Online FIB Aggregation without Update Churn

Stefan Schmid

Growth of Routing Tables

Active BGP entries (FIBD

1 1 i L 1 A Il i 1 ! I 1

| —1 S T— L
89 S0 91 52 93 94 95 96 97 96 99 00 01 42 03 04 05 05 07 03 O 10

Local FIB Compression: 1-Page Overview

Routers or SDN Switches
= RIB: Routing Information Base
= FIB: Forwarding Information Base
= FIB consists of
= set of <prefix, next-hop>

N

Routers
(RIB+FIB)

Basic ldea
= Dynamically aggregate FIB

“Adjacent” prefixes with same next-hop (= color):
one rule only!

= But be aware that BGP updates (next-hop change, é
insert, delete) may change forwarding set, need to

Setting: A Memory-Efficient Switch/Router

Route processor FIB

(e.g., TCAM on SDN switch)
(RIB or SDN controller)

BGP

updates 0 1 updates

—> SN
g bl
prefixes: (prefix, port)

traffic

Goal: keep FIB small but consistent!
Without sending too many additional updates.

Stefan Schmid (T-Labs)

Setting: A Memory-Efficient Switch/Router

A
Route processor F
(e.g., TCAM witch)
(RIB or SDN controller)
BGP
LI 0 1 updates :
Expensive!
:> > Memory
constraints?

full list of forwarded

: : compressed list
prefixes: (prefix, port)

Goal: keep FIB small but consistent!
Without sending too many additional updates.

Stefan Schmid (T-Labs)

Setting: A Memory-Efficient Switch/Router

BGP
updates

—

Goal: keep FIB s
Without sending too many additional updates.

Stefan Schmid (T-Labs)

Route processor

(RIB or SDN controller)

full list of forwarde
prefixes: (prefix, port)

up

SN

Update Churn?
Data structure,
networking, ...

ut consi

FIB

(e.g., TCAM on SDN switch)

compressed list

traffic

Motivation: FIB Compression and Update Churn

?- 3 Size of original FIB: 55633 o . .
N R | oo s Benefits of FIB aggregation
g e ¢ - Routeview snapshots indicate 40%
8 91 s s s s s 31 9% § 2 .
£ s memory gains
g &
% 3 % 3 = More than under uniform distribution
g - = But depends on number of next hops
g ASa AS b ASI [ASd ASe Aé f ASI g g 1 2 4 8 _1'6_ 32 &84 128 2;6 5;2
Autonomous System (AS) Number of unique next-hops

— ISP USA
—— ISP Canada

8000

routing updates per second

Time in days

Model: Costs Ports = Next-Hops = Colors

Route processor FIB

(e.g., TCAM on SDN switch)
(RIB or SDN controller)

BGP
Herele: 0 ' 1 updates
> 0 1

online and C 1
worst-case 'I I\
arrival
consistent at any time!
(rule: most specific)

prefixes: (prefix, port)

traffic

Model: Aggregation

FIB w/o
exceptions

size 3

/
36 L 5O

Model: Aggregation

FIB w/o
exceptions

size 3

ofe

Model: Aggregation

FIB w/o
exceptions

size 3

Model: Aggregation

FIB w/o
exceptions

size 3

/
“36 L ofe

Model: Online Input Sequence

Update: Color change
Route processor

(RIB or SDN controller)

0 1

¢ o

Update: Insert/Delete

BGP
updates

—

full list of forwarded
prefixes: (prefix, port)

Model: Online Perspective

Competitive analysis framework:

- Online Algorithm - - Competitive Analysis -
Online algorithms make .))
decisions at time t without any An r-competitive online algorithm
knowledge of inputs at times ALG gives a worst-case
t'>t. performance guarantee: the
performance is at most a factor r

worse than an optimal offline
algorithm OPT!

Competitive Ratio

Algorithm BLOCK(A,B)

BLOCK(A,B) operates on trie:

= Two parameters A and B for amortization (A 2 B)
= Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

= Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

= If C(v) 2 A a, then aggregate entire tree T(u) where
u is furthest ancestor of v with C(u) 2 B a. (Maybe
Vis u.)

= Split lazily: only when forced.

Algorithm BLOCK(A,B)

BLOCK(A,B) operates on trie:

= Two parameters A and B for amortization (A 2 B)

= Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

= Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

“\here

aybe

(1) balances memory and update costs

(2) exploits possibility to merge multiple tree nodes
simultaneously at lower price (threshold A and B)

Analysis

Theorem: BLOCK(A,B) is 3.603-competitive.

Proof idea (a bit technical):

= Time events when ALG merges k nodes of T(u) at u

= Upper bound ALG cost:
= k+1 counters between B a and A a

Merging cost at most (k+3) a: remove k+2 leaves, insert
one root

= Splitting cost at most (k+1) 3a.: in worst case, remove-
insert-remove individually

= Lower bound OPT cost:

T(u):

= Time period from t- a to t

Lower Bound

Theorem:
Any online algorithm is at least 1.636-competitive.

Proof idea:

= Simple example:

Adversary

Note on Adding Insertions and Deletions

= Algorithm can be extended to insertions/deletions

Insert;:

u becomes
mergeable!

Allowing for Exceptions

So far:

6 0O ole

Exceptions
in Input

‘ (O~ Exceptions
‘ in Output

@/
() ()

Exceptions: Concepts and Definitions

- Sticks

Maximal subtrees of UFIB with

colored leaves and blank internal
nodes.

The HIMS Algorithm

= Hide Invisibles Merge Siblings (HIMS)

= Two counters in Sticks:

Merge Sibling) ‘ Hide Invisible

Counter: Counter: . \,@ﬂ

The HIMS Algorithm

Keep rule in FIB if and only if all three conditions hold:

(1) Hu)<a (do not hide yet)

(2) C(u) 2 a oruis a stick leaf (do not aggregate yet if ancestor low)
(3) C(p(u)) <a oruis a stick root

Examples:

[—~, Trivial stick: node is both root and leaf (Conditions 2+3 fulfilled).
EX 1 Q) So HIMS simply waits until invisible node can be hidden.

’\

N

Ex 2. / \ o
Stick without colored ancestors: H(u)=0 all the
time (Condition 1 fulfilled). So everything

l depends on counters inside stick. If counters

\ f b large, only root stays.
\

\

Stefan Schmid (T-Labs
/ ()

Analysis
Theorem:
HIMS is O(w) -competitive.
Proof idea:

= In the absence of further BGP updates
(1) HIMS does not introduce any changes after time a
(2) After time a, the memory cost is at most an factor O(w) off

= In general: for any snapshot at time t, either HIMS already started
aggregating or changes are quite new

= Concept of rainbow points and line coloring useful

Lower Bound

Theorem:
Any (online or offline) Stick-based algo is Q(w) -competitive.

Proof idea:

Stick-based: (1) never keep a node outside a stick

(2) inside a stick, for any pair u,v in ancestor-
descendant relation, only keep one

Consider single stick: prefixes representing lengths 2w, 2w-2 . 21 20 20

LFA: A Simplified Implementation

= LFA: Locality-aware FIB aggregation

Initial run Announcement Aggregation
of LFA of "0101, C" of 52
/"'\ﬂ ___________________ /"‘\.ﬂ /"“\ﬂ

(1) Original FIB (2) Snapshot (3) After update (4) After B seconds

LFA Simulation Results

1.0

0.8

Aggregation factor of STICKs: AT/OT
0.2

0.4
|
(L]
| I
FIL -
LT -
L]
{1 1
I

-+
T T T TR S T

Conclusion

= Without exceptions in input and output: BLOCK is constant competitive
= With exceptions in input and output: HIMS is O(w)-competitive

= Note on offline variant: fixed parameter tractable, runtime of dynamic
program in f(a) n®@

Thank you! Questions?

