
SDN+NFV:

Algorithmic and Security Challenges

Stefan Schmid

Aalborg University, Denmark & TU Berlin, Germany

SDN+NFV: It’s a great time to be a researcher!

Topic today!
Rhone and Arve Rivers,

Switzerland

Credits: George Varghese.

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence also more secure?

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence also more secure?

30 October 2017

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence also more secure?New threats?

Complexity of this?

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

Really?

Algorithms? Avoid instabilities!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Possibly virtualized
(on commodity hw)…

Algorithms

Ctrl

Control

Programs

Control

Programs

A First (Algorithmic) Challenge: Decoupling

Challenge: centralization and
decoupling!

Despite centralization: SDN
stays a distributed system!

Recall: Networking 101

Credits: Jennifer Rexford

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2:

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2: flood

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1 h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

h1
3

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1, learn (h3,p3)

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1, learn (h3,p3)

❏ h1 sends to h3: forward to p3

h1
3

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101

How to implement this behavior in SDN?

h1
3

From Traditional Networks to SDN

h2
h3

1

2

Controller

Example: SDN MAC Learning
Done Wrong

❏ Initial table: Send
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

Example: SDN MAC Learning
Done Wrong

❏ When h1 sends to h2:

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

❏ Initial table: Send
everything to controller

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ When h1 sends to h2:

❏ Controller learns that h1@p1, updates table, and floods

h1 sends to h2

Pattern Action

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now assume h2 sends to h1:

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now assume h2 sends to h1:

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, does not learn about h2:
no new rule for h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, when h3 sends to h2:

h3 sends to h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, when h3 sends to h2:

❏ Dest unknown: goes to controller which learns about h3

❏ And then floods

h3 sends to h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, if h2 sends to h3 or h1:

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, if h2 sends to h3 or h1:

❏ Destinations known: controller does not learn about h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

How to efficiently detect such
problems? And which rules to use

to overcome them? An
algorithmic problem!

❏ Rules inserted using switch CLI

❏ Operator misconfigurations

❏ Software/hardware bugs

❏ Updates that have been
acknowledged wrongfully

❏ Malicious behavior, etc.

There Are Many More Reasons Why A Controller
May Have Inconsistent View

Ctrl ?!

mind the gap!

A problem because like in security: at most
as consistent as least consistent part!

Further Reading

Towards Meticulous Data Plane Monitoring (Poster Paper)
Apoorv Shukla, Said Jawad Saidi, Stefan Schmid, Marco Canini, and Anja Feldmann.
EuroSys PhD Forum, Belgrade, Serbia, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/EurosysPosterPaper.pdf

Ctrl

Control

Programs

Control

Programs

Another Challenge Arising From Decoupling

Challenge: Decoupling
Asynchronous!

Despite centralization: SDN
stays a distributed system!

Ctrl

Control

Programs

Control

Programs

Challenge: Decoupling
Asynchronous!

Another Challenge Arising From Decoupling

Async

Async

Async

Async

AsyncDespite centralization: SDN
stays a distributed system!

untrusted

hosts
trusted

hosts

Controller Platform

Example “Route Updates”:
What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Problem 1: Bypassed Waypoint

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Problem 2: Transient Loop

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Tagging: A Universal Solution?

red
red

new route

❏ Old route: red

❏ New route: blue

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Cost of extra rules!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Possible solution without

tagging, and at least

preserve weaker

consistency properties?

Idea: Schedule “Safe” Subsets of Nodes Only,
Then Wait for ACK!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

Idea: Schedule safe update subsets in multiple rounds!

Loop-Free Update Schedule

insecure

Internet

secure

zone

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Waypoint Respecting Schedule

insecure

Internet

secure

zone

Waypoint Respecting Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Don’t cross the
waypoint: safe!

Waypoint Respecting Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Can we have both LF and WPE?

insecure

Internet

secure

zone

Yes: but it takes 3 rounds!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Yes: but it takes 3 rounds!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:
Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

Resort to tagging…

What about this one?

What about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

What about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

What about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

What about this one?

1

2

3

4

4

❏ Ok: loop-free and also not on the path (exit via)1

What about this one?

1

2

3

❏ Ok: loop-free and also not on the path (exit via)

4

4

1

What about this one?

1

2

3

4

4

5

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

❏ Update any of the 2 other forward edges? WPE 

❏ What about a combination? No…

In General: NP-Hard!

1

1

Bad news: Even decidability hard: cannot quickly test feasibility and if
infeasible resort to say, tagging solution!

To update or not to update in the first round?

NP-hard! And greedy can be bad.

Open question: What is complexity in „typical networks“, like
datacenter or enterprise networks?

What about loop-freedom only?

1

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

12

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

12

3

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

What about loop-freedom only?
Always possible in n rounds!

But how to minimize # rounds?

But how to minimize # rounds?

2 rounds easy, 3 rounds NP-hard. Everything else:

We don’t know today!

What about capacity constraints?

1

2

2

1 1

1

1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update
red: congestion!
Need to update
blue first!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial)
example was just a DAG,

without loops!

Solution: Dependency Graph on
Block Decomposition of DAGs

1

2

2

1 1

1

1

Flow 1

Flow 2

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Just one red block: r1

r1

Solution: Dependency Graph on
Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Two blue blocks: b1 and b2

b1 b2

Solution: Dependency Graph on
Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Dependencies: update b2 after r1 after b1.

b1 b2
r1

Solution: Dependency Graph on
Block Decomposition of DAGs

Many Open Problems!

❏ We know for DAG:
❏ For k=2 flows, polynomial-time algorithm to compute

schedule with minimal number of rounds!
❏ For general k, NP-hard

❏ For general k flows, polynomial-time algorithm to
compute feasible update

❏ Everything else: unkown!
❏ In particular: what if flow graph is not a DAG?

What’s new about this problem?

❏ Much classic literature on, e.g.,

❏ Disruption-free IGP route changes

❏ Ship-in-the-Night techniques

❏ SDN: new model (centralized and direct control of routes)
and new properties

❏ Not only connectivity consistency but also policy consistency
(e.g., waypoints) and performance consistency

Survey of Consistent
Network Updates
Klaus-Tycho Foerster,
Stefan Schmid, and Stefano
Vissicchio. ArXiv Technical
Report, September 2016.

Further reading: 35-
page survey!

https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf

Further Reading:

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

ArXiv Technical Report, November 2016.

Survey of Consistent Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.

ArXiv Technical Report, September 2016.

survey

loop-freedom

multiple policies

waypointing

loop-freedom

waypointing

capacity constraints

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Opportunity: innovative services
and algorithms

• Traditionally: shortest paths, IP destination-based

• SDN: non-shortest, non-confluent, may depend on other
header fields (e.g., TCP port), etc.

Example Benefit: Traffic Engineering

Example: limitation of traditional networks

Node R4 can‘t route blue and green traffic differently:
same destination (destination-based)!

Credits: Kurose&Ross, Top-Down Approach

R2

D

R3
R5

A

R6

R4

• Traditionally: shortest paths, IP destination-based

• SDN: non-shortest, non-confluent, may depend on other
header fields (e.g., TCP port), etc.

Example Benefit: Traffic Engineering

Example: limitation of traditional networks

Node R4 can‘t route blue and green traffic differently:
same destination (destination-based)!

Credits: Kurose&Ross, Top-Down Approach

R2

D

R3
R5

A

R6

R4

With SDN (or MPLS etc.)

• SDN supports even more complex routes

• For example, service chain: traffic is steered (e.g., using SDN) through
a sequence of (virtualized) middleboxes to compose a more complex
network service

s t
cache

firewall
WAN

optimizer

Example Benefit: Waypoint Routing

Waypoints!

For predictable
performance: bw

reservation!

s t

s tor

And what if requests
allow for alternatives

and different
decompositions?

Requests can be more complex

Already non-trivial!

s t

s tor

And what if requests
allow for alternatives

and different
decompositions?

Requests can be more complex

Already non-trivial!

Known as PR (Processing and Routing)
Graph: allows to model different

choices and implementations!

What about this one?!

Credits: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft:

Customer LB1
Cache LB2 FW NAT Internet

❏ Service chain for mobile operators

❏ Load-balancers are used to route (parts of) the traffic through cache

Example: admission control and embedding

A

A

B

C

D
10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

?
Which ones can be

admitted and embedded?

A

A

B

C

D
10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

C

D
0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

C

D
0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

C

D
0 Gbps

0 Gbps

0 Gbps

Substrate:

C

Requests:

10 Gbps

A B
10 Gbps

B C

5 Gbps

Example: admission control and embedding

Which ones can be

admitted and embedded?

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

Chains, alternative chains, but even trees. Trick:
reduction to flow problem using product graphs.

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A Dith request ri:

Copy graph for each edge
of chain

Placement
constraint

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Processing edge: processing happens on C:
connect C to C in next layer!

ith request ri:

Routing edge: graph edge
on same layer

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Super-
source

ith request ri:

Super-
sink

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

ith request ri:

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any (si,ti) flow presents a route of the request ri!

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

ith request ri:

fw gw

x86

Substrate:

D

B

Product graph:
D

C

B

D
CA

C
B

A

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

B

D

B
A A

D
C

A C

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

process!
process!

route!

route!

route!

Any (si,ti) flow presents a route of the request ri!

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

process!route!

Any (si,ti) flow presents a route of the request ri!

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

This problem can be solved using
mincost unsplittable multi-commodity
flow (approximation) algorithms (e.g.,

randomized rounding).

Any (si,ti) flow presents a route of the request ri!

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

But note: cannot keep track of
dependencies across stages (e.g.,

allocation on links or nodes): may yield
oversubscription.

Any (si,ti) flow presents a route of the request ri!

This problem can be solved using
mincost unsplittable multi-commodity
flow (approximation) algorithms (e.g.,

randomized rounding).

s t

Novelty:

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Now: routing through middleboxes may require more
general paths, with loops: a walk

How to compute a
shortest route

through a waypoint?

Approximations Are Okay,
But What About Optimal Embeddings?

2 2

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Assume unit capacity and
demand for simplicity!

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w…

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

Total length:
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

Relationship to Shortest Disjoint Paths

If capacities are 1, segments need to be

edge-disjoint: A disjoint paths problem

• A well-known combinatorial problem!

• NP-hard on directed networks

• Feasibility in P on undirected networks for small

(constant) number of flows

• Polytime randomized algorithm for 2 disjoint paths

(recent result!)

s1

t1
s2

t2

s3

t3

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

Fact: computing 2-
disjoint paths (2DP) is NP-
hard on directed graphs.

We show: If waypoint
routing was in P, we
could solve 2DP fast.
Contradiction!

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

… and ask for
shortest waypoint
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1)

and a (s2,t2) path pair before/after the
waypoint! Solves original problem:

Contradiction!

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

… and ask for
shortest waypoint
route (s1,w,t2)

What about waypoint routes on
undirected networks?

Path 1

❏ For a single waypoint, can even compute shortest route (walk)!

❏ Recall: there is a randomized polytime algorithm for 2 disjoint paths

What about waypoint routes on
undirected networks? (2)

Idea: Reduce it to disjoint paths problem!

S T
Path 2

u v3 u v
Step 1: replace

weights with
parallel links

Step 2: compute
2 disjoint paths
(A,W) and (W,B)

W

Path 1

❏ For a single waypoint, can even compute shortest route (walk)!

❏ Recall: there is a randomized polytime algorithm for 2 disjoint paths

What about waypoint routes on
undirected networks? (2)

Idea: Reduce it to disjoint paths problem!

S T
Path 2

u v3 u v
Step 1: replace

weights with
parallel links

Step 2: compute
2 disjoint paths
(A,W) and (W,B)

W

Good news: For a single waypoint, shortest

paths can be computed even faster!

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

Walking Through a Waypoint on Steroids:
Suurballe’s Algorithm

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

•How to compute a
shortest (s,w,t) route
with this algorithm??

Walking Through a Waypoint on Steroids:
Suurballe’s Algorithm

❏ Step 1: replace capacities with parallel edges: paths will
become edge-disjoint

s tw s tw
22

Walking Through a Waypoint on Steroids:
Reduction to Suurballe’s Algorithm

❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wG
•In order to find
shortest (s,w,t) route…

Walking Through a Waypoint on Steroids:
Reduction to Suurballe’s Algorithm

t

s

wS+ T+

G
•… connect S+ to s and t,
and w to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids:
Reduction to Suurballe’s Algorithm

t

s

wS+ T+

G
•… ask Suurballe for 2 disjoint
paths from S+ to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids:
Reduction to Suurballe’s Algorithm

t

s

wG
•Solution! Undirected:
direction does not matter.

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids:
Reduction to Suurballe’s Algorithm

Wait A Moment…!?

Can we not use Suurballe as well to solve 2 disjoint paths?

t

s

S+

G

w T+

s1

S+

G

T+

s2

t1

t2

Reduction
Waypoint Routing ⇒ Suurballe

Reduction
2 Disjoint Paths ⇒ Suurballe

Wait A Moment…!?

No! Solves a much easier problem: 2 routes from {s1,s2} to {t1,t2}.

t

s

S+

G

w T+

s1

S+

G

T+

s2

t1

t2

Reduction
Waypoint Routing ⇒ Suurballe

Reduction
2 Disjoint Paths ⇒ Suurballe

❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: for vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

Further Reading
An Approximation Algorithm for Path Computation and Function
Placement in SDNs
Guy Even, Matthias Rost, and Stefan Schmid.
23rd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Helsinki, Finland, July 2016.

Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

Charting the Complexity Landscape of Waypoint Routing
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, and
Stefan Schmid. ArXiv Technical Report, May 2017.

Walking Through Waypoints
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, and Stefan
Schmid. ArXiv Technical Report, August 2017.

Online Admission Control and Embedding of Service Chains
Tamás Lukovszki and Stefan Schmid.
SIROCCO, July 2015.

https://net.t-labs.tu-berlin.de/~stefan/sirocco16chains.pdf
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5
https://net.t-labs.tu-berlin.de/~stefan/ordered-waypoint-routing.pdf
https://net.t-labs.tu-berlin.de/~stefan/waypoint-walk.pdf
https://net.t-labs.tu-berlin.de/~stefan/sirocco15.pdf

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

Boss: So can I promise our

customers a predictable

performance?

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

Boss: So can I promise our

customers a predictable

performance?

You: hmmm….

The Many Faces of Performance Interference

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee!

Assume: perfect
performance isolation on

the network!

Consider: 2 SDN-based
virtual networks (vSDNs)

sharing physical resources!

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy,
take existing network

hypervisor (e.g. Flowvisor,
OpenVirteX): provides

network abstraction and
control plane translation!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation
could include,

e.g., switch
DPID, port

numbers, …

Translation
could include,

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

Intercepts control
plane messages.

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

It turns out: the network hypervisor can
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Conclusion: For a predictable
performance, a complete system
model is needed! But this is hard:
depends on specific technologies,

uncertainties in demand, etc.

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Conclusion: For a predictable
performance, a complete system
model is needed! But this is hard:
depends on specific technologies,

uncertainties in demand, etc.

Further reading:
Logically Isolated, Actually Unpredictable? Measuring
Hypervisor Performance in Multi-Tenant SDNs
Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan
Schmid. ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Simple dataplane

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Really?!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

The Crux: How
to define

conditional rules
which have local

failure
knowledge

only?

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

Open problem:
How many link
failures can be
tolerated in k-

connected
network without

going through
controller? The Crux: How

to define
conditional rules
which have local

failure
knowledge

only?

Solution: Use Arborescences (Chiesa et al.)

❏ Assume:

❏ k-connected network G

❏ destination d

❏ G decomposed into k d-rooted arc-disjoint
spanning arborescences

Basic principle:

❏ Route along fixed arborescence (“directed spanning tree”)
towards the destination d

❏ If packet hits a failed edge at vertex v, reroute along a
different arborescence

Known result: always
exist in k-connected

graphs (efficient)

The Crux: which arborescence to
choose next? Influences resiliency!

Simple Example: Hamilton Cycle

Chiesa et al.: if k-connected graph has k arc
disjoint Hamilton Cycles, k-1 resilient routing can

be constructed!

Example: 3-Resilient Routing Function for 2-dim Torus

k=4 connected

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 1

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 1

spans all nodes: each
node visited exactly once!

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 2

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 2

Edge disjoint: Together
span all edges!

Example: 3-Resilient Routing Function for 2-dim Torus

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

Make Hamilton cycles
directed: so 4 Arc-

Disjoint Hamilton Cycles.

Example: 3-Resilient Routing Function for 2-dim Torus

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

Example: 3-Resilient Routing Function for 2-dim Torus

d

Failover: In order to reach destination d: go along
1st directed HC, if hit failure, reverse direction, if

again failure switch to 2nd HC, if again failure
reverse direction: no more failures possible!

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

d
Torus 4-connected, has 4 arc disjoint

Hamilton cycles, so can construct
optimal 3-resilient routing!

Example: 3-Resilient Routing Function for 2-dim Torus

Further Reading

Exploring the Limits of Static Failover Routing
Marco Chiesa, Andrei Gurtov, Aleksander Mądry, Slobodan
Mitrović, Ilya Nikolaevkiy, Aurojit Panda, Michael Schapira,
Scott Shenker. Arxiv Technical Report, 2016.

Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Denver, Colorado, USA, June 2017.

https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

SDNs support formal verifiability

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Really?!

Examples: Reachability and What-if Analysis

Questions operators may have:

❏ Reachability: «Is it possible / not possible to reach, from
ingress port x, egress port y?»

❏ To ensure connectivity

❏ But also policies: professor network not reachable
from student dorms (logical isolation)

❏ What-if analysis: «How can the forwarding behavior look
like if there are up to k concurrent link failures?»

Policy-compliance under
failures is difficult!

«Simple» in MPLS

❏ MPLS = forwarding based on a label stack
❏ Idea: forward according to top label

❏ Usually, top label swapped at each hop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

❏ For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

11
21

12

2230|11
30|21

11
21

31|11
31|21

One failure: push 30:
route around (v2,v3)

10
20

«Simple» in MPLS

❏ MPLS = forwarding based on a label stack
❏ Idea: forward according to top label

❏ Usually, top label swapped at each hop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

❏ For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

11
21

12

2230|11
30|21

11
21

31|11
31|21

One failure: push 30:
route around (v2,v3)

If (v2,v3) failed,
push 30 and

forward to v6.

Pop

Normal
swap

«Simple» in MPLS

❏ MPLS = forwarding based on a label stack
❏ Idea: forward according to top label

❏ Usually, top label swapped at each hop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

❏ For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

11
21

12

2230|11
30|21

11
21

31|11
31|21

One failure: push 30:
route around (v2,v3)

If (v2,v3) failed,
push 30 and

forward to v6.

Pop

Normal
swap

What about multiple link failures?

«Simple» in MPLS

❏ MPLS = forwarding based on a label stack
❏ Idea: forward according to top label

❏ Usually, top label swapped at each hop

Multiple Link Failures: Push Recursively!

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22

10
20 11

21
12

22

10
20

11
21

12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Recursively push 40:
route around (v2,v6)

Push 30

Push 40

Multiple Link Failures: Push Recursively!

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22

10
20 11

21
12

22

10
20

11
21

12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Recursively push 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

Multiple Link Failures: Push Recursively!

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22

10
20 11

21
12

22

10
20

11
21

12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Recursively push 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

More efficient but also more complex!
How complex?

Tables

Failover Tables

Flow Table

Protected
link

Alternative
link

Label

Can be verified in polynomial time:
Leverage automata theory!

MPLS configurations,
Segment Routing etc.

Pushdown Automaton and Prefix
Rewriting System Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

MPLS vs SDN

❏ (Simplified) MPLS rules: prefix rewriting

FT: in x L → out x OP, where OP = {swap,push,pop}

FFT: out x L → out x OP, where OP = {swap,push,pop}

❏ Simple compared to what we can do with SDN:

in x L* → out x L*

Arbitrary string
replacement!

vs

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!

Self-loop: could be
replaced by “dummy

switch”.

in out

in’ out’

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!

Idea: packet header stores
Turing machine configuration

(tape, head, state).

in out

in’ out’

in out

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
Switch action: each time packet

arrives, performs one Turing
machine step and updates header.

in’ out’

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Only if accept or reject, forwarded
to out. Is it ever reached?

Undecidable!

Further Reading

WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems
(OPODIS), Madrid, Spain, December 2016.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba. 37th IEEE Conference on Computer
Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf

❏ Tradeoff expressiveness of rule and verification complexity?

❏ Is it worth using less general rules so fast (automated)
verification is possible?

❏ Example: MPLS is not hard to verify!

❏ What about more programmable and stateful dataplanes?

Many Open Research Questions

End of Algorithms

Security

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Increasingly
virtualized

Challenge: security!

V
irtu

alizatio
n

Layer

User

Kernel

VM VM VM

Virtual Switches

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation.

Increasing Complexity:
Parsed Protocols

Number of parsed high-level protocols constantly increases:

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing workloads and advancements in network virtualization
drive virtual switches to implement middlebox functions such as

load-balancing, DPI, firewalls, etc.

Increasing Complexity:
Introduction of middlebox functionality

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

How to parse all these
protocols without lowering
forwarding performance?!

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

This centralization is fast! But
more complex to get it right.

Complexity: The Enemy of Security!

❏ Data plane security not
well-explored (in general,
not only virtualized): most
security research on
control plane

❏ Two conjectures:

Ctrl

1. Virtual switches increase
the attack surface.

2. Impact of attack larger than
with traditional data planes.

The Attack Surface: Closer…

Attack surface becomes closer:

❏ Packet parser typically
integrated into the code base of
virtual switch

❏ First component of the virtual
switch to process network
packets it receives from the
network interface

❏ May process attacker-controlled
packets!

Ctrl

VM

Ctrl

The Attack Surface: … More Complex …

Ctrl

VM

Ctrl
Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

… Elevated Priviledges and Collocation …

Ctrl

VM

Ctrl

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Elevated Priviledges and Collocation …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s (Dom0 kernel
space), guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Centralization …

User

Kernel

VM VM VM

NIC

Virtual Switch

Available communication channels
to (SDN/Openstack) controller!

Controller needs to be reachable
from all servers.

Larger Impact: Case Study OVS

1. Rent a VM in the cloud (cheap)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

2. Send malformed MPLS packet to virtual switch (unified parser
parses label stack packet beyond the threshold)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

3. Stack buffer overflow in (unified) MPLS parsing code:

enables remote code execution

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

4. Send malformed packet to server (virtual switch) where controller
is located (use existing communication channel)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

5. Spread

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

A New Threat Model

❏ Limited skills required

❏ Use standard fuzzer to find crashes

❏ Construct malformed packet

❏ Build ROP chain

❏ Limited resources

❏ rent a VM in the cloud

❏ No physical access needed

User

Kernel

VM VM VM

Virtual Switch

No need to be a state-level attacker to compromise the
dataplane (and beyond)!

Similar problems in NFV: need even more complex
parsing/processing. And are often built on top of OvS.

Countermeasures

❏ Software countermeasures already exist
❏ but come at overhead

❏ Better designs
❏ Virtualize dataplane components: decouple them from

hypervisor?

❏ Remote attestation for OvS Flow Tables?

❏ Control plane communication firewalls?

❏ …

Further Reading

The vAMP Attack: Taking Control of Cloud Systems via the Unified Packet Parser
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid.
9th ACM Cloud Computing Security Workshop (CCSW), collocated with ACM CCS,
Dallas, Texas, USA, November 2017.

Reigns to the Cloud: Compromising Cloud Systems via the Data Plane
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ArXiv Technical Report, October 2016.

https://net.t-labs.tu-berlin.de/~stefan/ccsw17.pdf
https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: centralization!

Ctrl

❏ Controllers react to switch events
(packet-ins, link failures, etc.) for
MAC learning, support mobility,
VM migration, failover, etc.

❏ Reaction: send flowmods, packet-
outs, performing path-paving…

❏ Triggering such events may be
exploited for (covert)
communication or even port scans,
etc. even in presence of
firewall/IDS/…

Central Controller Can Increase Attack Surface:
E.g., May Be Exploited For Covert Communication

Tr
ig

ge
r

R
ea

ct

Ctrl

Teleportation

Tr
ig

ge
r

R
ea

ct

DENY: h1 ↔ h2

❏ May be used to bypass firewall

❏ Not easy to detect:

❏ Traffic follows normal pattern
of control communication,
indirectly via controller

❏ Teleportation channel is
inside (encrypted) OpenFlow
channel

❏ Need e.g., to correlate packet-
ins, packet-outs, flow-mods, etc. h1

h2

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

X

h2

1 Packet-in

DENY: h1 ↔ h2

P
ac

ke
t-

in
(X

→
h

2
)

1

Knows: h2 on S2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

P
ac

ke
t-

in
(X

→
h

2
)

1

Knows: h2 on S2

2

P
acket-o

u
t

2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

3

Knows: h2 on S2

3

Flo
w

-m
o

d

2

Flow-mod3

Flo
w

-m
o

d

Establish path through firewall: no more packet-ins,
blocked. (But could use another MAC address next time.)

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

3

Knows: h2 on S2

3

Flo
w

-m
o

d

2

Flow-mod3

Flo
w

-m
o

d

Establish path through firewall: no more packet-ins,
blocked. (But could use another MAC address next time.)

Further reading:
Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2nd IEEE European Symposium on Security and Privacy
(EuroS&P), Paris, France, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/eurosp17.pdf

Ctrl

Control

Programs

Control

Programs

Let’s talk about opportunities!

Opportunity: centralization!

Trajectory Sampling

❏ Method to infer packet routes

❏ Low overhead, direct and
passive measurement

Principle: Sample subset of
packets consistently (e.g.,
hash over immutable fields)

Example: Adversarial Trajectory Sampling

Collector

sampled!

not
sampled!

Packets sampled either at
all or no location!

Trajectory Sampling

❏ Method to infer packet routes

❏ Low overhead, direct and
passive measurement

Principle: Sample subset of
packets consistently (e.g.,
hash over immutable fields)

Example: Adversarial Trajectory Sampling

Collector

sampled!

not
sampled!

Packets sampled either at
all or no location!

But: Fails when switches are malicious! E.g., switch
knows which headers are currently not sampled:

no risk of detection!

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

Also: drop packets (that are currently not
sampled), inject packets, change VLAN tag, …

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

„Could SDN be used to render trajectory
sampling more robust to such behavior?“

Also: drop packets (that are currently not
sampled), inject packets, change VLAN tag, …

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

Idea: Introduce risk of detection!
Good nodes G1, G2, G3, could help

detect if bad node B does not know
their sampling range!

G1

B

G2

G3

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

Idea: design SDN application that
makes sampling unpredictable!

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

How to minimize sampling overhead
and maximize detection probability?

An algorithmic question.

Idea: design SDN application that
makes sampling unpredictable!

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

How to minimize sampling overhead
and maximize detection probability?

An algorithmic question.

Idea: design SDN application that
makes sampling unpredictable!

Further reading:
Software-Defined Adversarial Trajectory Sampling
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/adv-traj-sampling.pdf

Challenges

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., innovative
services

E.g., waypoint
routing, traffic

engineering

Opportunities

ChallengesOpportunities

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., decoulping:
evolve control

plane
independently of

dataplane

E.g., keeping
controller up-

to-date

E.g., consistent
network
update

ChallengesOpportunities

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., simple
and open
interface E.g., complexity

of verification,
local failover, ….?

E.g., functionality
that should stay

here?

Ctrl

Control

Programs

Control

Programs

Thank you! Questions?

