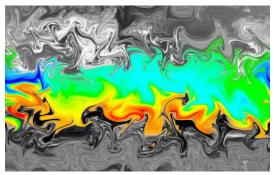
Modeling and Measuring Graph Similarity: The Case for Centrality Distance



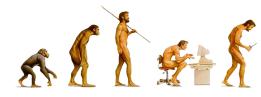
Theoretical and Computational Fluid Dynamics Laboratory - Blair Perot

Matthieu Roy¹, Stefan Schmid², *Gilles Tredan*¹

1– Laboratory for Analysis and Architecture of Systems 2– TU-Berlin/Deutsche Telekom

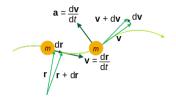
Dynamic Graphs

- Everywhere
- Huge
- We can't measure them easily



Distance

- =Root of Dynamism Characterisation
- Interpolation
- Extrapolation
- Coordinate System,....

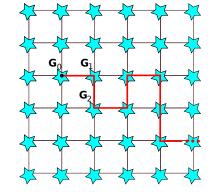


Which distances for graphs ?

Model

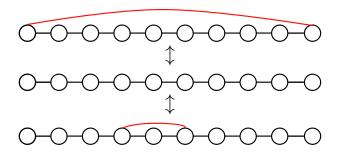
- Named Graphs: Alice-Eve-Bob ! = Alice-Bob-Eve
- Undirected graphs (should be ok for directed ones)
- All nodes present at t = 0
- "Dynamicity": stream of edge additions/deletions: G₀ = (V, E₀), G₁ = (V, E₁),...

AATA



Graph Edit Distance

- Graph Edit Distance $= d_{GED}$
- Only known proper graph distance
- $d_{GED}(A, B) =$ number of graph edit operations from A to B
- Named graphs \Leftrightarrow Cheap
- Too "blunt"



Centralities

- Borgatti, Everett (2006): "the only thing people agree about a centrality is that it is a node-level measure".
- Loved by SNAnalysts

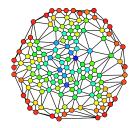
Definition (Centrality)

A centrality C is a function $C : (G, v) \to \mathbb{R}^+$ that takes a graph G = (V, E) and a vertex $v \in V(G)$ and returns a positive value C(G, v).

Degree
$$c_d(G, i) = degree(i)$$

Closeness $c_c(G, i) = \sum_{j \neq i} d_G(i, j)$
Betweenness $c_c(G, i) = \sum_{j \neq i, k \neq i} \delta_{i \in sp(j,k)}$

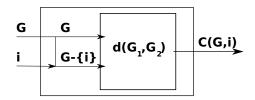
Camille Jordan



[&]quot;Graph betweenness" -Claudio Rocchini

What About Other Distances ?

- Imagine a graph distance $d:\mathcal{G}^2
 ightarrow\mathbb{R}^+$
- I can construct you a centrality out of it ! c^d(G, v) = d(G, G - {i})



Very intriguing: $d_{GED}(G, G - \{i\}) = degree_G(i)$

A Connection Between Both Concepts ?

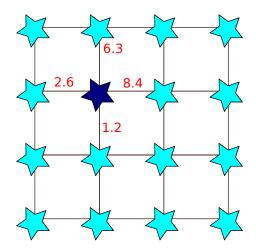
- We have many centralities, few distances.
- Can we construct the other way round ? Yes!

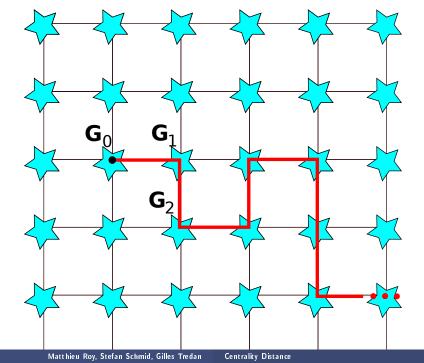
Definition (Centrality Distance)

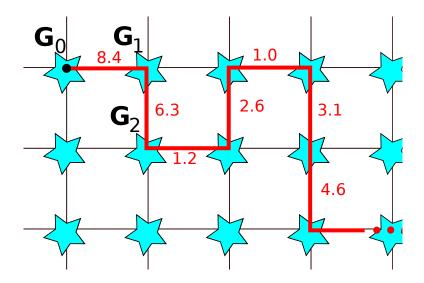
Given a centrality C, we define the centrality distance $d_C(G_1, G_2)$ between two *neighboring* graphs as the component-wise difference:

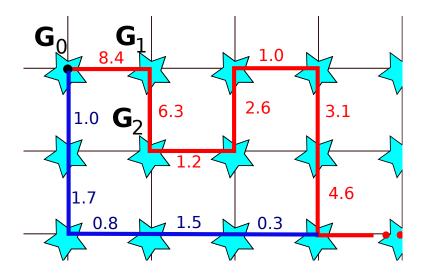
$$orall (G_1,G_2)\in E(\mathcal{G}), d_C(G_1,G_2)=\sum_{v\in V}|C(G_1,v)-C(G_2,v)|.$$

Natural extension for *non-neighboring* graph couples: $d_C(G_1, G_2)$ = graph-induced distance on the valued graph \mathcal{G} .









Connection Cont.

Definition (Sensitive Centrality)

Centrality C is sensitive iff

 $\forall G \in \mathcal{G}, \forall e \in E(G), \exists v \in V(G) \text{ s.t. } C(G, v) \neq C(G \setminus \{e\}, v),$

d_C is a distance *iff* C is sensitive

- Not all sensitive ! Ex: Excentricity
- Some centralities need adaptations
- Approximate (cheap) version:

$$orall (G_1, G_2), \ \ \widetilde{d_C}(G_1, G_2) = \sum_{v \in V} |C(G_1, v) - C_2(G_2, v)|.$$

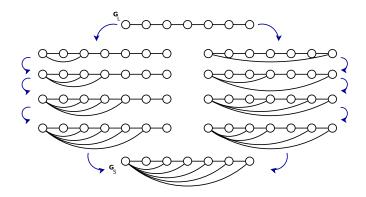
co-central graphs!

Experiments

Matthieu Roy, Stefan Schmid, Gilles Tredan Centrality Distance

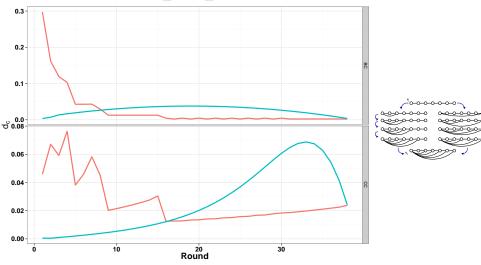
Topology evolution

- Differentiate between paths using centrality-induced distances
- These paths are equivalent wrt d_{GED}
- Yet they wouldn't impact networks the same way.



Topology evolution Cont.

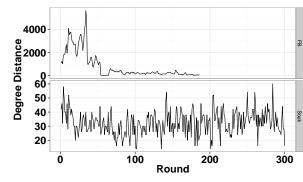
Order: - Dichotomic - Incremental



Dynamic Topologies

2 Datasets

- Facebook like OSN
 - Online messages exchange
 - $\bullet \ \approx 20 k \ users$
 - 187 snapshots, 1 day sampling
- Souk mobility dataset
 - Social contacts within a crowd
 - 45 individuals
 - 300 snapshots, 3 sec. sampling

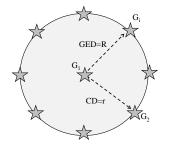


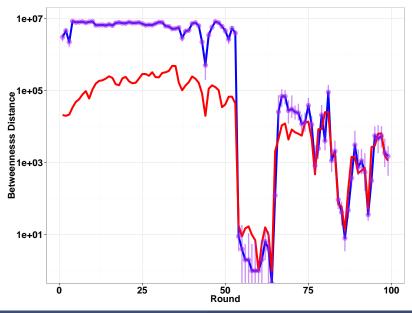
Dynamic Topologies

Can we distinguish "natural" evolutions from artificial ones ?

Methodology

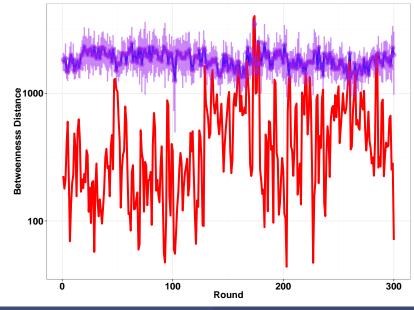
- For every two consecutive snapshots G_t, G_{t+1}
- Generate 200 random graphs $G_{s_1}, \dots, G_{s_{200}}$
- with $d_{GED}(G_t, G_{t+1}) = d_{GED}(G_t, G_{s_i})$
- Compare $d_C(G_t, G_{t+1})$ with $d_C(G_t, G_{s_i})$



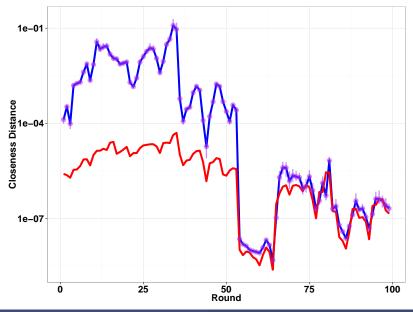


Matthieu Roy, Stefan Schmid, Gilles Tredan

Centrality Distance

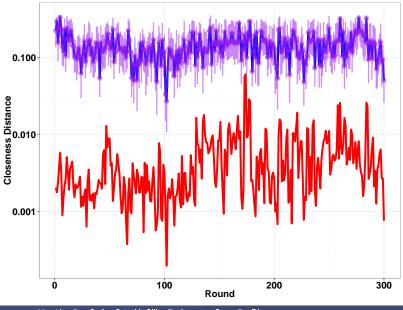


Matthieu Roy, Stefan Schmid, Gilles Tredan Centrality Distance



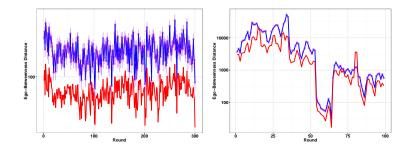
Matthieu Roy, Stefan Schmid, Gilles Tredan

Centrality Distance



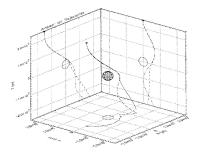
Matthieu Roy, Stefan Schmid, Gilles Tredan C

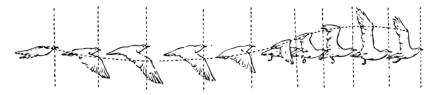
Centrality Distance



Conclusion

- GED fails to capture interesting aspects of the dynamism
- Moreover, it is overly pessimistic
- We introduce centrality distances
- Basically captures the change of roles in the network
- For each role, a centrality, and therefore a distance





Future Works

- Many, interpolation, extrapolation, real link prediction
- Distances among different graphs
- Measurement errors
- Find algorithms that leverage on such stability properties
- Greedy routing & GoG exploration ?

