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ABSTRACT
The ever-evolving cybersecurity landscape demands innovative
solutions to safeguard critical network infrastructure such as the
Domain Name System (DNS). This paper presents P4DME, a novel
approach that harnesses the potential of Machine Learning (ML) in
conjunction with P4 programmable switches to tackle DNS threats
efficiently. P4DME’s primary benefit lies in offloading filtering from
resource-intensive ML processing tasks on dedicated servers. This
offloading boosts the overall traffic throughput that can be inspected
or achieves the same throughput with reduced resource consump-
tion while preserving the servers’ capabilities for high-performance
threat identification. This work uses P4-based in-network elements
to handle crucial DNS threats, dynamic white and blacklisting, and
an online popularity-based anomaly detection heuristic. The latter
serves as a trigger for dedicated ML-based inspection. Furthermore,
we introduce in-network mitigation filters updated through the
control plane to provide adaptable and responsive threat mitigation.
Preliminary simulation results show more than 99.9% offload ratio
at 5% increased False Negative Ratio.
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1 INTRODUCTION
The Domain Name System (DNS) is a critical part of the Internet’s
infrastructure that has been used both as an attack vector and as
a malware communication channel [3, 8]. Botnets, consisting of
compromised machines (bots) controlled through a command and
control (C&C) channel, have become one of the most prevalent
cybersecurity threats over the last decade [2, 11]. These networks
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enable various malicious activities, including information theft,
spamming, phishing, and launching DDoS attacks[16].

Botnets like Conficker [31], Kraken [32], and Torpig [36] uti-
lize DNS for C&C. They employ Domain Generation Algorithms
(DGA) to generate a large pool of domain names, from which only
a small subset is used to communicate with the infected machines
at each moment. As the domains have temporal validity, the need
to synchronize such a large network leads to temporal spikes in
DNS activity.

A particularly harmful DGA-related attack isWater Drop Torture
attacks (WDT) [8], in which bots flood DNS systems with numerous
queries to a target domain and nonexistent random subdomains.
The cache and authoritative servers waste resources trying to solve
the queries and may become overwhelmed and unresponsive [8].
WDT attacks have achieved up to 1.2 Tbps of DNS traffic, causing
accessibility problems to many well-known sites [6].

Identifying malicious domain names is challenging. Traditional
alphanumeric and blacklisting methods face difficulties coping with
the multitude of domains generated by DGAs. Modern DGA detec-
tion relies on machine learning-based (ML) analysis of the domain
names [35] or temporal characteristics of the botnet’s behaviour
[22], achieving a prediction performance of at least 90% [9, 25, 26].

Nevertheless, the servers deploying the ML models typically
require significant resources. Thus, they can become the throughput
bottleneck and be susceptible to further attacks.

In-network computations on programmable switches can par-
tially offload the ML servers from their intensive tasks, improving
the overall system throughput without sacrificing its security. The
P4 language can be used to target a wide variety of devices. More-
over, it has proven to be useful for in-network security applications:
[7, 10, 12, 13, 15, 17, 27, 28, 33, 39, 40]. None of these works ad-
dresses DNS protocol-specific attacks nor leverages the capabilities
of external machine learning devices.

Processing the DNS protocol is also widely studied. Many data
plane DNS parsers exist [5, 19, 20, 38], which could be leveraged
by P4DME to extract information from queries. In addition, [4,
18] address in-network DNS security, although filtering based on
predefined heuristics.

Contributions. We propose P4DME (P4DNS threatMiti- gation
Engine), a system where the ML servers and the programmable
switch collaborate. The latter performs fast filtering and anomaly
detection tasks in-network, and forwards “suspicious” queries to
the ML servers and the rest to the DNS servers. The ML servers
throughly analyze the queries and take a forward or drop decision.
Finally, the ML servers can update the programmable switch’s
filters and parameters through the control plane to keep a reliable
operation.

P4DME’s novelty lies in bringing together in-network computing
and machine learning methods to jointly to address threats in the
DNS space by naturally distributing the detection components. The
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main result is a technique capable of enhanced resource usage
without compromising the system’s security. Finally, the technique
can be extended to other threats and protocols.

The paper is outlined as follows. Section 2 describes the main
concepts and system design. Section 3 provides further details on
the covered use cases. A brief preliminary performance evaluation
based on synthetic traffic queries is presented in Section 4. Section
5 provides the conclusions and future work.

2 P4DME DESIGN
P4DME is composed of two main blocks (Figure 1): a programmable
switch and a set of Machine Learning servers, both located close to
the DNS servers and capable of filtering malicious queries. Upon
each incoming query, the programmable switch decides between
forwarding the query to a known DNS resolver, dropping it or for-
warding it to the ML servers for inspection. In turn, the ML servers
can drop or forward the query and provide feedback to the switch,
updating its access lists accordingly. The feedback mechanism is
implement through the control plane of the programmable switch
resulting in adding or removing entries from match-action tables
or updating register values. The data plane parses the DNS query
packets and decides if they are suspicious.

ML-based
detection
server(s)

Programmable
switch

DNS Server(s)

Figure 1: System overview.

Parsing the DNS packets can be efficiently done using the
method proposed by Kaplan et al. [19]. They build on the approach
of P4DDPI [5] and provide a solution to parse most DNS packets
without destroying them. Their method makes it possible to do
custom calculations before the packet leaves the networking device.
They also provide the hash of the DNS labels, which makes it
suitable for collecting statistics.

Traditional solutions. After having the hash of the DNS la-
bels, one can choose from a variety of methods the P4 community
offers to detect anomalies. Our main assumption is that malicious
activity results in an increase in certain domain requests. This can
be monitored using an array of meters, available in most P4 tar-
gets as an extern. The parameters can be changed from the control
plane during runtime. If a query gets marked red (or even yellow),
P4DME forwards it for further investigation. Using counters instead
ofmeters provides an opportunity to periodically read domains’ sta-
tistics and take action based on their distribution. Likewise, sketches
[23, 30] can also be employed effectively within the data plane to
keep track of domain occurrences.

Heuristic. Besides using "traditional" solutions, one can develop
a custom heuristic. This is likely necessary since the attack patterns

change over time. P4DME proposes a simple heuristic algorithm
to detect the most popular domains. Using the hash of different
domains, we can keep track of their popularity 𝑝 . We introduce
a register value 𝑐 and a threshold 𝑡 . If 𝑝 > 𝑐 , we increase the
value of 𝑐 by a fixed amount 𝑠 . Otherwise, we decrease it by the
same amount. The value of 𝑐 is expected to be close to the average
popularity. Queries to domains whose popularity 𝑝 is above 𝑐 + 𝑡
are sent to the ML servers for further investigation. The 𝑠 and 𝑡

values are initialised at the beginning of the pipeline using a match-
action table; thus, their value can be changed during runtime. Note
that this design can be implemented on the Intel Tofino with the
proper use of the LPF externs and RegisterActions. Further details
are provided in Section 4.

3 USE CASES
We present how P4DME can address two DNS-based threats. For
both, P4DME can deploy any state-of-the-art detection scheme (or
combination thereof) on dedicated ML servers to benefit from their
specific abilities. In this fashion, a rich traffic pattern analysis can
be performed while filtering at high throughput.

3.1 DGA-based botnet activity mitigation
To establish C&C channels with their bots, Botnets employ DGA to
generate domain names to register frequently. Most DGA detection
schemes rely on machine learning to compare the alphanumeric
characteristics of the automatically generated names against those
created by humans. Models range from traditional supervised ML
techniques [25, 26] to deep learning models [9].

Another branch of mechanisms exploits temporal characteristics
as popularity spikes or periodic behaviours to detect botnets [22].
These patterns in the communication activity respond to the C&C
channel migration procedures. If access to the queries’ responses is
granted, detection performance can be improved [41] at the cost of
decreased efficiency and potentially another bottleneck [25].

For any detection method, the incumbent ML models use re-
sources to inspect the incoming DNS queries and filter the malicious
traffic. These resources cannot be used for productive purposes, and
the ML servers may become a throughput bottleneck for the system.
By offloading a fraction of the filtering to the programmable switch,
P4DME provides a mechanism to leverage the intelligence of the
most recent mitigation methods while keeping a high throughput.

3.2 DNS Water Drop Torture
For WDT mitigation, simple name filters and rate-limiting methods
may overlookmalicious queries and drop legitimate ones. Also, rate-
limiting may be ineffective if the attack is highly distributed. Con-
sidering these elements, [14] checks each received DNS response
to validate that the FQDN exists and registers it on a whitelist. Nat-
urally, such a system benefits directly from offloading the filtering
on a programmable device, resulting in an ideal candidate for use
with P4DME.
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4 EVALUATION
We simulate a botnet and P4DME using Pulpy [1], a distribut-ed-
system discreet-event simulator based on SimPy [34]. The simula-
tion has four components: 1) a DNS query generator, 2) a P4 switch,
3) a DNS server, and 4) an ML server.

The (synthetic) DNS query generator can switch between NOR-
MAL or ATTACK states randomly. During NORMAL state, it sends
queries for benign domains with 99% probability. The popularity
of benign domains follows a Zipf distribution. At the beginning
of the ATTACK, 10 new malicious domain candidates are made
available to represent the current DGA operation. During this state,
the probability of sending a query for malicious domains goes up
to 5% while the benign traffic intensity remains unaltered.

The P4 switch performs the calculations described in Section 2.
If a domain is deemed suspicious, the query is forwarded to the
ML server instead of the DNS server. The ML server implements a
deterministic abstract model that recognisesmalicious domainswith
95% and benign domains with 99.5% resp. probability. As concrete
examples, any ML model listed in Section 3 can be used on the
server side.

Data plane implementation. P4DME’s heuristic algorithm is
implemented on the Intel Tofino. First, the 𝑠 and 𝑡 parameters are
acquired from a match-action table, where the control plane can
modify them during runtime. After getting the hash value of the
domain, we get the approximated number of recent occurrences (𝑝)
using the LPF extern (alternatively, a count-min sketch can also be
used). The 𝑐 value is stored in a register. This register is updated
by a RegisterAction that compares 𝑐 and 𝑝 and returns |𝑝 − 𝑐 |. If
|𝑝 − 𝑐 | > 𝑡 , we send the packet to the ML component. Otherwise,
we forward it towards the DNS server.

Dealing with complexity. Fitting every desired functionality
inside a programmable switch can be challenging, especially when it
has multiple responsibilities. However, since the required data plane
functionality is modular, one can easily disaggregate the different
steps. For example, the first device tags the packet if it is blacklisted
or whitelisted, then the second device performs a heuristic calcula-
tion. Moreover, one can take advantage of the strengths of different
kinds of devices (e.g., the high speed of a programmable ASIC or a
smartNIC). Note that disaggregating P4 pipelines is widely studied,
and can be highly automated. [21, 24, 29, 37]

Preliminary Results. The simulation generates queries with
an intensity of 10𝑘𝑟𝑒𝑞/𝑠 , and additional traffic bursts during high
botnet activity. The same sequence is served to P4DME and to a
copy of the ML server as a baseline. The switch heuristic takes
parameter values 𝑠 = 4 and 𝑡 = 1.

A partial timeline after the warmup period is depicted in Figure 2.
The traffic sent to the ML server is small after the warmup time
and populating the filter lists, corresponding to a 99.95% offload
ratio. This can be fine-tuned by configuring the 𝑠 and 𝑡 parameters
of the heuristic.

Another important observation is that the false negatives are
kept low. When compared with the baseline, P4DME achieves a
5% increase in False Negative Ratio, a negligible difference in False
Positive Ratio, and less than 1% decrease in F1 score. Therefore,
it protects the DNS server without greatly increasing the risk of
negative consequences.
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Figure 2: Simulation of P4DME. The traffic exhibits bursts
during periods of increased botnet activity, also resulting in
spikes in attack detection (true positives). The DNS Server
traffic is orders of magnitude larger than the ML server’s
after the warmup.

5 CONCLUSION AND FUTUREWORK
This paper presents P4DME, a system for detecting and mitigating
DNS threats. It uses a P4 programmable switch to offload traffic as
well as detection and mitigation tasks from specialized detectors.
The switch mitigates the attacks directly in the data plane and sends
queries for further analysis to ML state-of-the-art detectors when
the decision is uncertain. Using simulated attack data, it is shown
that P4DME can cope with two DNS threats related to DGA abuse:
botnet C&C activity and Water Drop Torture.

In the future, we plan to implement P4DME on a hardware switch
and perform further analysis using real-world DNS traffic traces.
Additionally, we intend to expand the system for other DNS threats.
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