
Synthesis of dependable and self-

driving communication networks

Stefan Schmid

@FRIDA 2025

Acknowledgements:

Roadmap

⇢ If networks break, it can have

knock-on effects

⇢ For example, Facebook outage in

2021: not only took down their

social networking site, but also

Instagram, WhatsApp, …

⇢ … and their own internal systems,

which manage the doors:

engineers had to break into their

own buildings to bring the

network back up

Networks:

Critical Infrastructure

Credits: Nate Foster

Roadmap
The Challenge: Most Outages due to Human Errors

Human Errors

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Mainly:

human

errors!

Slide credits: Nate Foster and Laurent Vanbever

2

4

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

3

5

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

3

6

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

3

7

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

3

8

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

3

9

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

3

10

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

3

Particularly Difficult

Fast Rerouting

Particularly Difficult

Local Fast Rerouting

Routing
Algorithm

data
plane

control
plane

4

Particularly Difficult

Local Fast Rerouting

Routing
Algorithm

data
plane

control
plane

Slow but
global

4

Particularly Difficult

Local Fast Rerouting

Routing
Algorithm

data
plane

control
plane

Fast but
local

4

Information at Switch for

Local Decision Making?

5

Information at Switch for

Local Decision Making?

Forwarding
table

match action

⇢ Nodes locally store a forwarding Match -> Action table

5

Information at Switch for

Local Decision Making?

Forwarding
table

match action

⇢ The Packet Header (e.g., source, destination)

header

5

⇢ The Inport of the received packet

Information at Switch for

Local Decision Making?

Forwarding
table

match action

header

int1

int0

int3

int2

5

⇢ Which incident links failed

Information at Switch for

Local Decision Making?

Forwarding
table

match action

header

int1

int0

int3

int2

5

⇢ … for robust networks tolerating many link failures.

⇢ Verification: Are the current forwarding rules policy

compliant (reachability, waypoint traversal) even

under failures?

⇢ Synthesis: Can we pre-install local fast failover rules

which ensure reachability under multiple failures?

⇢ In general: How many failures can be tolerated by static

forwarding tables?

Objective

What-if Analysis & Synthesis

6

Two fundamental

Notions of Resilience

Ideal resilience

Given a k-connected

graphs, fast reroute

can tolerate any k-1

link failures.

Perfect resilience

Fast reroute can tolerate
any failures as long as
the unterlying network is
physically connected.

⇢ What is the difference? Which is stronger?

7

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

A big open challenge

Ideal Resilience

8

A big open challenge

Ideal Resilience

ts

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

9

A big open challenge

Ideal Resilience

s t

Yes! k disjoint paths: try
one after the other, routing
back to source each time.

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

8

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

A big open challenge

Ideal Resilience

What if I cannot
match source?!
Open conjecture.

ts

8

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

9

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1

9

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2

9

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3

9

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3 4

9

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3 4

9

(k/2-1)-resilient with circular

Arborescence Routing

t
Arborescences

1 2 3 4

9

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

9

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

9

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

9

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

⇢ k/2-1 resilient: link failure affects at most 2 arborescences

Arborescences

1 2 3 4

9

Research Challenges

⇢ Complexity of verifying resilience and policy-compliance?

⇢ Algorithms for synthesizing resilient fast reroute mechanisms?

⇢ Application to specific protocols, like MPLS or Segment Routing?

May be
simpler!

10

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

A General Solution: Automation

Synthesis with BDDs

11

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

A General Solution: Automation

Synthesis with BDDs

Network:

BDD 2-resilient

routing:s

11

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

For specific protocols we can be faster!

A General Solution: Automation

Synthesis with BDDs

Network:

BDD 2-resilient

routing:s

11

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

⇢ Forwarding based on top label of label stack

12

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

push swap swap pop

pop

⇢ Forwarding based on top label of label stack

12

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

⇢ Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure:
push 30: route
around (v2,v3)

31|11
31|21

12

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

⇢ Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure:
push 30: route
around (v2,v3)

31|11
31|21

Pop

Normal
swap

If (v2,v3) failed,
push 30 and

forward to v6.

12

Faster for specific protocol:

MPLS Fast Reroute (FRR)

⇢ Multiple link failures: simply recursive

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original
Routing

One failure:
push 30: route
around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively
40: route around

(v2,v6)

Push 30

Push 40

pop pop

12

Faster for specific protocol:

MPLS Fast Reroute (FRR)

⇢ Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

⇢ Can use the result by Büchi: set of all
reachable configurations of pushdown
automaton is regular set

⇢ We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

⇢ The resulting regular operations are all
polynomial time

Julius Richard Büchi

1924-1984

Swiss logician

13

Example: AalWiNes Tool

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7_Q0

14

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0

Can cover many policies!

Sysadmin responsible for:

● Reachability: Can traffic from

ingress port A reach egress

port B?

● Loop-freedom: Are the routes

implied by the forwarding rules

loop-free?

● Policy: Is it ensured that

traffic from A to B never goes

via C?

● Waypoint enforcement: Is it

ensured that traffic from A to

B is always routed via a node C

(e.g., intrusion detection

system or a firewall)?

A

B

C

E.g. IDS

… and everything under multiple failures! 15

Opportunity: Automation for

Self-Driving Networks

Router configurations
(Cisco, Juniper, etc.)

What if?!

15

Opportunity: Automation for

Self-Driving Networks

Formal language
which supports

automated analysis

Compilation

Compliant?

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

15

Opportunity: Automation for

Self-Driving Networks

Formal language
which supports

automated analysis

Compilation

Or even fix?

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

⇢ Would be nice but synthesis slow.

15

Opportunity: Automation for

Self-Driving Networks

Feedback/Train

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

16

Synthesize

Opportunity: Automation for

Self-Driving Networks

Feedback/Train

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

16

Synthesize

FM ML

⇢ Ideally ML+FM: guarantees from formal

methods, performance from ML

⇢ For example: synthesize with ML then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

⇢ Self-driving networks!

Fast Synthesis: FM+ML

17

Thank you!

55

Slides

available:

A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.
AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and
Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT),
Barcelona, Spain, December 2020.
A Tight Characterization of Fast Failover Routing: Resiliency to Two Link Failures is Possible
Wenkai Dai, Klaus-Tycho Foerster, and Stefan Schmid.
35th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Orlando, Florida, USA,
June 2023.
On the Price of Locality in Static Fast Rerouting
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore,
Maryland, USA, June 2022.
SyPer: Synthesis of Perfectly Resilient Local Fast Rerouting Rules for Highly Dependable Networks
Csaba Györgyi, Kim G. Larsen, Stefan Schmid, and Jiri Srba.
IEEE Conference on Computer Communications (INFOCOM), Vancouver, Canada, May 2024.
DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning
Fabien Geyer and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.
Latte: Improving the Latency of Transiently Consistent Network Update Schedules
Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation
(PERFORMANCE) and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.
Model-Based Insights on the Performance, Fairness, and Stability of BBR
Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid.
ACM Internet Measurement Conference (IMC), Nice, France, October 2022.

https://schmiste.github.io/frr-survey.pdf
https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/spaa23frr.pdf
https://schmiste.github.io/dsn22frr.pdf
https://schmiste.github.io/infocom24syper.pdf
https://schmiste.github.io/ifip19mpls.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/imc22.pdf

