
Stefan Schmid

Disconnected cooperation in resilient networks and
the algorithmic challenges of local fast re-routing

Communication Networks

Critical infrastructure of digital society
• Popularity of datacentric applications: health,

business, entertainment, social networking,
AI/ML, etc.

• Evident during ongoing pandemic: online
learning, online conferences, etc.

• Much traffic especially to, from, and inside
datacenters

Increasingly stringent dependability requirements!

Facebook datacenter

1

Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

Traditional Networks

Routing
Algorithm

data
plane

control
plane

Distributed algorithms:
upon link failure, reconverge
to shortest paths

8

Software-Defined Networks (SDN)

Centralized algorithms:
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction:
a reason for Google’s move to SDN!

Software-Defined Networks (SDN)

Centralized algorithms:
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction:
a reason for Google’s move to SDN!

Still slow…

Restoration in control plane takes time -> packet drops!

2021-08-20 8Video shot taken from “Lemmings”
designed and developed by DMA Design

routing
restoration

Failover: Control Plane vs Data Plane

• Slower reaction in the control plane than in the data plane

11

Minister of Education

vs

Teacher in the Classroom

Approaches for Failover

In Control Plane
• Distributed

recomputation of
shortest paths (“re-
convergence”)

• Centralized
recomputation of paths
(SDN)

• Link-reversal algorithms
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table
• Rules pre-installed before

failures are known

vs

12

Approaches for Failover

In Control Plane
• Distributed

recomputation of
shortest paths (“re-
convergence”)

• Centralized
recomputation of paths
(SDN)

• Link-reversal algorithms
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table
• Rules pre-installed before

failures are known

vs

12

The FRR Problem

Phase 1: Rule installation

13

The FRR Problem

Phase 1: Rule installation

if x fwd to y 13

The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

if x fwd to y 13

The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

Without coordination!if x fwd to y 13

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Default route

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Pre-installed
failover rule

Good alternative
under 1 failure!

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Does not see 2nd

failure…

Good alternative
under 1 failure!

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Requires inport
matching!

Can get complex under
multiple failures..

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

With global
knowledge: simpler!

Credits: Klaus-Tycho Förster 14

What information is locally available in a
switch for handling a packet?

Credits: Marco Chiesa 15

Locally Available Information:
The Forwarding Table: Match -> Action

Forwarding
table

match action

Credits: Marco Chiesa 15

Locally Available Information:
The Packet Header

Forwarding
table

match actionheader

Credits: Marco Chiesa 15

Locally Available Information:
The Inport of the Received Packet

Forwarding
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 15

Forwarding
table

match actionheader

Locally Available Information:
The Outgoing Port Depends on Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 15

Raises an Interesting Question

Can we pre-install local fast failover rules
which ensure reachability under multiple

failures? In particular: How many failures can
be tolerated by static forwarding tables?

16

Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

So: How many failures can be tolerated by
static forwarding tables?

Credits: Marco Chiesa 19

If we partition the network,
there is not much to do

Credits: Marco Chiesa 19

The connectivity k of a network 𝑁𝑁: the minimum
number of link deletions that partitions 𝑁𝑁

The connectivity of this
network is four

Credits: Marco Chiesa 19

Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20

Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20

Spectrum of Models

Forwarding
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting

Achievable resilience depnds on what can be matched:

Credits: Marco Chiesa 21

Spectrum of Models

Forwarding
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting

Achievable resilience depnds on what can be matched:

Can carry global information,
but often undesirable

Credits: Marco Chiesa 21

Per-destination routing cannot cope
with even one link failure

t

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X 0

Without matching inport:
sends back – loop! s

Pre-computed
failover path

22

Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X X ?

s

Credits: Marco Chiesa 23

Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X X Yes

s
k disjoint paths: try
one after the other,
routing back to
source each time.

Credits: Marco Chiesa 24

Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination Per source Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X ?

What about this scenario?
Practically important. From now

on called “ideal resilience”.

25

Ideal Resilience: Example 2-dim Torus?

26

Ideal Resilience: Example 2-dim Torus?
k=4 connected:

tolerate 3 failures?

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle
2nd Hamilton cycle

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d
3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to

2nd HC, if again failure
reverse direction

• No more failures possible!

26

Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc
disjoint Hamilton Cycles, k-1 resilient routing

can be constructed!

What about graphs which cannot be
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017.

Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead
of Hamilton cycles

– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:
• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead
of Hamilton cycles

– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:
• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

General technique: routing along the same tree

t

Credits: Marco Chiesa 30

When a failed link is hit…

t

Credits: Marco Chiesa 30

… how do we choose the next arborescence?

t

Credits: Marco Chiesa 30

But how do we choose the next arborescence?

Circular-arborescence routing:
• compute an order of the arborescences
• switch to the next arborescence when hitting a failed link

31

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

3 4
Intuition: each single

failure may affect
two arborescences

t

Credits: Marco Chiesa 32

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 1
to destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 2 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 3 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 4 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

All k=4 arborescences used
(2 failures disconnected

affected all four):
LOOP!

t

Credits: Marco Chiesa 32

Circular arborescence-routing is (k/2-1)-resilient

1 2
Arborescence order

Intuition: each single
failure may affect

two arborescences

An Alternative Algorithm: Bouncing Arborescence

Bouncing-arborescence algorithm:
• Reroute on the tree that shares the failed link

This algorithm is 1-resilient.

33

Bouncing-Arborescence is 1-Resilient
d

Credits: Marco Chiesa

Start with red…

34

Bouncing-Arborescence is 1-Resilient
d

Credits: Marco Chiesa

… bounce to yellow…

34

Bouncing-Arborescence is 1-Resilient
d

LOOP!
Credits: Marco Chiesa

… bounce to red
(again!)…

34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good tree:
– every failed arc is well-bouncing
– Red is not a good tree
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good tree:
– every failed arc is well-bouncing
– Red is not a good tree
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good tree:
– every failed arc is well-bouncing
– Red is not a good tree
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good arborescence:
– every failed arc is well-bouncing
– Red is not a good tree
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good arborescence:
– every failed arc is well-bouncing
– Red is not a good arborescence
– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:
– When bounce get to the destination
– Without hitting any other failures
– (3,1) is not well-bouncing
– (1,3) is well-bouncing

• Define good arborescence:
– every failed arc is well-bouncing
– Red is not a good arborescence
– Blue is a good arboresence

d

1 2

3

54
Credits: Marco Chiesa 34

Ideas

• One can show that there is always a good arborescence

• An tempting idea:
– route on an arborescence X until a failed link is hit:

• if X is a good arborescence, bounce!
• otherwise, route circular

• Too good to be true:
– The “goodness” of an arborescence depends on the actual set of failed links!
– How do we know a arborescence is good?

Credits: Marco Chiesa 35

Resilience Criteria

Can this be achieved? Assume undirected link failures.

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

36

Perfect resilience is impossible to
achieve in general.

Resilience Criteria

37

Relevant Neighbors

38

• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2,𝑣𝑣3 for i, since
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes
relevant, since 𝑣𝑣1 might be only choice to
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3

• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2,𝑣𝑣3 for i, since
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes
relevant, since 𝑣𝑣1 might be only choice to
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3

High-level definition of relevant: From the local view-point of the node 𝑖𝑖, a relevant neighbor
might be only neighbor to reach destination (without taking a detour over a current neighbor).

Relevant Neighbors

38

How to Achieve Perfect Resilience?

• Necessary: need to try all
relevant neighbors
– Here, if local link to 𝑣𝑣2 broken:
𝑣𝑣1 and 𝑣𝑣3

• That is, if packet
– comes from 𝑣𝑣3: eventually try 𝑣𝑣1
– comes from 𝑣𝑣1: eventually try 𝑣𝑣3

39

Impossibility: On Planar Graphs
Some observations:
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

40

Impossibility: On Planar Graphs

8

All neighbors of all nodes are
relevant (even without failures).

Considered node 1 will not
see any local failures.

Some observations:
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

So we must fix a
permutation for node 1. 41

Impossibility: On Planar Graphs

Proof idea, with three cases:
• If the dashed links fail (non-local to

node 1), in any forwarding pattern,
packets will be stuck in one of the blue
loops…

• … even though there is at least one
remaining path to the target

Some observations:
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Go through all possible
permutations @1 and give

counter example. 42

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet arrives from 2,
due to cyclic permutation, it can only be forwarded to either
3 or 4. Leads to loops in scenarios (b) (4 goes to 5, 2 can only
go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Arriving on
inport 5,

forwarded
to 2.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet then
arrives on port 4, it can only be forwarded to either 2
or 5. Leads to loops in scenarios (a) (2 will go to 5, 5
can only go to 1 and 3 only to 2) and (c) (5 goes to 3, 4
goes to 5, rest degree-2), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

Arriving on
inport 5,

forwarded
to 3.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to loops in
scenarios (c) and (b), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

Arriving on
inport 5,

forwarded
to 4.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to loops in
scenarios (c) and (b), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

43

Link needed:
otherwise 5 would

not be relevant!

A Pity: Planar Graphs Are Important

• Internet Topology Zoo and
Rocketfuel topologies

– 88% of the graphs are planar
– However:

• Almost a third (32%) belong to the family
of cactus graphs

• Roughly half of the graphs (49%) are
outerplanar

• … and they work

44

A Pity: Planar Graphs Are Important

• Internet Topology Zoo and
Rocketfuel topologies

– 88% of the graphs are planar
– However:

• Almost a third (32%) belong to the family
of cactus graphs

• Roughly half of the graphs (49%) are
outerplanar

• … and they work

44

Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:
• Via geometric routing, well studied in sensor networks etc.
• Embed graph in the plane s.t. all nodes are on the outer face

– Note: If a link l belongs to the outer face of a planar graph G, it also belongs to the outer face for all
subgraphs of G

• Apply right-hand rule to forwarding (skipping failures)
– Ensures packets use only the links of the outer face and do not change the direction despite failures

• Strategy traverses all nodes on the outer face

• Also works for any graph which is outerplanar without the source (e.g., K4)

44

Some Observations
• 𝐾𝐾_5, 𝐾𝐾_3,3: no perfect resilience

• Perfect resiliency on graph G -> any subgraph G‘ of G also
allows for perfect resiliency
– Idea: Take routing on G, fail edges to create G‘,

routing must still work

• Contraction works as well, by a simulation argument
– A bit technical

• Combined: Perfect resilience on graph G -> any minor G‘
of G as well
– But since 𝐾𝐾_5, 𝐾𝐾_3,3 not: non-planar graphs not

perfectly resilient

u v

uv

45

What we know about perfect resilience

Possible:
• On all outerplanar graphs [right-hand rule]
• On every graph that is outerplanar without the

destination (e.g. non-outerplanar planar 𝐾𝐾_4)

Impossible:
• On some planar graphs
• Every non-planar graph
• Perfect resilience must hold on minors

8

u v uv

Foerster et al. On the Feasibility of Perfect Resilience
with Local Fast Failover. SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS), 2021.

Roadmap

• A Brief History of Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

1

2

3

4

t

5

A most simple network:
the clique

Congestion-Aware FRR

48

1

2

3

4

t

5

A most simple network:
the clique

Congestion-Aware FRR

Assume we can
match source.

48

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Without failures!

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Without failures!

Assume single destination
(incast scenario).

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red flow

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

49

Don‘t try 2 or 1:
loop! So go along
a permutation!

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red, blue and green flows

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

49

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Preinstalled failover rules
for red, blue and green flows

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

49

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Finally, t is reached!
49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

Max load is 3

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

A better solution:
load 2

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

1

3

4

t

5

Congestion-Aware FRR

2

Traffic demand:
{1,2,3}->t

49

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

Observation: we can
represent failover
tables as a matrix.
To load balance:
prefixes of rows

should be different!

Failover Matrix Representation

Matrix:
source 1: 2,3,4,5
source 2: 3,4,5,1
source 3: 4,5,1,2

1

3

4

t

5

2

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

50

Failover Matrix Representation

50

Matrix:
source 1: 2,3,4,5
source 2: 3,4,5,1
source 3: 4,5,1,2

Problem: failing link (3,t) will
affect all three rerouted flows…
In general: easy to create high
load on node 4, as failures can
be „reused“.

1

3

4

t

5

2

Traffic demand:
{1,2,3}->t

Failover table:
flow 1->t: 2,3,4,5,…

Failover table:
flow 1->t: 3,4,5,…
flow 2->t: 3,4,5,…

Failover table:
flow 1->t: 4,5,…
flow 2->t: 4,5,…
flow 3->t: 4,5,…

What Are Good Failover Matrices?

• The matrices should be Latin squares: each node appears exactly once on
each row and each column. No repetitions implies loop-freedom.

• Latin squares property gives high resilience, but is not sufficient for
minimizing load.

51

1

3

4

t

5

Challenging Example: Incast

2

Traffic demand:
{1,2,3,4,5}->t

In the following, consider
all-to-one demand pattern.

49

A Bad Matrix for Load

2 3 4 5

3 4 5 1

4 5 1 2

5 1 2 3

1 2 3 4

Src 1:

Src 2:

Src 3:

Src 4:

Src 5:

52

A Bad Matrix for Load

If the adversary fails the l first links to destination d (that is, {(vi,t), i = 1, . . . , l}),
then l sources will route through (vi+1,t). Load l for l failures. Can we do better?

Failing (1,t), (2,t), (3,t),
(4,t), gives load 4 on
node 5 / link (5,t).

52

2 3 4 5

3 4 5 1

4 5 1 2

5 1 2 3

1 2 3 4

Src 1:

Src 2:

Src 3:

Src 4:

Src 5:

Good Failover Matrices?

53

X
X

X
X

X
X

i

• To bring the flow from a source i to a
node X, need to fail all links in
corresponding row
– Worst case: all to destination

• The same for each other flow/row
which should reach X

• Adversary will try to reuse link
failures: good matrices have prefixes
with little overlap (resp. large
number of unique nodes)

Good Failover Matrices?
• To bring the flow from a source i to a

node X, need to fail all links in
corresponding row
– Worst case: all to destination

• The same for each other flow/row
which should reach X

• Adversary will try to reuse link
failures: good matrices have prefixes
with little overlap (resp. large
number of unique nodes)

53

X
X

X
X

X
X

i

Connection to Block Designs
• A closely related problem: generating block designs

– and its geometric counterpart, generating projective planes of high order

• Using symmetric balanced incomplete block designs (BIBDs)

• Gives a latin failover matrix M with intersection properties representing
a failover scheme that is optimal up to a constant factor

• Also used in the context disconnected cooperation, e.g.:
– G. Malewicz, A. Russell, and A. A. Shvartsman. Distributed Scheduling for

Disconnected Cooperation. Distributed Computing, 18(6), 2005.
54

Overview of Results

Bad news (counting argument): High load unavoidable even
in well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still highly
connected (n-L connected). E.g., L=n/2, load could be 2 still,

but due to locality at least √n.

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Borokhovich et al. Load-Optimal Local Fast
Rerouting for Dense Networks. IEEE/ACM
Transactions on Networking (TON), 2018.

Randomized Failover

• Recall: deterministic lower bound of √L for L failures, although load could
be O(1) for L<L/2. A large price of locality.

• So what about randomized approaches?

56

The Power of Randomization

• While deterministic algorithms can at best achieve a polynomial load,
randomized algorithms can achieve a polylogarithmic load.

• Even when just matching the destination.
– Losing a log n factor in resilience.
– Matching also the hop count can overcome this.

Bankhamer et al. Local Fast Rerouting with
Low Congestion: A Randomized Approach.
27th IEEE International Conference on
Network Protocols (ICNP), 2019.

Benefits in Datacenter Networks

Bankhamer et al. Randomized Local Fast
Rerouting for Datacenter Networks with
Almost Optimal Congestion. DISC, 2021.

58

What About Path Length and Stretch?
• So far: ignored the length of the failover routes

– Hamilton cycles are particularly bad
– The heights of general arborescences may be lower

• Idea (so far heuristic):
– Postprocess the arborescences to lower

their heights
– Two different t-rooted arc-disjoint

spanning arborescence decompositions,
T1 and T2

– The mean path length of T1 is higher than
that of T2

Foerster et al. Improved Fast Rerouting Using Postprocessing (Best Paper Award).
38th International Symposium on Reliable Distributed Systems (SRDS), 2019.

Swapping Operations Which Maintain Decomposition

1

2

60

Roadmap

• A Brief History of Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

Roadmap

An example with
header rewriting.

• A Brief History of Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

• Accounting for Congestion

• Accounting for Network Policy

Case Study: MPLS Networks

• Widely deployed networks by Internet Service Providers (ISPs)

• Often used for traffic engineering
– Avoid congestion by going non-shortest paths

• Allows for header re-writing upon failures
– Header based on stack of labels

62

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

63

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

63

How (MPLS) Networks Work

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop

63

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

63

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21 63

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

63

2 Failures: Push Recursively
v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 64

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

64

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

64

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

64

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint ensurance: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!).

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

65

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

Generalization: service chaining!
65

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Approach: Automation and Formal Methods

66

Approach: Automation and Formal Methods

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

17

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Jensen et al. P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. 14th ACM
International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2018.

AalWiNes Tool

31
Online demo: https://demo.aalwines.cs.aau.dk/
Source code: https://github.com/DEIS-Tools/AalWiNes

Query:
regular

expression

Witness Dozens of
networks

67

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

YES
(Polynomial time!)

2 failures

Example
Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: 3 regular expressions
(initial and final header, route)
k=2 [] s1 >> s5 >> s7 []

68

Why AalWiNes is Fast (Polytime):
Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• For fast verification, we can use the result by Büchi: the
set of all reachable configurations of a pushdown
automaton a is regular set

• We hence simply use Nondeterministic Finite Automata
(NFAs) when reasoning about the pushdown automata

• The resulting regular operations are all polynomial time

69

AalWiNes

Part 1: Parses query
and constructs Push-
Down System (PDS)
• In Python 3

Part 2: Reachability
analysis of
constructed PDS
• Using Moped tool Resp. our new weighted extension and

much faster implementation in C++.

70

• Network: a 7-tuple

Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

71

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

Network Model

Interface
function

• Network: a 7-tuple

71

• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Network Model

Routing
function

71

out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing

• Example: routing (in)finite sequence of tuples

Node
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

v1

h1

v2

h2 h3

in1 in2

72

Case Study: NORDUnet

• Regional service provider
• 24 MPLS routers geographically

distributed across several countries
• Running Juniper operating system
• More than 30,000 labels
• Ca. 1 million forwarding rules in our

model
• For most queries of operators:

answer within seconds

78

Generalizes to Quantitative Properties
• AalWiNes can also be used to test quantitative properties

• If query is satisfied, find trace that minimizes:
• Hops
• Latency (based on a latency value per link)
• Tunnels

• Approach: weighted pushdown automata
• Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)
• Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

Transitions annotated
with weights.

80

Conclusion

• Fast rerouting requires local decision making

• Different fault-tolerance metrics: ideal resilience, perfect resilience

• What can be achieved depends on what can be matched locally

• Locally balancing load under failures is hard, but randomization helps

81

What About The Control Plane?

Still many open questions
too, see e.g., TACAS 2021

82

What About Segment Routing?

82

See e.g., GI 2018
and OPODIS 2020

What About Segment Routing?

83

IGP
Segment

s2s1 s3
s

tw1

w2

s

t

w

s1
s3

IGP

IGP

IGP

wt pop

t

t

L

What About Segment Routing?

84

• We need two definitions:
• P-Space: the nodes whose shortest path from S does not use L
• Q-Space: the nodes whose shortest path to T does not use L

S T

Idea: choose segment endpoint w at intersection!

w

L

Two Cases

85

P-Space and Q-Space: Are connected subgraphs, cover all
nodes, overlap or are adjacent

S T

w

S T

W N
∞

Case 1: S can
simply push W

Case 2: S pushes W and
(W,N), forces packet to
enter Q-space

L

L

TI-LFA Under Double Failure

87

N W S

T

∞

∞

Loop
TI-LFA

TI-MFA Under Double Failure

87

N W S

T

∞

∞
minimal

info
(S,T)

failed

TI-MFA: failure-
carrying packets

for SR!

TI-MFA

TI-MFA Under Double Failure

87

N W S

T

∞

∞
minimal

info
(S,T)

failed

TI-MFA: failure-
carrying packets

for SR!

TI-MFA

1. Flush the label stack except for the destination T

2. Based on all link failure info stored in the packet header, compute the segments necessary to
reach T and the labels accordingly

3. Find the last node on ShortestPath(S,T) that a packet can reach from S without hitting known
failed link (”repeated TI-LFA on subgraph”)

a. Let V1 be this node followed by the link (V1,V2) on this path

b. Set the top of label stack as (V1, (V1,V2),…

c. Repeat the same for V2 as the start of next segment and keep repeating until the segment
that ends with T

4. Dispatch the packet (it will reach T unless it hits a failure disconnecting the network)

From the viewpoint of the node S where the packet hits another failed link:

Theorem: TI-MFA tolerates k failures
in k-connected network!

Proof:

• Invariant: by construction, previously hit failures won’t be hit again

•k failures: by construction the backup path will not use any failed
link seen previously

• Hence, the packet either hits all the k failures or reaches its
destination early

Efficient Implementation of FRR?

88

See e.g.,
CoNEXT 2019

• per-destination

• shortest paths DAGs

• equal-split

A
Re

ce
nt

Su
rv

ey

A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

https://www.univie.ac.at/ct/stefan/frr-survey.pdf

• per-destination

• shortest paths DAGs

• equal-split

Re
fe

re
nc

es
On the Feasibility of Perfect Resilience with Local Fast Failover
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), Alexandria, Virginia, USA, January 2021.
Brief Announcement: What Can(not) Be Perfectly Rerouted Locally
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2020.
Improved Fast Rerouting Using Postprocessing
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.
Resilient Capacity-Aware Routing
Stefan Schmid, Nicolas Schnepf and Jiri Srba.
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual
Conference, March 2021.
AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona, Spain,
December 2020.
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete,
Greece, December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://www.univie.ac.at/ct/stefan/apocs21resilience.pdf
https://www.univie.ac.at/ct/stefan/disc20.pdf
https://www.univie.ac.at/ct/stefan/tdsc20.pdf
https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf

• per-destination

• shortest paths DAGs

• equal-split

M
or

e
Re

fe
re

nc
es

Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion
Gregor Bankhamer, Robert Elsässer, and Stefan Schmid..
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2021.
Bonsai: Efficient Fast Failover Routing Using Small Arborescences
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, Oregon, USA, June 2019.
CASA: Congestion and Stretch Aware Static Fast Rerouting
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Load-Optimal Local Fast Rerouting for Dense Networks
Michael Borokhovich, Yvonne-Anne Pignolet, Gilles Tredan, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2018.
PURR: A Primitive for Reconfigurable Fast Reroute
Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej Kamisinski, Georgios Nikolaidis, and Stefan
Schmid.
15th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Orlando, Florida,
USA, December 2019.
Artefact Evaluation: Available, Functional, Reusable.
On the Resiliency of Static Forwarding Tables
In IEEE/ACM Transactions on Networking (ToN), 2017
M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry, M. Schapira, S. Shenker

https://www.univie.ac.at/ct/stefan/disc21.pdf
https://www.univie.ac.at/ct/stefan/dsn19.pdf
https://www.univie.ac.at/ct/stefan/infocom2019e.pdf
https://www.univie.ac.at/ct/stefan/ton18failover.pdf
https://www.univie.ac.at/ct/stefan/conext19failover.pdf

Questions?

Backup Slides

Remark: Traditional Approach LFA
• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to
alternative neighbor, from there shortest path

Example 1:
• If (s,v) fails, s can failover to u
• u has shortest path to t that does not go

through (s,v) again
• WORKS: can protect (s,v)

s

t

Can Protect

u

Initial Path
LFAFRR

v

Example 1:

17

• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to
alternative neighbor, from there shortest path

Example 2:
• If (s,t) fails, s can only try to failover to v
• However, when v‘s shortest route to t goes

along s again: loop
• DOES NOT WORK: Cannot protect (s,t)

Example 2:

s

vt

Cannot protect

can’t use it!

Initial Path
LFAFRR

non-LFAFRR

Remark: Traditional Approach LFA

17

• Traditionally: forwarding along shortest paths

• Loop-Free Alternative (LFA): failover to
alternative neighbor, from there shortest path

Example 2:
• If (s,t) fails, s can only try to failover to v
• However, when v‘s shortest route to t goes

along s again: loop
• DOES NOT WORK: Cannot protect (s,t)

Example 2:

Initial Path
LFAFRR

non-LFAFRR

s

vt

Cannot protect

can’t use it!

Even though loop-free alternative path exists, an LFA algorithm
cannot use it. Protection ratio of LFA depends on topology.

Remark: Traditional Approach LFA

17

	Disconnected cooperation in resilient networks and �the algorithmic challenges of local fast re-routing
	Communication Networks
	Roadmap
	Roadmap
	Traditional Networks�
	Software-Defined Networks (SDN)�
	Software-Defined Networks (SDN)�
	Restoration in control plane takes time -> packet drops!
	Failover: Control Plane vs Data Plane
	Approaches for Failover
	Approaches for Failover
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	The FRR Problem
	What information is locally available in a switch for handling a packet?
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Raises an Interesting Question
	Roadmap
	So: How many failures can be tolerated by static forwarding tables?
	If we partition the network, �there is not much to do
	The connectivity k of a network 𝑁: the minimum number of link deletions that partitions 𝑁 �
	Resilience Criteria
	Resilience Criteria
	Spectrum of Models
	Spectrum of Models
	Per-destination routing cannot cope with even one link failure
	Can we achieve k – 1 resiliency in k-connected graph here?
	Can we achieve k – 1 resiliency in k-connected graph here?
	Can we achieve k – 1 resiliency in k-connected graph here?
	Ideal Resilience: Example 2-dim Torus?
	Ideal Resilience: Example 2-dim Torus?
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Idea: Decomposition into Hamilton Cycles
	Ideal Resilience with Hamilton Cycles
	Ideal Resilience in General k-Connected Graphs
	Ideal Resilience in General k-Connected Graphs
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	A k-connected network contains �k arc-disjoint spanning arborescences [Edmonds, 1972]
	General technique: routing along the same tree
	When a failed link is hit…
	… how do we choose the next arborescence?
	But how do we choose the next arborescence?
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	Circular arborescence-routing is (k/2-1)-resilient
	An Alternative Algorithm: Bouncing Arborescence
	Bouncing-Arborescence is 1-Resilient
	Bouncing-Arborescence is 1-Resilient
	Bouncing-Arborescence is 1-Resilient
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Idea: Bounce on „Good Arborescences“
	Ideas
	Resilience Criteria
	Resilience Criteria
	Relevant Neighbors
	Relevant Neighbors
	How to Achieve Perfect Resilience?
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	Impossibility: On Planar Graphs
	A Pity: Planar Graphs Are Important
	A Pity: Planar Graphs Are Important
	Where Can Perfect Resilience Be Achieved?
	Some Observations
	What we know about perfect resilience
	Roadmap
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Congestion-Aware FRR
	Failover Matrix Representation
	Failover Matrix Representation
	What Are Good Failover Matrices?
	Challenging Example: Incast
	A Bad Matrix for Load
	A Bad Matrix for Load
	Good Failover Matrices?
	Good Failover Matrices?
	Connection to Block Designs
	Overview of Results
	Randomized Failover
	The Power of Randomization
	Benefits in Datacenter Networks
	What About Path Length and Stretch?
	Swapping Operations Which Maintain Decomposition
	Roadmap
	Roadmap
	Case Study: MPLS Networks
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Approach: Automation and Formal Methods
	Approach: Automation and Formal Methods
	AalWiNes Tool
	Example
	Why AalWiNes is Fast (Polytime):�Automata Theory
	AalWiNes
	Network Model
	Network Model
	Network Model
	Routing
	Case Study: NORDUnet
	Generalizes to Quantitative Properties
	Conclusion
	What About The Control Plane?
	What About Segment Routing?
	What About Segment Routing?
	What About Segment Routing?
	Two Cases
	TI-LFA Under Double Failure
	TI-MFA Under Double Failure
	TI-MFA Under Double Failure
	Slide Number 168
	Slide Number 169
	Efficient Implementation of FRR?
	A Recent Survey
	References
	More References
	Questions?
	Backup Slides
	Remark: Traditional Approach LFA
	Remark: Traditional Approach LFA
	Remark: Traditional Approach LFA

