold for each set. Thus, we present a slightly different rounding397

method that fits our framework while maintaining similar guarantees.398

The rounding procedure operates as follows. Consider an element e and let x and xint be399

the solution maintained by the fractional algorithm and the (integral) solution maintained400

by the rounding scheme, respectively, at the time of e’s arrival. If e is already covered401

by either the current fractional solution or the current integral solution produced by the402

rounding, then we do nothing (we will later show that the feasibility of xint is maintained403

with high probability in this case). Otherwise (e is not covered by both solutions), we update404

x according to the fractional algorithm. For each S ∈ F(e), let xbeg
S be the value of the405

4 We note that the algorithm presented in [24] is designed for weighted set cover. The algorithm presented
in this paper is its application for the case of unit weights.
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variable xS at the beginning of the round and let δ(S) = xbeg
S + 1/|F(e)| be the additive406

increase to xS that occurs during the round. The rounding is obtained by independently407

selecting each set S ∈ F(e) to the cover with probability min{1, δ(S) ·Θ(log n)}.408

We refer to the randomized algorithm described above (i.e., the fractional set cover409

algorithm combined with the rounding scheme) as RandSC. The properties of RandSC are410

described in the following lemma.411

▶ Lemma 4.2. RandSC is O(log n log d)-competitive and computes a feasible solution with412

high probability.5413

Proof. Let x be the solution obtained by the fractional algorithm at termination. Recall414

that in each round, set S is selected with probability at most δ(S) · c log n (for a constant415

c > 0). By linearity of expectation, the total expected cost associated with S is O(log n) · xS .416

Thus, the expected cost of RandSC is O(log n) ·
∑

S∈F xS = O(log n log d) · OPT.417

We now bound the probability that there exists an element that was not covered by the
integral solution produced by RandSC when it arrived. Consider an element e′ arriving at
round r. Notice that by construction, e′ must be covered by the fractional solution at the
end of round r. We argue that this implies that e′ is covered by the integral solution with
high probability. Let ℓ = |F(e′)| and let S1, . . . Sℓ denote the sets in F(e′). Let us denote
by δi,j the increase to the variable xSi associated with set Si in round j and let pi,j the
probability that Si was selected to the integral solution at round j. If pi,j = 1 for some i ≤ ℓ

and j ≤ r, then e′ is covered by the end of round r with probability 1. Otherwise, due to
the independence of selection events, the probability that e′ is not covered by the integral
solution at the end of round r is

ℓ∏
i=1

r∏
j=1

(1− pi,j) ≤ e
−

∑ℓ

i=1

∑r

j=1
pi,j = e

−c log n
∑ℓ

i=1

∑r

j=1
δi,j ≤ n−c,

where the final inequality holds because the fractional algorithm guarantees that e′ is covered418

at round r and thus
∑ℓ

i=1
∑r

j=1 δi,j ≥ 1. By a union bound argument, the probability that419

there exists a set that is not covered by the integral solution is at most n1−c. Thus, RandSC420

produces a feasible solution with probability at least 1− 1/nc−1. ◀421

Oracle’s advice. The idea of the oracle’s advice is to boost the probability of selecting422

"good" sets while not losing the probabilistic feasibility guarantee of Lemma 4.2. For the sake423

of analysis, let us assume that the oracle is randomized (observe that this assumption does424

not enhance the oracle’s power since the oracle can deterministically compute an optimal425

realization of the randomized selection). Let A∗ ⊆ F be an optimal solution for the set426

cover instance. Consider the arrival of an element e that was not covered yet by both the427

fractional and integral solutions and let pS be the probability that set S is selected in the428

current round of RandSC for each set S ∈ F(e). The oracle’s advice is as follows: (1) each429

set S ∈ F(e) ∩A∗ is selected to the advice; and (2) each set S ∈ F(e)−A∗ is independently430

selected to the advice with probability pS . Notice that the argument used in Lemma 4.2431

regarding the feasibility of the solution still holds since the oracle does not decrease the432

selection probability of any set at a given round. Denoting this oracle by Oboost, we can433

establish the following theorem.434

5 For simplicity, RandSC is described as a Monte Carlo algorithm. It can be easily transformed into a Las
Vegas algorithm as follows: whenever an element e is not covered by RandSC upon the end of a round,
select an arbitrary set that covers e into the solution. Notice that the added expected cost is negligible.
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▶ Theorem 4.3. The competitive ratio of RandSC with the oracle Oboost against an oblivious435

adversary is O(log n) ·min{1/α, log d}, where 0 ≤ α ≤ 1 is the infusion parameter.436

Proof. We start by showing that RandSC with Oboost is O(log n log d)-competitive. Notice437

that by Lemma 4.2, the total expected cost associated with sets S ∈ F −A∗ is O(log n log d) ·438

OPT. In addition, the total cost of sets in A∗ is bounded by |A∗| = OPT. Therefore, the439

expected cost of the solution produced by RandSC with Oboost is O(log n log d) · OPT.440

We now show that RandSC with Oboost is O( log n
α )-competitive. Consider the run of441

RandSC with Oboost on some element sequence. We refer to a round as a selection round if442

there exists a set that is selected with a positive probability in that round. Notice that we443

can bound the cost of RandSC with Oboost only in selection rounds (for non-selection rounds444

no cost is incurred). Observe that in each selection round, the probability of selecting a set445

from A∗ is at least α (the probability of receiving advice). Moreover, if at some point in the446

execution all sets from A∗ were selected, then there are no selection rounds after that point447

(since A∗ covers all elements). Hence, the expected number of selection rounds during the448

execution is at most |A∗|/α.449

To complete our analysis, we argue that the expected cost associated with sets that are not450

in A∗ at each selection round is O(log n). Consider a selection round in which an elements e451

arrived. Recall that for each set S ∈ F(e)−A∗, we define δ(S) = xbeg
S + 1/|F(e)|, where xbeg

S452

is the value of variable xS at the beginning of the round, and select each set S ∈ F(e)−A∗ to453

the cover with probability min{1, δ(S) ·Θ(log n)}. Thus, the total expected cost that comes454

from the sets S ∈ F(e)−A∗ in the round is bounded by O(log n) ·
∑

S∈F(e)−A∗ xbeg
S + 1

|F (e)| ≤455

O(log n)·2 = O(log n). Since the total cost associated with sets fromA∗ is at most |A∗|, we get456

that the total expected cost of RandSC with Oboost is O(log n) · |A∗|/α = O( log n
α ) ·OPT. ◀457

5 Lower Bounds458

In this section we show fundamental limitations of online algorithms with RIA. First, we give459

a lower bound for competitiveness with RIA for online set cover, under the assumption that460

the algorithm is lazy (buys sets only when they are needed to cover the current element).461

Second, we give a lower bound for competitiveness with RIA for paging, that we improve to462

an asymptotically tight lower bound for the case of lazy algorithms. The lower bound for463

paging implies the lower bound for the uniform metrical task system.464

5.1 Online Set Cover465

We give a lower bound for the competitive ratio of any online randomized algorithm with466

RIA for online set cover. The construction of the input sequence is similar to the lower467

bounds given in [39, Theorem 2.2.1] and [24, Lemma 4.6]. The bound is given for randomness-468

oblivious (defined in Section 2.3) and lazy algorithms (lazy algorithms are allowed to buy a469

set only if it contains the current element).470

▶ Theorem 5.1. Assume that an online randomized algorithm with RIA for online set-cover471

is lazy, randomness-oblivious and strictly c-competitive against the oblivious adversary. Then472

c ≥ min{ 1
2 log n, 1

2α}, where n is the size of the universe of element, and α is the infusion473

parameter.474

Proof. Fix any lazy, randomness-oblivious online randomized algorithm ALG with RIA, its475

oracle O and the infusion parameter α. The adversary is oblivious to random choices of the476

algorithm, but it has access to the description of the algorithm, the oracle and the infusion477

parameter, hence can maintain the probability distribution of ALG’s cache configurations.478
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Consider a complete binary tree with d leaves. The items to be covered are the nodes of479

the tree, and the sets are the d root-leaf paths. Our sequence σ will be the items on one480

root-leaf path, starting from the root and going downward.481

We chose the sequence of items to request corresponding to a path in the complete binary482

tree as follows. Let F (e) be the family of sets that cover the item e, and let pS be the483

probability that ALG currently has the set S in the solution. The first request is to the root484

of the tree. For the i-th request, we choose one of the children, x or y of the item requested485

in the (i − 1)-th request, depending on the probability distribution of the sets that cover486

these items. To decide between x and y, we choose the item r ∈ {x, y} with no smaller sum487

of the probability mass
∑

F (x) pS .488

We consider two cases depending on whether or not the algorithm received advice for σ.489

1. Assume the algorithm did not receive advice for σ. In such case, the algorithm acts as an490

online algorithm without advice. Notice that the total probability mass of sets that do491

not appear in subsequent iterations add up to at least 1/2. Each path has length log n,492

and the algorithm pays at least 1
2 for each such round, hence overall the algorithm pays493

1
2 log d.494

2. Assume the algorithm received advice for σ. In expectation, the number of rounds before495

getting advice is 1
α , and the algorithm pays at least 1

2 for each such round, hence in total496

the algorithm pays at least 1
2 ·

1
α = 1

2α .497

Note that σ can be covered by a single set, namely the one that corresponds to the leaf498

where the path ends, hence OPT(σ) = 1. The online algorithm pays at least min{ 1
2 log d, 1

α}499

for any sequence σ of the form described above, hence ALG is at least strictly min{ 1
2 log d, 1

2α}-500

competitive. ◀501

For lazy algorithms, we can obtain a lower bound in terms of the number of d. We say502

that an online algorithm for online set cover is lazy if it buys a set only if the current element503

is not yet covered, and then it may buy only sets that cover the current element. The next504

bound is stronger than the previous one, as it the bound is on the competitive ratio in the505

classic sense, with the possible additive constant, as opposed to the previous bound on the506

strict competitiveness.507

▶ Theorem 5.2. Assume that an online randomized algorithm with RIA for online set-508

cover is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then509

c ≥ min{ 1
2 log d, 1

2α}, where d is the maximum element degree, and α is the infusion parameter.510

511

Proof. We repeat the construction from the previous proof of Theorem 5.1 in phases, in512

each phase using a binary tree of 2d items.513

As the algorithm is lazy, it cannot buy sets from future phases, and the sets used in514

different phases are disjoint, hence advice received in any phase cannot decrease the cost of515

the algorithm in any future phase.516

Fix any phase. We consider two cases depending on whether or not the algorithm received517

advice in this phase. If the algorithm received advice, then it pays at least 1
2 ·

1
α = 1

2α , as518

the expected number of rounds in this phase before receiving advice concerning sets in this519

phase is 1
α . Otherwise, if the algorithm did not receive advice, then it pays at least 1

2 · log d,520

following the arguments from the previous proof.521

In total, the algorithm pays at least min{ 1
2 log d, 1

2α} in each phase, and an optimal522

algorithm can cover the items in each phase using a single set, hence the algorithm is at least523

min{ 1
2 log d, 1

2α}-competitive.524
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Note that we can repeat this construction arbitrary number of iterations to obtain a lower525

bound on the competitive ratio, as opposed to a lower bound on strict competitive ratio.526

In each iteration, we use a new set of items and sets corresponding to a binary balanced527

tree, and the maximum number of sets that cover any item d does not increase by repeating528

the construction. Hence, no randomized algorithm with infused advice can be better than529

min{ 1
2 log d, 1

2α}-competitive. ◀530

5.2 Paging and Metrical Task Systems531

In this section we give a lower bound for competitiveness of randomized online algorithms532

with RIA for paging. The uniform metrical task system problem generalizes the paging533

problem on instances that include n = k + 1 pages, hence the lower bound for paging is a534

common lower bound for paging and uniform metrical task system. We restrict our attention535

to randomness-oblivious algorithms, as defined in Section 2.3. Our lower bound for any536

randomness-oblivious algorithm is loose by a factor of 1/k; but with the natural assumption537

that the algorithm is lazy, we get rid of the 1/k factor, and for lazy algorithms the upper538

bounds for paging (Theorem 3.1) and uniform metrical task system (Theorem A.1) are539

asymptotically optimal.540

To show the lower bound in this section, we apply Yao’s Minimax Principle [51] to541

competitiveness of randomized online algorithms. In the case of classic online algorithms,542

the lower bound for the competitiveness of the best deterministic online algorithm on a543

distribution of inputs implies a lower bound on the competitiveness of any randomized online544

algorithm on any input sequence.545

We define a deterministic equivalent of algorithms with RIA. To this end, we add to each546

request the information whether the request is served by a deterministic online algorithm or547

by the oracle. We will analyze performance of such an algorithm on a distribution of requests,548

where each round is served by the algorithm with probability 1− α, and by the oracle with549

probability α. To give a lower bound for randomness-oblivious algorithms (as defined in550

Section 2.3), we need to define a deterministic equivalent of such algorithms that we refer to551

as deterministic advice-oblivious algorithms: the answer for each request not served by the552

oracle is determined by the current request, previous requests and previous answers.553

To apply Yao’s priciple to competitiveness of randomized online algorithms with RIA,554

we construct a matrix representation of the game, where the row player corresponds to a555

deterministic advice-oblivious algorithm combined with the offline oracle algorithm, and the556

column player represents the adversary who specifies the input sequence. The value in each557

row-column pair of the matrix equals the expected cost incurred by the algorithm-oracle558

pair on the input sequence, divided by the cost of an optimal offline solution for the input559

sequence. The choice of whether the online algorithm or the oracle serves a request is560

beyond the control of both the adversary and the online algorithm, and to compute the value561

for a row-column pair we take the expectation over all possibilities where for each request562

independently, the deterministic algorithm serves the request with probability 1−α, and the563

oracle serves the request with probability α. Notably, a randomness-oblivious algorithm is564

no more powerful than a distribution over the deterministic advice-oblivious algorithms.565

▶ Theorem 5.3. Assume that an online randomized algorithm with RIA for online pag-566

ing is randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥567

min{Hk, 1
k·α}, where α is the infusion parameter.568

Proof. To prove the theorem, we apply Yao’s Minimax Principle [51] to competitiveness of569

randomized algorithms. Consider any deterministic advice-oblivious algorithm A for paging,570
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and construct the following distribution over input sequences. Each round is served by A571

with probability 1− α, and by the oracle with probability α. The distribution over requests572

to pages is constructed as follows. Let S = {p1, p2, p3, . . . , pk+1} be a set of k + 1 pages. We573

construct a probability distribution for choosing a request sequence. The first request σ(1) is574

chosen uniformly at random from S. Every other request σ(t), t > 1, is made to a page that575

is chosen uniformly at random from S \ {σ(t− 1)}. A phase starting with σ(i) ends with576

σ(j), where j, j > i is the smallest integer such that {σ(i), σ(i + 1), . . . , σ(j)} contains k + 1577

distinct pages.578

We claim that for any advice-oblivious algorithm, the advice received in past phases579

cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the580

advice-oblivious algorithm is forbidden to store past advice in its internal memory for future581

use. Second, no algorithm can store meaningful advice for the future in its cache configuration:582

each phase contains requests to k + 1 different items, so for any cache configuration at the583

start of the phase, there is always at least 1 clean page: a page that is requested in the phase584

that the algorithm does not have in the cache at the start of the phase.585

In our bounds, we use that the average cost of the algorithm for each request is 1/k; this586

follows because the requested page is random and each of its pages is outside the cache with587

equal probability.588

We lower-bound the cost of the algorithm in each phase in two ways, depending on589

whether or not the algorithm receives advice in any round of the phase.590

1. Assume that the algorithm does not receive advice in any round of the phase. In such591

case, the algorithm acts as an online algorithm without advice throughout the phase, and592

the expected cost of the algorithm in the phase is at least Hk, following the standard593

arguments [43]: the expected length of the phase is k ·Hk, the average cost of the algorithm594

for each request is 1/k, therefore the cost of the algorithm within a phase is at least Hk.595

2. Assume that the algorithm receives advice in some round of the phase. To receive advice,596

we need in expectation 1/α rounds prior to the advice round. The average cost of the597

algorithm for each request is 1/k, hence the expected cost is at least 1
k·α .598

An optimal offline algorithm OPT incurs 1 page fault during each phase, the algorithm599

pays at least min{Hk, 1
k·α}, hence by summing over all phases of σ, we arrive at the desired600

competitive ratio. ◀601

Next, we give an improved lower bound for lazy algorithms for paging. Recall that602

lazy algorithms for paging are the algorithms that are never allowed to change its cache603

configuration unless there is a page miss. This class includes RandomMark as well as most604

other known online paging algorithms. Note that this definition is slightly more general than605

the usual definition of lazy algorithms, where the algorithm is only allowed to fetch one page606

per request [19]; the intention of this definition is that the lower bound holds for metrical task607

systems as well. In the classic setting without infused advice, any algorithm can be turned to608

a lazy algorithm without increasing its cost; note, however, that the transformed algorithm609

may not be randomness-oblivious. If we restrict our attention to randomness-oblivious610

algorithms, the non-lazy algorithms may have an advantage over the lazy algorithms due to611

non-lazy algorithm’s potentially frequent interaction with the oracle, which could be used by612

the oracle to give advice to prefetch some items even before the first cache miss occurs.613

▶ Theorem 5.4. Assume that an online randomized algorithm with RIA for online paging614

is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥615

min{Hk, 1
α}, where α is the infusion parameter.616
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Proof. To prove the theorem, we apply Yao’s Minimax Principle [51] to competitiveness of617

randomized algorithms. Consider any deterministic advice-oblivious online algorithm and618

the probability distribution for choosing a request sequence as in the proof of Theorem 5.3.619

We claim that for any advice-oblivious algorithm, the advice received in past phases620

cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the621

advice-oblivious algorithm is forbidden to store past advice in its internal memory for future622

use. Second, no algorithm can store meaningful advice for the future in its cache configuration:623

each phase contains requests to k + 1 different items, so for any cache configuration at the624

start of the phase, there is always at least 1 clean page: a page that is requested in the phase625

that the algorithm does not have in the cache at the start of the phase.626

We will show that the expected cost of the algorithm is at least min{Hk, 1
α} in any phase.627

We lower-bound the cost of the algorithm in each phase in two ways, depending on whether628

in this phase the algorithm receives advice in some round with a cache miss or not.629

1. Assume that the algorithm does not receive advice in any round with a cache miss. Since630

the algorithm is lazy, advice received in rounds without cache misses does not influence631

the algorithm’s cache configuration, and since the algorithm is advice-oblivious, it cannot632

store such advice either. In such case, the algorithm acts as an online algorithm without633

advice throughout the phase, and the expected cost of the algorithm in the phase is at634

least Hk, following the standard arguments [43]: the expected length of the phase is635

k ·Hk, the average cost of the algorithm for each request is 1/k because the requested636

page is random and each of its pages is outside the cache with equal probability, therefore637

the cost of the algorithm within a phase is Hk.638

2. Assume that the algorithm receives advice in a round with a cache miss. To receive advice639

at a round with a cache miss, we need in expectation 1/α rounds with cache misses. Each640

round with a cache miss costs 1, hence the expected cost of the algorithm is at least 1/α.641

An optimal offline algorithm OPT incurs a single page fault during each phase, and the642

algorithm pays at least min{Hk, 1
α}, hence by summing over all phases of σ, we arrive at the643

desired competitive ratio. ◀644

The bound given in Theorem 5.4 is asymptotically tight for lazy algorithms. However,645

a gap of a constant factor of 2 remains. To address this gap, an optimal randomized algorithm646

for paging [42] may be a possible direction for future studies.647

6 Future Work648

Our work opens interesting avenues for future research. In particular it will be interesting649

to further explore the utility of our method applied to other randomized online algorithms.650

Randomness-oblivious online algorithms are known for many online problems, e.g., all ran-651

domized memoryless algorithms [26] such as the COINFLIP algorithm for file migration [50]652

or the HARMONIC algorithm for k-server [14, 44] are randomness-oblivious.653
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Appendix 19

A Uniform Metrical Task System779

In the metrical task system (MTS) problem, we are given a finite metric space (S, d) consisting780

of a set S = {s1, . . . , sn} of n states and a distance function d : S2 → R≥0 assumed to be781

a metric. A task r ∈ Rn
≥0 is an n-sized vector of non-negative processing costs, where the782

entry r(i) is defined to be the processing cost of serving r in state si. Given a sequence783

σ = r1, . . . , r|σ| of tasks, the cost of a schedule s1, . . . , s|σ| is the sum between the total784

transition cost and the total processing cost. The goal in the MTS problem is to find785

a schedule of minimal cost. We focus on algorithms for the MTS problem in the online786

setting, where the state si that serves task ri is chosen without knowing the subsequence787

ri+1, . . . , r|σ|.788

In this section, we focus on the MTS problem on a uniform metric, i.e., the metric where789

d(si, sj) = 1 for all i ̸= j. We shall present a randomized algorithm, henceforth referred790

to as UnifMTS, with advice. This algorithm is inspired by the classical 2Hn-competitive791

algorithm by [21].792

Consider a sequence σ = r1, . . . , r|σ| of tasks given at times t = 1, . . . , |σ|. For an integer793

i ∈ {1, . . . , |σ|}, and i ≤ ℓ < ℓ′ ≤ i + 1, let us define the processing cost π(sj , ℓ, ℓ′) of being794

in state sj in the time interval [ℓ, ℓ′] as π(sj , ℓ, ℓ′) = (ℓ′ − ℓ) · ri(j). We now naturally795

extend this notion to time intervals [ℓ, ℓ′] such that i ≤ ℓ ≤ i + 1 < ℓ′ ≤ |σ|+ 1 by defining796

π(sj , ℓ, ℓ′) = π(sj , ℓ, i + 1) + π(sj , ⌊ℓ′⌋, ℓ′) +
∑⌊ℓ′⌋−1

k=i+1 π(sj , k, k + 1).797

We define a partition of [1, |σ| + 1] into time intervals [t0, t1], [t1, t2], . . . , [tm−1, tm] ⊆798

[1, |σ|+ 1] called phases such that t0 = 1 and tm = |σ|+ 1. The i-th phase starts at time799

ti−1. We say that a state sj is saturated for phase i at time t > ti−1 if the processing cost800

associated with being in sj during the entire time interval [ti−1, t] is at least 1. The i-th801

phase ends in time ti, defined to be the minimal time in which all states are saturated for802

the i-th phase. Observe that upon the arrival of a task ri at time i, an online algorithm can803

determine which states will become saturated for the current phase by time i + 1.804

The UnifMTS algorithm operates as follows. Consider the task ri arriving at time i805

and let φ be the current phase. If the current state does not become saturated for φ at806

time i + 1, then UnifMTS stays in the same state. Otherwise, if φ ends by time i + 1, then807

UnifMTS moves to a state that minimizes the processing cost in ri. Otherwise, UnifMTS808

moves uniformly at random to a state that is unsaturated for φ at time i + 1 (such a state809

exists since in this case φ does not end by time i + 1). We note that while phases may end810

at non-discrete times, the scheduling decisions made by the algorithm all occur at discrete811

times.812

Consider an oracle OLT S that advises UnifMTS to move to a state with the longest time813

until saturation for the current phase. In the following theorem, we bound the competitive814

ratio of UnifMTS with OLT S .815

▶ Theorem A.1. The competitive ratio of UnifMTS with the oracle OLT S against an oblivious816

adversary is at most min{2Hn, 2
α + 2}, where 0 ≤ α ≤ 1 is the infusion parameter.817

Proof. Observe that an optimal offline algorithm OPT must incur a cost of at least 1 during818

each phase. Indeed, if OPT changed states during a phase, then it pays at least 1 in transition819

cost. Otherwise, OPT resided in a state that became saturated in this phase, hence it pays820

a processing cost of 1.821

We now bound the expected cost of UnifMTS with OLT S during a phase φ = [tstart, tend].822

Observe that if there exists i ∈ {1, . . . , |σ|} such that i ≤ tstart < tend ≤ i + 1, then by823

definition, at time i UnifMTS moved to a state that minimizes the processing cost incurred824
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during [i, i + 1]. This means that UnifMTS pays 1 in processing cost during [tstart, tend] and825

possibly 1 in transition cost at time i. Thus, in this case the expected cost of UnifMTS826

during φ is at most 2.827

Now we consider the case that there exists i ∈ {1, . . . , |σ|} such that tstart < i < tend.828

We show that the cost of UnifMTS during φ is at most 2
α + 2. Let s∗ be the state given in829

the advice of OLT S during φ. By definition, by the time s∗ is saturated for φ, all other states830

have also been saturated. Therefore, when UnifMTS receives an advice from the oracle,831

it transitions into the final state of phase φ. Hence, the additional cost incurred by the832

UnifMTS in φ following the advice is at most 2 (1 for the transition to s∗ and at most 1 for833

processing cost). Since the algorithm uses randomization only at transition rounds, hence the834

expected number of transitions before the algorithm receives the advice is 1/α (recall that at835

each transition the advice is given with probability α). For each state that we visit, we pay 1836

in transition cost. Since UnifMTS only moves to states that are unsaturated for φ, it pays at837

most 1 in processing cost at each state. Overall, the expected total cost is at most 2
α + 2.838

We now show that the cost of UnifMTS during φ is at most 2Hn. Notice that for every839

transition, UnifMTS pays 1 in transition cost and at most 1 in processing cost. Thus, it suffices840

to show that the expected number of transitions during φ is at most Hn. Let f(k) be the841

expected number of transitions UnifMTS performs given that there are k unsaturated states842

left. Clearly, f(1) = 1. For k < 1, after a single transition we have k − 1 unsaturated states843

with probability at most 1/k. Thus, f(k) ≤ f(k − 1) + 1/k, which implies that f(n) ≤ Hn.844

Summing over the costs of all phases, we get a competitive ratio of min{2Hn, 2
α + 2}. ◀845
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