Stefan Schmid
@FRIDA 2025

Acknowledgements

v

Eusid ythnBrspu Cemmmiss

-> If networks break, it can have
knock-on effects

-» For example, Facebook outage in
2021: not only took down their
social networking site, but also
Instagram, WhatsApp,

~» .. and their own internal systems,
which manage the doors:
engineers had to break into their
own buildings to bring the
network back up

€he New Nork Times

Gone in Minutes, Out for Hours:

Outage Shakes Facebook

‘When apps used by billions of people worldwide blinked out,
lives were disrupted, businesses were cut off from customers —
and some Facebook employees were locked out of their offices.

f shareullarticle 2> [[Clsss

Facebook’s internal communications platform, Workplace, was also taken out, leaving
most employees unable to do their jobs. Kelsey McClelian for The New York Times

Credits: Nate Foster

Countries disconnected

Data Centre » Networks

Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 400 SHARE Y

Last Friday, someone in Google fat-thumbed a border gateway protocol
(BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory “leaked” a big route
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated
as transit.

Passengers stranded

British Airways' latest Total Inability To
Support Upwardness of Planes*
caused by Amadeus system outage

Stuck on the ground awaiting a load sheet? Here's
why
By Gareth Corfield 19 Jul 2018 at 11:16 1090) SHARE ¥

BA Blnbte anniind tha iindld simen sensdart.as.a sasidb nftha Amedase artane

Even tech-savvy companies struggle:

o4 : United |
Dbl HZUD ifines)

s
‘iiramazon

17 webservices

Slide credits: Nate Foster and Laurent Vanbever

Even 911 affected

Officials: Human error to blame in Minn. 911
outage

According to a press release, CenturyLink told department of public safety that
human error by an employee of a third party vendor was to blame for the outage

Aug 16,2018

Duluth News Tribune

SAINT PAUL, Minn. — The Minnesota Department of Public Safety Emergency Communication Networks division
was told by its 911 provider that an Aug. 1 outage was caused by human error.

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

Datacenter

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

Example: BGP in
Microsoft

datacenter i;:l_izfijiz;;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

If link (G,X) fails and traffic from G is rerouted via Y and C to X:
X announces (does not block) G and H as it comes from C. (Note: BGP.)

Example: BGP in
Microsoft
datacenter

-

Tnter‘net

X,Y: allow from G* X,Y: block from P*

Datacenter

If link (G,X) fails and traffic from G is rerouted via Y and C to X:
X announces (does not block) G and H as it comes from C. (Note: BGP.)

Local forwarding
table

header output

0100 3
0110 2
0111 2
1001 1

Slow but
global

Local forwarding
table

header

output

0100
0110
0111

1001

Local forwarding
table

header

output

0100
0110
0111
1001

3

2
2
1

Fast but
local

-> Nodes locally store a forwarding Match -> Action table

Forwarding
table

match action\

| —

-» The Packet Header (e.g., source, destination)

Forwarding
table

-» The Inport of the received packet

Forwarding
table

match action\

| —

~> Which incident links failed

Forwarding
table

f
.
.

v

.. for robust networks tolerating many link failures.

f
.
.

v

Verification: Are the current forwarding rules policy
compliant (reachability, waypoint traversal) even
under failures?

]
H
H

A\ 4

Synthesis: Can we pre-install local fast failover rules
which ensure reachability under multiple failures?

-> In general: How many failures can be tolerated by static
forwarding tables?

/// Ideal resilience ‘\\

-

Given a k-connected

graphs, fast reroute

can tolerate any k-1
Link failures.

/

>

//, Perfect resilience \\\

Fast reroute can tolerate
any failures as long as
the unterlying network is
physically connected.

- /

What is the difference? Which is stronger?

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, src and dst

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, src and dst

A big open challenge

Ideal Resilience

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
-> Assume: cannot change header, but can match inport, src and dst

/

Yes! k disjoint paths: try
one after the other, routing
back to source each time.

-» @Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, xand dst

What if I cannot
match source?!
Open conjecture.

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

Arborescences / \

\/
v/\

-»> Fact: k-connected network has k-arborescence decomposition
-»> Basically disjoint spanning trees directed to destination

Arborescences ////// \{iiit\

\/
v/\

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

Arborescences

/\\

\//A

W.Z
Cat

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

>’

Arborescences

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

Arborescences

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

Arborescences

-»> Try arborescences in order

-» k/2-1 resilient: link failure affects at most 2 arborescences
9

-> Complexity of verifying resilience and policy-compliance?

~» Algorithms for synthesizing resilient fast reroute mechanisms?

-» Application to specific protocols, like MPLS or Segment Routing?

May be
simpler!

10

~» Binary decision diagrams (BDDs) allow

us to synthesize resilient routings
-» .. or to repair

-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

11

Network:

i,
~» Binary decision diagrams (BDDs) allow v
us to synthesize resilient routings

-» .. or to repair
BDD 2-resilient

routing:s
-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

11

Network:

b,
~» Binary decision diagrams (BDDs) allow v
us to synthesize resilient routings

-» .. or to repair
BDD 2-resilient

routing:s
-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

For specific protocols we can be faster!

11

-» Forwarding based on top label of label stack

flow 1

Default
routing of
two flows

12

-» Forwarding based on top label of label stack

Default
routing of
two flows

12

-» Forwarding based on top label of label stack

20 2

12
-’.} out,
in,

22
P> out,

4.} out,

2
P> out,

in,

— ¥

31|11
31|21

Default
routing of
two flows

One failure:
push 30: route
around (v,,V;)

12

-» Forwarding based on top label of label stack

If (v,,v3) failed,
push 30 and
forward to vg.

Default
routing of
two flows

One failure:
push 30: route
around (v,,V;)

12

-» Multiple 1link failures: simply recursive

in,

P> out; Original
Routing

One failure:
push 30: route
around (v,,V;)

Two failures:
first push 30: route
around (v,,V;)

Push recursively
40: route around

Vo,V
(Vave)

-» Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

-» Can use the result by Bichi: set of all
reachable configurations of pushdown
automaton is regular set

-» We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

Julius Richard Biichi
1924-1984

Swiss logician

-» The resulting regular operations are all
polynomial time

13

Example: AalWiNes Tool

About
MPLS Reachability Analysis & Visualization Tool
= 2 5= b A tool for MPLS reachability analysis and visualization
Model >pemonet< from:

« Aalborg University

» University of Vienna

<ip> [.#V0] [~V2#V3]* [V3£.] <ip> 1 Have a look at the
#V0] .* [V3#.] <smpls ip> 0
<[s10, 520] ip> .+ [V3#.] <mpls* smpls ip> 1

[.#V0] .* [V3#.] <mpls+ smpls ip> 1 " - p
L #V0]> [V3#.] <ip> Tps e Aay i @ AalWiNes Quick Intro

Initial header:

Route restriction: i

Final header: . .) = Foland
y V2

Max link failures: [

Hungary

Options

Libya

»wy h

Afghanistan

Mongolia
Oman
Ethiopia

Angola K Somalia

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7 00

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0

Sysadmin responsible for:

® Reachability: Can traffic from

/ ingress port A reach egress
—— éB port B?
™ ® Loop-freedom: Are the routes
implied by the forwarding rules
loop-free?
o ® Policy: Is it ensured that
@1 traffic from A to B never goes
c via C?
[E.g. IDS ® Waypoint enforcement: Is it

ensured that traffic from A to
B is always routed via a node C
(e.g., intrusion detection
system or a firewall)?

. and everything under multiple failures! 15

FT Tn-T_ | In-Label | Out-l op
Tor iy L (01, v2) | push(10]
iy Lo | (ewe) | push(20)
Tex (w1, v2) 10 (v2.v3) | swap(11)
() 20 (v2.vq) | swap(21)
Tos (v2,v2) n (va,va) | swap(12)
(2, va) 21 (va,vs) | swap(22)
(v7,va) " (va,va) | swap(12)
(7,5} 21 (va.vs) | swap(22)
Tea (va,vq) 12 ouly pop
Tus (v2,v3) 40 (vs, vg) pap
Tg (va,ve) | 30 | (va,vr) | swap(31)
(vs,vg) | 30| (vg,ur) | swap(31)
(w5,) 61 (ve. v7) | swap(62)
(vsvg) | 71| (va,vr) | swap(72)
Ter (ve,v7) 3 (v7,v9) pap
(v, v7) 62 (vr,va) | swap(11)
(gevs) | 72 | (vrou) | swap(22)
Tow (v, v8) 22 oty pop
(rovs) | 22 out pop
iny “
> out,
il'lz 2
= out,
local FFT Out-I | In-Label | Out-1 op
Tug (w2, 03) 1 (v2,v6) | push(30)
(v2,v3) 21 (v2,v6) | push(30)
(2. vg) 30 (va,v5) | push(40)
global FFT | Out-I | In-Label | Out-1 op
T;,g (12, va) 11 (2, v6) | swap(G1)
(vg. v3) 21 (va.vg) | swap(71)
(va. v6) 6l (2. v5) | push(40)
(va. vg) 71 (v2,v5) | push(40)

Router configurations
(Cisco, Juniper, etc.)

15

Compilation

FT Tn-T_ | In-Label | Out-l op
[" T [(o ool | push(10)
ing 4 (v1,v9) | push(20)
Tex (w1, v2) 10 (v2.v5) | swap(11)
(vpea) [200 | (vg.uy) | swap(21)
Tes (2, 02) n (w3, vq) | swap(12)
(v2, 12} 21 (vs,) | swap(22)
(vrvg) | 10| (vg.vg) | swap(12)
(7,5} 21 (va.vs) | swap(22)
Tu | ()| 12 outy pop
Tus (2, vs) 40 (w3, vg) pop
Tg (vayve) | 30 | (va.vr) | swap(31)
(vgeve) | 30 | (vg.vr) | swap(31)
(vs,08) [61| (vg.vy) | swap(62)
(wgove) [71| (va.vr) | swap(T2)
Ter (ve,v7) 3 (7, v3) pap
(vayvr) | 62 | (vrova) | swap(11)
(gevs) | 72 | (vrou) | swap(22)
Tos (v, v8) 22 oty pop
(rovs) | 22 out pop
ny -
- out,
il'lz 2
= out,
local FFT Out-I | In-Label | Out-1 op
Tug (va. v3) 11 (v2,v6) | push(30)
(va, v3) 21 (19, v8) | push(30)
(va, vg) 30 (vz,v5) | push(40)
global FFT | Out-I | In-Label | Out-1 op
Ty (v2,v3) 11 (vz,vg) | swap(GL)
(va. v3) 21 (va.vg) | swap(71)
(v, vg) 61 (2. v5) | push(40)
(2. 15) 71 (vg,v5) | push(40)

pX = gXX
pX = qg¥X
qy = rYy
ryY - r
rxX = pX

Compliant?

Formal language

which supports
automated analysis

15

FT Tnl_ [In-Label | Oucl ap
Tor e T [(onva) | push(10]
ing 1| (onws) | push(20)

Tes (vrove) | 10| (v.vs) | swap(11)
(vrova) | 20| (v.vg) | swap(21)

Tus (w22} | 11| (va,va) | swap(12)

(va,vs) | 21| (vs,vs) | swap(22)
(orovg) | 11| (vg,vq) | smap(12)
(vrova) | 20| (va.vs) | swap(22)

SO R i Compilation

T | (as) | 40| (o) | pop

T (arve) | 30| (vgovr) | swap(an)
. o) | 30 | Ggeny | swan(31) pX z qXX

(vs,08) [61| (vg.vy) | swap(62)

(wgove) [71| (va.vr) | swap(T2)

Ter (v, v7) 3 (v7,v3) pop

(woyer) | 62 | (vrouy) | swap(11) pX z qYX
(wyve) | 72| (r.ue) | swap(22)

To (g, 08) 22 oy pop

(mws) | 22 outs pop qY z ’nYY
& = =p Out; r Y z r

inz 2
> out, rxX = pX
local FFT Out-I | In-Label | Out-1 op
Tug (va. v3) 11 (v2,v6) | push(30)

(aes) | 21 | (imen) | push(20) Or even fix?
(va, vg) 30 (v2,v5) | push(40)

global FFT | Out-I | In-Label | Out-1 op
To (12, va) 11 (2, v6) | swap(G1) Formal language
(vg. v3) 21 (vg,vg) | swap(71l)

| 5 || e which supports
automated analysis

-> Would be nice but synthesis slow.

15

Opportunity: Automation for

Self-Driving Networks

pX = gXX
pX = qYX
qY = pyy Feedback/Train
ry = r
rX = pX

Synthesize

in1~A .
i Vy . Vo ey V3 e V- OUE,
|n2’ P i 22

s A\ .
Vs oo e Vg -V + Vg = OUL,

local FFT Out-1 In-Label | Out-l

Opportunity: Automation for

Self-Driving Networks

pX = gXX
pX = qYX
qy = pryy Feedback/Train
ryY = r
rX = pX
Synthesize
:::) V1'—.’r{fz'—b ""B—zPVA =P OUt;
v; .\;5- »\}7 + Vg = OUL,
FM A ML 0

'
H
v

'
H
v

'
H
v

Ideally ML+FM: guarantees from formal
methods, performance from ML

For example: synthesize with ML then
verify with formal methods

Examples: DeepMPLS, DeepBGP, ..

Self-driving networks!

17

A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks

Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.

IEEE Communications Surveys and Tutorials (COMST), 2021.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks

Peter Gjo¢l Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and
Jiri Srba.

16th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT),
Barcelona, Spain, December 2020.

A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible
Wenkai Dai, Klaus-Tycho Foerster, and Stefan Schmid.

35th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Orlando, Florida, USA,
June 2023.

On the Price of lLocality in Static Fast Rerouting

Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore,
Maryland, USA, June 2022.

SyPer: Synthesis of Perfectly Resilient Local Fast Rerouting Rules for Highly Dependable Networks
Csaba Gyorgyi, Kim G. Larsen, Stefan Schmid, and Jiri Srba.

IEEE Conference on Computer Communications (INFOCOM), Vancouver, Canada, May 2024.

DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Fabien Geyer and Stefan Schmid.

IFIP Networking, Warsaw, Poland, May 2019.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules

Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation
(PERFORMANCE) and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.
Model-Based Insights on the Performance, Fairness, and Stability of BBR

Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid.

ACM Internet Measurement Conference (IMC), Nice, France, October 2022.

Slides
available:

https://schmiste.github.io/frr-survey.pdf
https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/spaa23frr.pdf
https://schmiste.github.io/dsn22frr.pdf
https://schmiste.github.io/infocom24syper.pdf
https://schmiste.github.io/ifip19mpls.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/imc22.pdf

