
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)
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The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” 

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!
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Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.

3



A Vision
Flexible and Demand-Aware Topologies
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Analogy

Golden Gate Zipper
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The Motivation
Much Structure in the Demand

The hypothesis: can 

be exploited.

Empirical studies: 
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traffic matrices sparse and skewed
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Recent Representation of Trace Structure:

Complexity Map
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Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics
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Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)
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Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror
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Another Example
Tunable Lasers 

Multi-
wavelength 

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive
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First Deployments
E.g., Google’s Datacenter Jupiter
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
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Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly 
in software

Our focus in this talk: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius
(SIGCOMM‘20), 
Mars 
(SIGMETRICS‘23) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Design Choices

39
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⇀ Good: Demand-aware networks may be really useful to serve

large flows (elephant flows): avoiding multi-hop routing

6 hops 1 hop

vs

bandwidth 

tax!

40
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bandwidth 
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latency 

tax!

Costs and Tradeoffs



Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed

⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

43
20

Optimal Design Depends on

Traffic Types



Examples: 

Match or Mismatch?

Shuffling ML
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Static
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Dynamic
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Topology 44
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A First Guess

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

A first approach: 

Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022
50
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⇢ Opportunity: structure in demand and 

reconfigurable networks

⇢ So far: tip of the iceberg

⇢ Many challenges
⇀ Optimal design depends on traffic pattern

⇀ How to measure/predict traffic?

⇀ Impact on other layers?

⇀ Routing and congestion control?

⇀ Scalable control plane

⇀ Application-specific self-adjusting networks?

⇢ Many more opportunities for optical networks

Conclusion 
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YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course


Online Video Course

53
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http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites



Upcoming CACM Article
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Questions?

Slides 

available 

here: 



Backup
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Flow Size Matters
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On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 
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So far: focus on throughput performance. 

Excursion

More benefits of optical & 
reconfigurable switching



⇢ No need to convert photons in fiber to electrons in 

switch (and back)

⇢ Can safe energy and reduce latency (in addition to 

enabling almost unlimited throughput)

Benefit 1:

Energy and Latency

Optical fiber Optical fiberElectric switch
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Floodings in South Germany destroyed 

much electrical network infrastructure

Benefit 2:

Resilience

Solution: deploy optical 

infrastructure (in valleys) and 

electrical on hills where safe?



⇢ Reconfigurable datacenter networks naturally support 

heterogeneous network elements 

⇢ And therefore also incremental hardware upgrades

Benefit 3:

Evolving Datacenters

Amin Vahdat

Google


