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Abstract—The rise of cloud services poses considerable chal-
lenges on the control of both cloud and carrier network in-
frastructures. While traditional telecom network services rely on
rather static processes (often involving manual steps), the wide
adoption of mobile devices including tablets, smartphones and
wearables introduce previously unseen dynamics in the creation,
scaling and withdrawal of new services. These phenomena require
optimal flexibility in the characterization of services, as well
as on the control and orchestration of both carrier and cloud
infrastructure. This paper proposes a unified programmability
framework addressing: the unification of network and cloud
resources, the integrated control and management of cloud
and network, the description for programming networked/cloud
services, and the provisioning processes of these services. In
addition proofs-of-concept are provided based on existing open-
source control software components.

I. INTRODUCTION

Virtualization is arguably the main innovation motor in to-
day’s Internet. Over the last years, virtualization has revamped
the server business, and heralded the cloud computing era
which radically changed the way we think about services and
resource allocation in the Internet. But also the network is
becoming more and more virtualized.

Besides virtualization, we also witness a strong trend
towards programmability: For example, the cloud-computing
project OpenStack [1] provides a platform for infrastructure as
a service (IaaS) clouds. And OpenFlow [2], the predominant
incarnation of the software-defined networking (SDN) [3]
paradigm, introduces programmability in the network core.

However, the different components of today’s distributed
systems are still managed independently, and a unified pro-
grammability and orchestration framework is missing. Such a
unified programmability framework would not only radically
simplify the network management and operation, but could
also enable faster innovation and more efficient services. In
general, a unified framework should cover service creation
and provisioning in heterogeneous network environments, from
home to enterprise networks, through aggregation and core
networks to datacenters.

Today, innovation is also hindered by the lack of openness
and competition. One of the crucial enablers to support open-

ness is the definition of open interfaces (application program-
ming interfaces, short: APIs) between all possible components
and layers of the network architecture.

We argue in this paper that the desired and required
flexibility in network control is and will be enabled by net-
work and service virtualization as well as the definition of
interfaces supporting some type of abstraction. Virtualization
is controlled through network controllers and orchestrators (in
the datacenter and network), which offer northbound interfaces
(NBIs) to various users. Again, the possibility for innovation
highly depends on the capabilities and openness of these
northbound interfaces, best implemented in open APIs. These
interfaces should introduce high level programmability besides
policy and service descriptions.

Interfaces can be made more flexible by introducing ab-
straction, e.g., by the definition of abstract resources: abstract
resources could include networking, computing or storage;
but also abstracted software functions, which could include
firewalls, policing, etc. In general, abstraction allows the
decoupling of two independent layers and introduces flexibility
and innovation on both sides of the abstraction: as long as the
abstraction does not need to change.

We believe that the logical next step after the virtualization
of monolithic platforms is the introduction of modularity and
service function chains: network devices are turned into flexi-
bly combinable substrates with fine granular components; these
components can in turn be used by the service and network
operators to offer flexible and dynamic services combinations
to their customers. This may be achieved through allowing
them to program (directly or indirectly) the service chains.

This paper is situated in the context of the EU project
UNIFY [4]. The UNIFY project targets flexible service cre-
ation and provisioning in all kinds of heterogeneous network
environments. In general, our goal with the introduction of
UNIFY’s programmability framework is to enable on-demand
processing anywhere in the physically distributed network and
clouds. Concretely, we aim to create a programmability frame-
work for dynamic and fine granular service (re) provisioning,
which can hide significant part of the resource management
complexity from service providers and users, hence allowing
them to focus on service and application innovation similarly



to other successful models like the IP narrow waist, Android
or Apple IOS.

In the UNIFY project, we will combine and extend the ex-
isting virtualization and orchestration approaches by defining
abstractions, appropriate open interfaces and reference points,
as well as a a multi-stage programmability process.

Our Contribution. Our objective is to create a programma-
bility framework for dynamic and fine granular service (re-
)provisioning, which can hide significant parts of the resource
management complexity from service providers and users,
hence allowing them to focus on service and application
innovation.

Concretely, we make the following contributions:

1) Unified programmability framework: We present a
layered architecture model applying the narrow-waist
design principle. (Section II)

2) Programmability reference points: We define a set of
interfaces which provide virtualization, resource and
functional abstraction. (Section II)

3) Reference point information models: We define a set
of graphs introducing the abstraction between the
different architecture layers. (Section II)

4) Proof of concept: We report on different implemen-
tations of our unified programmability framework.
(Section III)

II. UNIFIED PROGRAMMABILITY FRAMEWORK

An overarching programmability framework as envisioned
in this paper is still missing today [5]. In order to introduce
an interdependent orchestration and programmability layer, the
following two main aspects need to be taken into account:

1) Harmonization and unification of all the underlying
physical and virtual resources and their capabilities.

2) Provisioning of common enablers for the service
layer, with service (function) chaining, defined as
logical interconnection of network functions.

The simplest realization of the above design principles
is a 3-layered architecture (see also Fig. 1), where resource
orchestration and control take place in the middle layer,
while an infrastructure layer is defined below and a service
layer is defined above. The middle-layer provides the required
independence, similarly to the narrow-waist design principle
of IP. This orchestrator must work on abstract resources and
capability types, virtual resources corresponding to network,
compute and storage virtualization. In addition, the orchestra-
tion layer must not understand any higher layer logic, function,
configuration, etc. The three layered model can be augmented
with an application layer corresponding to the users of the
services (shown as Service + SLA).

This design ensures that:

• The orchestration layer can operate on abstract re-
sources and capabilities, i.e., virtual resources corre-
sponding to network, compute and storage virtualiza-
tion.

• No service function logic must be understood in the
orchestrator.

• The orchestrator is technology-independent.

Additionally, in order to be able to re-use existing tech-
nologies (e.g., for network and compute), we aim to rely and
integrate available “managers” into the architecture.
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Fig. 1. Three layered programmability framework

The service layer turns the service chain provisioning into
consumable services by defining and managing service logics;
establishing programmability interfaces to users (residential,
enterprise, network-network, OTT, etc.) and interacting with
traditional OSS/BSS systems. The service layer is also respon-
sible to create further service abstractions as needed toward
the different users (e.g., BigSwitch topology) and to realize
the necessary adaptations according to the abstraction.

The orchestration layer is split into three major sub-
components: the orchestrator and the controllers are inter-
connected with an adaptation component. The orchestration
is a logically centralized function realizing the narrow-waist
of the architecture. However, there could be many underlying
controllers corresponding to different sub-domains (zones).
The controllers are responsible to offer technology independent
control interfaces and to virtualize their resources. Hence, the
orchestrator collects and harmonizes virtualized resources into
a global virtualized resource view at its compute, storage and
networking abstraction.

It is important to note here, that the aim of the orches-
trator is to collect a global resource view (as shown by the
controllers) and this is offered to the service layer intact, i.e.,
no abstractions are done beyond harmonizing the resource
views. But controllers may abstract their resources during
virtualization (e.g., a multi-hop optical path may appear as
a direct connection between the end points or a datacenters
internal topology is hidden by the cloud controller).

The global resource view in the orchestrator consists of
the following main components: forwarding elements, compute
hosts, network functions, and the data plane links that connect
them. All of the resources must have some associated abstract
attributes (capabilities) for the resource provisioning to work,
e.g., execution environment type for compute hosts. We will
define the additional functionality needed in the orchestrator
to be able to map service chain (re-)provisioning requests to
these global resources.



The infrastructure layer encompasses all network, compute
and storage resources providing physical means to deliver
services. By exploiting suitable virtualization technologies the
Infrastructure Layer can support the creation of virtual in-
stances (networking, compute and storage) out of the physical
resources.

We consider primarily four types of resources: i) our
universal node [6] (based on commodity hardware), ii) SDN
enabled network nodes (e.g., OpenFlow switches), iii) datacen-
ters (e.g., OpenStack) and iv) legacy network nodes or network
appliances. One of the challenges is to harmonize virtualization
above these resources by proper abstraction in the orchestration
layer. However, the diversity of the infrastructure (shown
with the widening lower layer of the hourglass architecture)
demands the support of various interfaces to the resource
management agents in the infrastructure. These are handled
by the various controllers present in the orchestration layer,
whose role is to interact with the (local) infrastructure resource
managers.

For a top-down programmability flow, we have identified
the service adaptation, the orchestration, the controller adap-
tation, controllers and local resource managers as key compo-
nents. We will describe each of the corresponding reference
points between these components (see Fig. 1):

• Se-Sl: Users (services) and the service layer.

• Sl-Or: Service layer adaptation function and the
orchestrator.

• Or-Ca: Southbound interface of the orchestrator to-
ward an adaptation logic scoping and interfacing with
various controllers.

• Ca-Co: Northbound interfaces of controllers.

• Co-Rm: Southbound interfaces of controllers.

Our primary interest is to design Se-Sl, Sl-Or, and
Or-Ca reference points, while exploiting and interfacing to
various state of the art controllers available or under develop-
ment through Ca-Co interfaces.

A service graph (Se-Sl mapped to Fig. 2) describes the
service requested by a user and defines: which service is
provided, where the service is provided, and how successful
delivery of the service is measured. The provided service is
described by network functions/apps and their logical con-
nectivity. Where the service is provided is represented by
connectivity to service attachment points.

The key quality indicators (KQIs) attached to both net-
work functions and the logical connectivity describe how the
delivery is measured. The network functions/apps offered at
this level to define the service may be either elementary
network functions (ENF), which perform a specific function
(such as a NAT, traffic classifier, transparent HTTP proxy,
firewall function, etc.) or compound network functions (CNF)
that internally consist of multiple ENFs. A CNF performing
for example a parental control function could internally consist
of a sub-graph starting with a traffic classifier followed by a
HTTP proxy and firewall. In the service graph we make no
distinction whether the function requested is a CNF or ENF:
they are both simply represented as network functions/apps.

The network function forwarding graph (NF-FG) passed
through the Sl-Or reference point is a translation of the
service graph to match the orchestration layer, at a level of
detail suitable for orchestration (see Fig. 2). The translation
is done by the service layer. The NF-FG includes all the
components of the service graph; network functions/apps are
translated/expanded into ENFs to which known decomposition
to corresponding instantiable network function types exist
in the orchestration function (for example turning the pre-
viously mentioned parental control function into three NFs
with internal connectivity); SAPs are translated/expanded into
endpoints, identifiers meaningful at the network level such as
a certain port on a switch or a collection of IP addresses;
KQIs are mapped to resource facing and measurable KPIs
and requirements on the ENFs. The KQI mapping may result
in insertion of additional NFs into the NF-FG for measuring
certain KPIs that cannot be provided in other ways.

The difference in the information passed in the Sl-Or
compared to the Se-Sl reference point is that

• (Compound) network functions must be translated and
decomposed into network function types, which are
known to the orchestrator for instantiation. (Note:
known network function are defined in a network
function information base.)

• All constraints and requirements must be formulated
against compute, storage and networking resources.

The orchestration component bears with the global com-
pute, storage and networking resource view at the correspond-
ing abstraction level. The orchestration function breaks down
the network functions defined in the NF-FG until they are
instantiatable according to the given service constraints (e.g.,
proximity, delay, bandwidth, etc.), available resources and ca-
pabilities and operational policies (e.g., target utilization). The
output of the orchestration is an instantiatable network function
forwarding graph passed through the Or-Ca interface, which
at the model level corresponds to a resource mapped network
function forwarding graph (see Fig. 2 ).

The Ca-Co reference point captures various northbound
interfaces related to different virtualization environments. We
pursue the reuse and integration of some well accepted virtu-
alization infrastructure managers like OpenStack for datacen-
ters and OpenDaylight for software networks. Therefore, the
Controller Adaptation must translate from NF-FG to various
interfaces.

The Co-Rm reference point (not shown in Fig. 2) captures
various southbound protocols of the different controllers (e.g.,
OpenFlow, Nova).

III. PROOFS OF CONCEPT

The infrastructure layer encompasses all the network, com-
pute and storage resources, which can be a universal node,
SDN enabled network, datacenter or legacy network nodes.
We aim to show state-of-the-art components which can capture
the essence of these resources. Moreover we introduce these
technologies as important test environments for future devel-
opment. Despite their limitations these components validate
our unified framework’s necessity.



Fig. 2. Reference points’ information models

We introduce Click as an alternative platform to our uni-
versal node which provides a set of ENFs, designed for a
specific problem. Then we present a prototyping framework
which enables the instantiation of service graphs built from
simplified universal modes. Finally we show how an existing
cloud infrastructure can be used to run some of the generic
network functions and instantiate service graphs cooperatively
with an SDN enabled network.

A. Click Service Function Graphs

Click [7] is a software router framework for *nix operating
systems focusing on data-plane logic. Click configurations, de-
fined by a script, are composed by interconnecting a collection
of simple packet processing components.

Fig. 3 illustrates a potential Click implementation of the
NF-FG for an elastic router fitting the proposed framework.
The elastic router consists of 1) a control plane VNF (CP
VNF) and 2) data plane VNFs (DP VNFs). The CP VNF and
the DP VNFs can interact using for example an OpenFlow
interface. The Click switching component presented in [8]
can be used for implementing such DP VNF. Each VNF is
implemented as a Click configuration consisting of one or more
Click elements (dark grey). Each Click VNF has a particular
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Fig. 3. NF-FG in Click

component for interfacing with the management system (pink),
relying for example on SNMP or NETCONF. This component
is made such that it can interact with the handler configuration
interface of standard Click. Click VNFs interface to other
VNFs or to customer endpoint interfaces (yellow circles)
including tunneling functionality for: i) traffic steering between
VNFs, and ii) service graph isolation (e.g., involving VLAN
tagging). Elasticity can be achieved by adding more DP VNFs
when needed. Support for forcing constraints on functions and
to guarantee KQ/PIs can be implemented in several ways:
in the implementation of Click elements themselves, or by
adapting the interconnection of click elements. Click VNFs
can be deployed on light-weight VMs in ClickOS or on regular
VMs provisioned by an OpenStack cloud control framework.
In the latter case, the interconnection of Click VNFs and
configuration of related tunneling functionality (yellow circle)
could be steered through a OpenStack plugin.

B. Mininet-based prototyping framework

Mininet [9] is a light-weight network emulation tool en-
abling rapid prototyping. It is a proper candidate to build a
UNIFY development framework around that in order to make
agile prototyping possible. Therefore, we have established such
a framework including all layers of the architecture. The main
components are shown in Fig. 4.

Our goal is to support the development of several parts
of the service chaining architecture. On the one hand, the
framework fosters VNF development by providing a simple,
Mininet-based environment where Service Graphs, built from
given VNFs, can be instantiated and tested automatically. Here,
VNFs are implemented in Click and run as distinct processes
with configurable isolation models (based on Linux cgroups),
while the infrastructure consists of OpenFlow switches (e.g.,
Open vSwitch). A dedicated controller application (imple-
mented in the POX [10] OpenFlow controller platform) is
responsible for steering traffic between VNFs.

On the other hand, the framework supports the development
and testing of orchestration components. Mininet is extended



Fig. 4. Mininet-based prototyping framework

by NETCONF capability in order to support managed nodes
(VNF containers, i.e., simplified Universal Nodes) hosting
VNFs. The orchestrator also communicates the NETCONF
protocol and it is able to start/stop VNFs on demand. The
paths are handled similarly by our POX controller. On top of
these, a MiniEdit based GUI can be used to describe Service
Graphs (with requirements) and test topologies (resources in
the network). Then, given Service Graphs are mapped to
available resources dynamically, and lower-layer orchestration
methods are invoked.

C. OpenStack and OpenDaylight

In this scenario we implement a simple service graph (SG)
between two consumers. The SG consists of a network function
(NF), which is located in a datacenter. Our aim with this setup
is to demonstrate the possibility of using resources provided
by legacy cloud infrastructure and traditional network services,
by placing one or more functional parts of a service into the
datacenter. We construct a simple virtual network as the public
network between the consumers which was managed by an
SDN controller. The datacenter is connected to this network
at a single edge point and configured to run a specific image
that provided a given type of network functionality.

For the actual implementation we use a traditional cloud
infrastructure realized by OpenStack and a network controlled
by OpenDaylight (ODL) controller. Although not necessary,
we successfully boot up the OS and ODL controller in a
cooperative mode, in which the cloud internal network was
also controlled by ODL. The public network between the two
consumer is realized by Mininet that uses OpenVSwitches
(OVS) as switching elements. This approach not only gives
us a lightweight test environment, but it is also good for the
Mininet-based prototyping framework. Our OS datacenter is
composed of two components: a control node for the basic OS

services and an array of compute nodes for the virtual servers
in which our NF is installed. The layout of the described
elements can be seen in Fig. 5.

Fig. 5. OpenStack & OpenDaylight proof of concept scenario.

In the legacy cloud the virtual servers are identified by
their IPs. Every traffic going to the server must be properly
addressed to the specific server in Layer 3. For this reason
we need some type of tunneling on the edge of the datacenter,
more specifically the switch S2 in Fig. 5 had a tunnel endpoint.
In our setup this is realized as a VxLAN tunnel which is
supported by the switches. Moreover, the NF in the datacenter
must be aware of this tunnel and must have an appropriate
VxLAN tunnel endpoint. This is the main complication caused
by the legacy nature of the scenario.

After the creation of the basic setup, the NF instantiation
is as follows:

1) Chose suitable server image for the network function.
2) Instruct OS to boot up a new virtual server with the

image.
3) Allocate an IP address for the virtual server through

OS.
4) OS instructs ODL to configure datacenter network for

the virtual server.
5) Create a VxLAN tunnel endpoint in switch S2 and

also in the network function.
6) Instruct the ODL controller to install appropriate rules

in the public network switches for traffic steering.

In these steps we as the orchestrator use an interface to the OS
and another to the ODL. Additionally for the VxLAN tunnel
creation we need a third interface to the S2 switch and a fourth
to the network function. However the last two interfaces are
not necessary, since the S2 switch can be configured with ODL
through the OVSDB protocol and the network function with
OS through boot up scripts.

With this setup we show that a current cloud solution
can be used with a popular network controller to deploy
network functions and instantiate service graphs, assuming an
appropriate orchestration manages them.



IV. RELATED WORK

Cloud computing in itself is of little use if no access
and network guarantees are provided. Accordingly, over the
last years, several network virtualization prototypes have been
built (e.g., GENI, AKARI, OFELIA, CLOUDNET), which
try to fill this gap, making the network a first class cit-
izen and introducing innovation also in the network core.
A particularly interesting technology to enable virtual net-
works is OpenFlow [11]. Network virtualization is attractive
for internet service providers (ISPs): ISPs benefit from the
improved resource utilization as well as from the possibility
to introduce new services, see [12]. While the corresponding
resource allocation and virtual network embedding problems
are fairly well-understood, both from an offline (e.g. [13]) as
well as from an online perspective (e.g. [14]), the vision of this
paper goes beyond virtual networks, and considers complex
distributed services which can be managed in a unified manner.

We are not the first to argue for the introduction of a
unified and programmable system abstraction. [15], [16] In
some sense, interfaces that expose resources (e.g., processing,
storage, and packet queues) on individual network nodes, were
already proposed in the context of active networks, in order to
introduce innovation in the network. [17] More recent work,
e.g., ClickOs [16] uses a virtualized software middlebox plat-
form which consists of small but quickly bootable VMs. And,
in their “middlebox manifesto”, Sekar et al. [15] argue that
despite the critical role that middleboxes play in introducing
new network functionality, they have been largely ignored so
far for designing networks that are amenable to innovation.
The authors envision a world with software-centric middlebox
implementations running on general-purpose hardware plat-
forms that are managed via open and extensible management
APIs. However, while we share the philosophy of [15], our
paper focuses more on the specific case of datacenter and
carrier unification, and proposes a concrete architecture and
programmability framework.

To the best of our knowledge, so far there is no work on
flexible, modular and programmable service chain architec-
tures.

With the advent of cloud computing, many different tools to
orchestrate virtualized resources (compute, storage, connectiv-
ity) have been made publicly available. Prominent examples
are OpenStack, OpenDaylight or OpenNebula. OpenStack is
tailored to seamlessly instantiate virtual machines (VMs) in
datacenter environments. OpenDaylight on the other hand
allows for provisioning virtual links between virtual network
functions (VNFs), usually provided as virtual machines. Within
the proposed UNIFY architecture, the orchestrator (e.g., Open-
Stack) would interface e.g., with OpenDaylight’s northbound
interface to provision network connectivity between VNFs.
Note however that there is no standardized northbound pro-
tocol.

During the past decades, also several so-called southbound
interfaces—the lower layer interface toward the networking
elements—and protocols have been standardized to control,
manage, or configure the network nodes. These protocols
address different aspects. According to the SDN paradigm, the
OpenFlow protocol separates the data and control plane of the
network and defines an interface to control the forwarding path.

Other protocols, such as SNMP or NETCONF focus on the
management plane providing methods to manage, configure,
monitor, etc. network devices.

V. CONCLUSION

We understand our paper as a first step toward more flexible
and programmable distributed services which can be managed
in a unified manner. We have presented the main concepts
behind our Unified Programmability Framework, and sketched
prototypes that demonstrate the feasibility of the approach,
by showing how existing networking hardware, open source
software and open interfaces can be combined to realize
flexible network function forwarding graphs.
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