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Communication Networks

Critical infrastructure of digital society
• Popularity of datacentric applications: health, 

business, entertainment, social networking, 
AI/ML, etc.

• Evident during ongoing pandemic: online 
learning, online conferences, etc.

• Much traffic especially to, from, and inside
datacenters

Increasingly stringent dependability requirements!

Facebook datacenter
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Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy
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Traditional Networks

Routing
Algorithm

data
plane

control
plane

Distributed algorithms: 
upon link failure, reconverge
to shortest paths
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Software-Defined Networks (SDN)

Centralized algorithms: 
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction: 
a reason for Google’s move to SDN!



Software-Defined Networks (SDN)

Centralized algorithms: 
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction: 
a reason for Google’s move to SDN!

Still slow…



Restoration in control plane takes time -> packet drops!

2021-08-20 8Video shot taken from “Lemmings” 
designed and developed by DMA Design

routing 
restoration



Failover: Control Plane vs Data Plane

• Slower reaction in the control plane than in the data plane
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Minister of Education

vs

Teacher in the Classroom



Approaches for Failover

In Control Plane
• Distributed 

recomputation of 
shortest paths (“re-
convergence”)

• Centralized 
recomputation of paths
(SDN)

• Link-reversal algorithms 
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table
• Rules pre-installed before

failures are known

vs

12



Approaches for Failover

In Control Plane
• Distributed 

recomputation of 
shortest paths (“re-
convergence”)

• Centralized 
recomputation of paths
(SDN)

• Link-reversal algorithms 
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table
• Rules pre-installed before

failures are known

vs

12



The FRR Problem

Phase 1: Rule installation
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The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

if x fwd to y 13



The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

Without coordination!if x fwd to y 13



The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

Default route

Credits: Klaus-Tycho Förster 14
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The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

Requires inport
matching!

Can get complex under
multiple failures..

Credits: Klaus-Tycho Förster 14



The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

With global 
knowledge: simpler!

Credits: Klaus-Tycho Förster 14



What information is locally available in a 
switch for handling a packet?

Credits: Marco Chiesa 15



Locally Available Information:
The Forwarding Table: Match -> Action

Forwarding 
table

match action

Credits: Marco Chiesa 15



Locally Available Information:
The Packet Header

Forwarding 
table

match actionheader

Credits: Marco Chiesa 15



Locally Available Information:
The Inport of the Received Packet

Forwarding 
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 15



Forwarding 
table

match actionheader

Locally Available Information:
The Outgoing Port Depends on Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 15



Raises an Interesting Question

Can we pre-install local fast failover rules 
which ensure reachability under multiple 

failures? In particular: How many failures can 
be tolerated by static forwarding tables?
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So: How many failures can be tolerated by 
static forwarding tables?

Credits: Marco Chiesa 19



If we partition the network, 
there is not much to do

Credits: Marco Chiesa 19



The connectivity k of a network 𝑁𝑁: the minimum 
number of link deletions that partitions 𝑁𝑁

The connectivity of this 
network is four

Credits: Marco Chiesa 19



Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20
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Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Credits: Marco Chiesa 21



Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Can carry global information, 
but often undesirable

Credits: Marco Chiesa 21



Per-destination routing cannot cope
with even one link failure

t

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X 0

Without matching inport: 
sends back – loop!  s

Pre-computed 
failover path
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Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X ?

s

Credits: Marco Chiesa 23



Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X Yes

s
k disjoint paths: try
one after the other, 
routing back to 
source each time. 

Credits: Marco Chiesa 24



Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination Per source Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X ?

What about this scenario? 
Practically important. From now

on called “ideal resilience”.
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Ideal Resilience: Example 2-dim Torus?
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Ideal Resilience: Example 2-dim Torus?
k=4 connected: 

tolerate 3 failures?
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• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

26
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• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
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3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d
3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 

2nd HC, if again failure 
reverse direction

• No more failures possible!
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Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing 

can be constructed!

What about graphs which cannot be 
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017. 



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles

– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:
• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles

– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:
• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 

t

Credits: Marco Chiesa 29
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A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 

t
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General technique: routing along the same tree

t

Credits: Marco Chiesa 30



When a failed link is hit…

t

Credits: Marco Chiesa 30



… how do we choose the next arborescence?

t

Credits: Marco Chiesa 30



But how do we choose the next arborescence?

Circular-arborescence routing: 
• compute an order of the arborescences
• switch to the next arborescence when hitting a failed link

31



Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

3 4
Intuition: each single 

failure may affect 
two arborescences

t

Credits: Marco Chiesa 32



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 1 
to destination...
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 2 to 
destination...
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 3 to 
destination...
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Arborescence order
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two arborescences



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 4 to 
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single 
failure may affect 

two arborescences



1 2 3 4

All k=4 arborescences used 
(2 failures disconnected 

affected all four):
LOOP!

t

Credits: Marco Chiesa 32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single 
failure may affect 

two arborescences



An Alternative Algorithm: Bouncing Arborescence

Bouncing-arborescence algorithm: 
• Reroute on the tree that shares the failed link

This algorithm is 1-resilient.

33



Bouncing-Arborescence is 1-Resilient
d

Credits: Marco Chiesa

Start with red…
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Bouncing-Arborescence is 1-Resilient
d

Credits: Marco Chiesa

… bounce to yellow…
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Bouncing-Arborescence is 1-Resilient
d

LOOP!
Credits: Marco Chiesa

… bounce to red
(again!)…

34



Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination 
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good tree:
– every failed arc is well-bouncing
– Red is not a good tree
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34
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Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination 
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good arborescence:
– every failed arc is well-bouncing
– Red is not a good arborescence
– Blue is a good arboresence

d

1 2

3

54
Credits: Marco Chiesa 34



Ideas

• One can show that there is always a good arborescence

• An tempting idea:
– route on an arborescence X until a failed link is hit:

• if X is a good arborescence, bounce!
• otherwise, route circular

• Too good to be true: 
– The “goodness” of an arborescence depends on the actual set of failed links! 
– How do we know a arborescence is good?

Credits: Marco Chiesa 35



Resilience Criteria

Can this be achieved? Assume undirected link failures.

Ideal resilience

Given a k-connected graphs, we 
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

36



Perfect resilience is impossible to 
achieve in general.

Resilience Criteria

37



Relevant Neighbors

38

• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to 
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2,𝑣𝑣3 for i, since 
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes 
relevant, since 𝑣𝑣1 might be only choice to 
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3 



• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to 
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2,𝑣𝑣3 for i, since 
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes 
relevant, since 𝑣𝑣1 might be only choice to 
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3 

High-level definition of relevant: From the local view-point of the node 𝑖𝑖, a relevant neighbor 
might be only neighbor to reach destination (without taking a detour over a current neighbor).

Relevant Neighbors

38



How to Achieve Perfect Resilience?

• Necessary: need to try all 
relevant neighbors
– Here, if local link to 𝑣𝑣2 broken: 
𝑣𝑣1 and 𝑣𝑣3

• That is, if packet
– comes from 𝑣𝑣3: eventually try 𝑣𝑣1
– comes from 𝑣𝑣1: eventually try 𝑣𝑣3

39



Impossibility: On Planar Graphs
Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

40



Impossibility: On Planar Graphs

8

All neighbors of all nodes are
relevant (even without failures).

Considered node 1 will not 
see any local failures.

Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

So we must fix a 
permutation for node 1. 41



Impossibility: On Planar Graphs

Proof idea, with three cases: 
• If the dashed links fail (non-local to 

node 1), in any forwarding pattern, 
packets will be stuck in one of the blue 
loops…

• … even though there is at least one 
remaining path to the target

Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Go through all possible 
permutations @1 and give

counter example. 42



Impossibility: On Planar Graphs

For node 1: 
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet arrives from 2, 
due to cyclic permutation, it can only be forwarded to either 
3 or 4. Leads to loops in scenarios (b) (4 goes to 5, 2 can only 
go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Arriving on 
inport 5, 

forwarded
to 2. 

43
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(5,2,3,4) (b)
(5,2,4,3) (a)
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43

Link needed: 
otherwise 5 would

not be relevant!



A Pity: Planar Graphs Are Important

• Internet Topology Zoo and 
Rocketfuel topologies

– 88% of the graphs are planar
– However:

• Almost a third (32%) belong to the family 
of cactus graphs

• Roughly half of the graphs (49%) are 
outerplanar

• … and they work 

44
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Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:
• Via geometric routing, well studied in sensor networks etc.
• Embed graph in the plane s.t. all nodes are on the outer face

– Note: If a link l belongs to the outer face of a planar graph G, it also belongs to the outer face for all 
subgraphs of G

• Apply right-hand rule to forwarding (skipping failures)
– Ensures packets use only the links of the outer face and do not change the direction despite failures

• Strategy traverses all nodes on the outer face

• Also works for any graph which is outerplanar without the source (e.g., K4)

44



Some Observations
• 𝐾𝐾_5, 𝐾𝐾_3,3: no perfect resilience

• Perfect resiliency on graph G -> any subgraph G‘ of G also 
allows for perfect resiliency
– Idea: Take routing on G, fail edges to create G‘, 

routing must still work 

• Contraction works as well, by a simulation argument
– A bit technical

• Combined: Perfect resilience on graph G -> any minor G‘ 
of G as well
– But since 𝐾𝐾_5, 𝐾𝐾_3,3 not: non-planar graphs not

perfectly resilient

u v

uv

45



What we know about perfect resilience

Possible:
• On all outerplanar graphs [right-hand rule]
• On every graph that is outerplanar without the 

destination (e.g. non-outerplanar planar 𝐾𝐾_4 )

Impossible:
• On some planar graphs
• Every non-planar graph
• Perfect resilience must hold on minors

8

u v uv

Foerster et al. On the Feasibility of Perfect Resilience 
with Local Fast Failover. SIAM Symposium on Algorithmic 
Principles of Computer Systems (APOCS), 2021.
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A most simple network:
the clique

Congestion-Aware FRR

Assume we can
match source.
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5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Without failures!

Assume single destination
(incast scenario).



1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red flow

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

49

Don‘t try 2 or 1: 
loop! So go along
a permutation!



1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red, blue and green flows

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…
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3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red, blue and green flows

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…
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1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Finally, t is reached!
49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…



1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Max load is 3 

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…
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3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

A better solution:
load 2 

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…



1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

Observation: we can
represent failover 
tables as a matrix. 
To load balance: 
prefixes of rows 

should be different!



Failover Matrix Representation

Matrix:
source 1: 2,3,4,5
source 2: 3,4,5,1
source 3: 4,5,1,2

1

3

4

t

5

2

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…
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Failover Matrix Representation

50

Matrix:
source 1: 2,3,4,5
source 2: 3,4,5,1
source 3: 4,5,1,2

Problem: failing link (3,t) will 
affect all three rerouted flows… 
In general: easy to create high 
load on node 4, as failures can
be „reused“.

1

3

4

t

5

2

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…



What Are Good Failover Matrices?

• The matrices should be Latin squares: each node appears exactly once on 
each row and each column. No repetitions implies loop-freedom.

• Latin squares property gives high resilience, but is not sufficient for 
minimizing load.
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1

3

4

t

5

Challenging Example: Incast

2

Traffic demand:
{1,2,3,4,5}->t

In the following, consider
all-to-one demand pattern.
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A Bad Matrix for Load

2 3 4 5

3 4 5 1

4 5 1 2

5 1 2 3

1 2 3 4

Src 1:

Src 2:

Src 3:

Src 4:

Src 5:

52



A Bad Matrix for Load

If the adversary fails the l first links to destination d (that is, {(vi,t), i = 1, . . . , l}), 
then l sources will route through (vi+1,t). Load l for l failures. Can we do better?

Failing (1,t), (2,t), (3,t), 
(4,t), gives load 4 on
node 5 / link (5,t).

52

2 3 4 5

3 4 5 1

4 5 1 2

5 1 2 3

1 2 3 4

Src 1:

Src 2:

Src 3:

Src 4:

Src 5:



Good Failover Matrices?

53

X
X

X
X

X
X

i

• To bring the flow from a source i to a 
node X, need to fail all links in 
corresponding row
– Worst case: all to destination

• The same for each other flow/row 
which should reach X

• Adversary will try to reuse link 
failures: good matrices have prefixes 
with little overlap (resp. large 
number of unique nodes)



Good Failover Matrices?
• To bring the flow from a source i to a 

node X, need to fail all links in 
corresponding row
– Worst case: all to destination

• The same for each other flow/row 
which should reach X

• Adversary will try to reuse link 
failures: good matrices have prefixes 
with little overlap (resp. large 
number of unique nodes)
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Connection to Block Designs
• A closely related problem: generating block designs

– and its geometric counterpart, generating projective planes of high order

• Using symmetric balanced incomplete block designs (BIBDs)

• Gives a latin failover matrix M with intersection properties representing 
a failover scheme that is optimal up to a constant factor

• Also used in the context disconnected cooperation, e.g.:
– G. Malewicz, A. Russell, and A. A. Shvartsman. Distributed Scheduling for 

Disconnected Cooperation. Distributed Computing, 18(6), 2005.
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Overview of Results

Bad news (counting argument): High load unavoidable even 
in well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still highly 
connected (n-L connected). E.g., L=n/2, load could be 2 still, 

but due to locality at least √n.

Good news: Theory of local algorithms without 
communication: symmetric block design theory.

Borokhovich et al. Load-Optimal Local Fast 
Rerouting for Dense Networks. IEEE/ACM 
Transactions on Networking (TON), 2018.



Randomized Failover

• Recall: deterministic lower bound of √L for L failures, although load could 
be O(1) for L<L/2. A large price of locality. 

• So what about randomized approaches?
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The Power of Randomization

• While deterministic algorithms can at best achieve a polynomial load, 
randomized algorithms can achieve a polylogarithmic load. 

• Even when just matching the destination.
– Losing a log n factor in resilience.
– Matching also the hop count can overcome this.

Bankhamer et al. Local Fast Rerouting with 
Low Congestion: A Randomized Approach. 
27th IEEE International Conference on 
Network Protocols (ICNP), 2019.



Benefits in Datacenter Networks

Bankhamer et al. Randomized Local Fast 
Rerouting for Datacenter Networks with 
Almost Optimal Congestion. DISC, 2021. 
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What About Path Length and Stretch?
• So far: ignored the length of the failover routes

– Hamilton cycles are particularly bad
– The heights of general arborescences may be lower

• Idea (so far heuristic): 
– Postprocess the arborescences to lower

their heights
– Two different t-rooted arc-disjoint 

spanning arborescence decompositions, 
T1 and T2

– The mean path length of T1 is higher than 
that of T2

Foerster  et al. Improved Fast Rerouting Using Postprocessing (Best Paper Award). 
38th International Symposium on Reliable Distributed Systems (SRDS), 2019.



Swapping Operations Which Maintain Decomposition

1

2
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Roadmap

• A Brief History of Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy



Roadmap

An example with
header rewriting.

• A Brief History of Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy



Case Study: MPLS Networks

• Widely deployed networks by Internet Service Providers (ISPs)

• Often used for traffic engineering
– Avoid congestion by going non-shortest paths

• Allows for header re-writing upon failures
– Header based on stack of labels
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How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8
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How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2
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How (MPLS) Networks Work

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop
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v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20
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v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal 

swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21 63



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal 

swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21

What about multiple link failures?
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2 Failures: Push Recursively
v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 64



Original Routing

One failure: push 30: 
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively
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Original Routing

One failure: push 30: 
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!
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Original Routing

One failure: push 30: 
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size 
may grow arbitrarily!
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint ensurance: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!).
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures = 
(𝑛𝑛𝑘𝑘) possibilities
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures = 
(𝑛𝑛𝑘𝑘) possibilities

Generalization: service chaining!
65



Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Approach: Automation and Formal Methods

66



Approach: Automation and Formal Methods

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

17

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Jensen et al. P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. 14th ACM 
International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2018.



AalWiNes Tool

31
Online demo: https://demo.aalwines.cs.aau.dk/
Source code: https://github.com/DEIS-Tools/AalWiNes

Query: 
regular 

expression

Witness Dozens of 
networks

67

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes


YES
(Polynomial time!)

2 failures

Example
Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: 3 regular expressions 
(initial and final header, route)
k=2 [] s1 >> s5 >> s7 []
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Why AalWiNes is Fast (Polytime):
Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• For fast verification, we can use the result by Büchi: the
set of all reachable configurations of a pushdown
automaton a is regular set

• We hence simply use Nondeterministic Finite Automata
(NFAs) when reasoning about the pushdown automata

• The resulting regular operations are all polynomial time 
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AalWiNes

Part 1: Parses query
and constructs Push-
Down System (PDS)
• In Python 3

Part 2: Reachability 
analysis of 
constructed PDS
• Using Moped tool Resp. our new weighted extension and 

much faster implementation in C++.
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• Network: a 7-tuple

Network Model

Nodes

Links

Incoming 
interfaces

Outgoing 
interfaces

Set of labels in 
packet header

71



Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is:                               and

Network Model

Interface 
function

• Network: a 7-tuple

71



• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers, 
outgoing interfaces together with modified headers. 

Network Model

Routing 
function

71



out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing

• Example: routing (in)finite sequence of tuples

Node 
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these 
links are down.

v1

h1

v2

h2 h3

in1 in2
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Case Study: NORDUnet

• Regional service provider
• 24 MPLS routers geographically 

distributed across several countries
• Running Juniper operating system
• More than 30,000 labels
• Ca. 1 million forwarding rules in our

model
• For most queries of operators: 

answer within seconds
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Generalizes to Quantitative Properties
• AalWiNes can also be used to test quantitative properties

• If query is satisfied, find trace that minimizes:
• Hops
• Latency (based on a latency value per link)
• Tunnels

• Approach: weighted pushdown automata
• Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis) 
• Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

Transitions annotated 
with weights.
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Conclusion

• Fast rerouting requires local decision making

• Different fault-tolerance metrics: ideal resilience, perfect resilience

• What can be achieved depends on what can be matched locally

• Locally balancing load under failures is hard, but randomization helps
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What About The Control Plane?

Still many open questions 
too, see e.g., TACAS 2021
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What About Segment Routing?

82

See e.g., GI 2018 
and OPODIS 2020



What About Segment Routing?

83

IGP 
Segment

s2s1 s3
s

tw1

w2

s

t

w

s1
s3

IGP

IGP

IGP

wt pop

t

t

L



What About Segment Routing?

84

• We need two definitions: 
• P-Space: the nodes whose shortest path from S does not use L
• Q-Space: the nodes whose shortest path to T does not use L

S T

Idea: choose segment endpoint w at intersection!

w

L



Two Cases

85

P-Space and Q-Space: Are connected subgraphs, cover all 
nodes, overlap or are adjacent

S T

w

S T

W N
∞

Case 1: S can
simply push W 

Case 2: S pushes W and 
(W,N), forces packet to
enter Q-space

L

L



TI-LFA Under Double Failure

87

N W S

T

∞

∞

Loop
TI-LFA



TI-MFA Under Double Failure

87

N W S

T

∞

∞
minimal 

info
(S,T) 

failed

TI-MFA: failure-
carrying packets 

for SR!

TI-MFA



TI-MFA Under Double Failure

87

N W S

T

∞

∞
minimal 

info
(S,T) 

failed

TI-MFA: failure-
carrying packets 

for SR!

TI-MFA



1. Flush the label stack except for the destination T

2. Based on all link failure info stored in the packet header, compute the segments necessary to 
reach T and the labels accordingly 

3. Find the last node on ShortestPath(S,T) that a packet can reach from S without hitting known 
failed link (”repeated TI-LFA on subgraph”)

a. Let V1 be this node followed by the link (V1,V2) on this path

b. Set the top of label stack as (V1, (V1,V2),…

c. Repeat the same for V2 as the start of next segment and keep repeating until the segment 
that ends with T

4. Dispatch the packet (it will reach T unless it hits a failure disconnecting the network)

From the viewpoint of the node S where the packet hits another failed link:



Theorem: TI-MFA tolerates k failures 
in k-connected network!

Proof:

• Invariant: by construction, previously hit failures won’t be hit again

•k failures: by construction the backup path will not use any failed 
link seen previously

• Hence, the packet either hits all the k failures or reaches its 
destination early
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See e.g., 
CoNEXT 2019
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Remark: Traditional Approach LFA
• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to 
alternative neighbor, from there shortest path

Example 1:
• If (s,v) fails, s can failover to u
• u has shortest path to t that does not go 

through (s,v) again
• WORKS: can protect (s,v) 

s

t

Can Protect

u

Initial Path
LFAFRR

v

Example 1:
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• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to 
alternative neighbor, from there shortest path

Example 2:
• If (s,t) fails, s can only try to failover to v
• However, when v‘s shortest route to t goes 

along s again:  loop
• DOES NOT WORK: Cannot protect (s,t)

Example 2:

s

vt

Cannot protect

can’t use it!

Initial Path
LFAFRR

non-LFAFRR

Remark: Traditional Approach LFA
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• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to 
alternative neighbor, from there shortest path

Example 2:
• If (s,t) fails, s can only try to failover to v
• However, when v‘s shortest route to t goes 

along s again:  loop
• DOES NOT WORK: Cannot protect (s,t)

Example 2:

Initial Path
LFAFRR

non-LFAFRR

s

vt

Cannot protect

can’t use it!

Even though loop-free alternative path exists, an LFA algorithm 
cannot use it. Protection ratio of LFA depends on topology.

Remark: Traditional Approach LFA
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