
Broomrocket: Open Source Text-to-3D Algorithm for 3D Object

Placement

SANJA BONIC, TU Berlin, Berlin, Germany

JANOS BONIC, FernUniversität Hagen, Hagen, Germany

STEFAN SCHMID, TU Berlin, Berlin, Germany

Story writers and other creative professionals often rely on concept artists to visualize and then further iterate on their work

during game development and other visualization processes. This exchange and its various stages are time-consuming, and

there is no easy remedy for creating a walkable 3D concept art without involving a 3D artist yet. As a irst step, we present

Broomrocket, an open source text-to-3D algorithm for 3D concept art. Broomrocket’s contribution is an object relation and

placement algorithm that transforms user input describing a 3D scene given in plain English language into actual models

placed in a 3D scene. It runs locally using an existing downloaded natural language processing model and does not require

third party services unless a connection to an online 3D model distribution platform is desired. In that case, Broomrocket will

search for the keywords from the user’s narrative input and desired license, and place them in the 3D scene, adding each

model’s individual license to a license ile for further usage.

CCS Concepts: · Software and its engineering→Application speciic development environments; ·Human-centered

computing → Visualization toolkits; · Applied computing→ Computer games.

Additional KeyWords and Phrases: text-to-3d, level design, scene generation, 3D concept art, prototyping, language processing,

computing

1 INTRODUCTION

For the creation of games, we are on a quest to produce content faster and better. In this process, we need a mix
of skill sets covering various roles, including but not limited to developers, artists, and writers. Turning text into
concept art usually requires multiple people and several iterations, which leads to ineiciencies when validating
initial ideas. Writers who lack the experience in 3D software do not currently have an easy way of showcasing
their vision of a world without involving one or more artists. Creating 2D concept art has recently been expedited
through machine learning algorithms, while 3D scene generation is not yet widely available nor usable.

Looking at the historical timeline of 3D scene generation, we see that there are many papers discussing a few
use cases, mainly for educational projects, e.g. [1, 2, 13, 15, 16, 27]. The interest in 3D has risen rapidly over the last
three years with many projects building upon each other. These quick iterations mean that for consumer-grade
products, especially those that require real-time rendering, we cannot yet rely on much of the current research.
Works such as Point-E [18] and Shap-E [12] by OpenAI, Google’s DreamFusion [19], and Proliicdreamer [24]
continue to develop improved machine learning models in order to generate text-to-3D objects.
One of the many interesting and innovative projects in the area of 3D scene generation originates from the

Max Planck Institute [26]. It revolves around a given human animation sequence, where they use the bounding

Authors’ addresses: Sanja Bonic, TU Berlin, Einsteinufer 17, Berlin, Germany, 10587; Janos Bonic, FernUniversität Hagen, Universitätsstraße

47, Hagen, Germany, 58097; Stefan Schmid, TU Berlin, Einsteinufer 17, Berlin, Germany, 10587.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2832-5516/2024/2-ART

https://doi.org/10.1145/3648233

ACM Games

https://doi.org/10.1145/3648233
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3648233&domain=pdf&date_stamp=2024-02-14


2 • Sanja Bonic, Janos Bonic, and Stefan Schmid

boxes inferred from the motion paths as well as the foot vertex information to determine required free space as
well as possible shapes of the room type that should be generated. With the right datasets and integrations, this
could become a very valuable addition to 3D content creation.

In contrast to existing research, our work focuses mainly on formal, deined methods for generating 3D scenes
by placing existing meshes, and developing better tools that can be used right now to make games and other 3D
content quickly and eiciently. While there are several papers suggesting algorithms for the recognition of spatial
terminology, they only recognize the spatial entities themselves, such as the work on spatial role labeling by
Mazalov et al. [17]. Newer research by Hwang et al. [10] investigating ChatGPT spatial understanding conirms
that machine learning tools using large language models are able to interpret spatial terminology, but we are still
far away from this information being reliably used in today’s tooling. Notably, Hwang et al. state that the use of
ChatGPT might be valuable in order to generate drawings from textual descriptions, still addressing only 2D
space. Without axis assignments, coordinates, bounding boxes, and object relations, we are unable to use the
spatial terminology to assign further semantic meaning in 3D space and create scenes from it.

Tools for the procedural generation of terrains and the placement of assets are widely available in the industry
with products such as World Machine [25], GeNa Pro [20], or Dash [9]. Unfortunately, these tools are either
bound to a speciic game engine, need additional customization of assets before usage, or only work if the scene
contains a landscape. Additionally, they require a deeper knowledge of the underlying 3D software and are
typically not usable without prior experience.
Our contribution to the scientiic and game development community is Broomrocket, a text-to-3D object

relation and placement algorithm as described and then transformed into 3D space from narrative user input in
plain English language. In the early stages of game development, 3D scenes and concept art often need to be
discarded and redesigned through many tedious iterations until the look and feel its the vision for the game. The
main goal of this algorithm is to allow game writers, game designers, artists, and others to quickly iterate on
concept art, lore, and scene ideas in order to speed up the game development process.
Since we want to keep Broomrocket lightweight, reasonably fast, and speciic to 3D scene creation, we use

a general language model and develop our own formal methods on top of it, in order to keep the algorithm
lexible and portable. Our goal is to combine spatial terminology including object references with actual semantic
meaning through a placement algorithm in 3D space.
We are not aware of any similar algorithm and implementation that allows for general purpose 3D scene

creation from plain text, which is why Broomrocket is a novel contribution building upon work in the NLP ield
and existing 3D tools. In order to showcase Broomrocket’s portable algorithm, we developed an open source
MIT-licensed Python add-on for Blender [4] as well as an implementation for the open source game engine
Godot [8]. Broomrocket can run locally and without third party services by using either a default cube or an
asset folder of your choice. In case an asset store is desired, we also include a connection to the online 3D model
distribution platform Sketchfab [21], where the algorithm uses keywords from your sentences to search for
3D models using your license preference. The large majority of our provided Python code [22] is not speciic
to Blender and can be ported to other Python-supporting 3D software by implementing the abstract classes
Engine and LoadableMesh. While the Blender add-on can run from within Blender, we also provide a separate
engine-independent network server, which can either be hosted or run locally to provide the NLP, placement,
and object relation functionality. This should allow for better integration points for any 3D engine. One such
integration showcase using the server is our Godot implementation.

In this paper, we irst look at the motivation and contribution of Broomrocket (section 2) before moving on to
the overview of Broomrocket’s components (section 3), implementation (section 4), results (section 5), evaluation
(section 6), and conclusion (section 7).

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 3

2 MOTIVATION

During the development of our irst commercial game, we attempted to follow the advice echoed throughout the
industry of creating a Steam store page for the game as early as possible. With diferent parts of the game still in
various stages of readiness, we needed screenshots using our existing assets that would relect the inal gameplay.
As we were looking for the ideal parts of the game to present, we would create and recreate the scenes countless
times, assembling and resizing them by hand each time. Relecting on the process of creating the store page, we
decided to look for tools that could expedite the creation of these screenshots in the future.
Procedural generation of levels is wide-spread in the industry. Tools such as World Machine [25], Gaia Pro /

GeNa Pro [20], Dash [9] or Unreal Engine’s own procedural generation features [5] provide the ability to speed up
the process of creating terrain, roads, rivers, or spawn assets. Their capabilities and itness for early 3D concept
art work vary, but a common trait among all of them is the need for experience in working with 3D software or
the particular game engine they build upon. As we do not aim to provide a complete state of the art survey of the
currently available procedural generation tools, we describe a select few of them in relation to Broomrocket in
the following table 1.

Name Editor License 3D/Game engine

World Machine Mouse-based
Proprietary

(free for non-commercial use)
Standalone software

Gaia Pro / GeNa Pro Mouse-based Proprietary Unity

Dash Hybrid Proprietary Unreal Engine
Unreal Engine

Procedural Content Generation
Visual programming Proprietary Unreal Engine

BlenderGPT Text-based
MIT
(requires ChatGPT subscription) Blender

Broomrocket Text-based MIT Blender, Godot (portable)

Table 1. Procedural/assisted scene building tools

While all of these tools have a solid use case, they do not support worklows for people who primarily work
with text. Text-based editing tools such as BlenderGPT [7] are available, but they work by prompting ChatGPT
or other generative AI code assistance tools to generate and run code directly on the user’s computer which can
cause security and compliance issues [11].

With Broomrocket, we contribute a robust, extensible object relation and placement algorithm that can be used
and built upon today. Broomrocket supports the creation of 3D environment scenes from textual descriptions
to mesh components in a 3D scene quickly and eiciently. In order to achieve this, we use existing meshes
and a self-deined corpus of keywords that can be mapped to from plain English text. The main feature that
Broomrocket delivers compared to other text-based tools, such as Dash or BlenderGPT, is reproducibility by
allowing the same series of sentences to produce an exact replica of the scene with diferent assets, depending on
the chosen asset library. We hope that it is useful for the wider game development and 3D creator community as
well as for further research in this area.

3 OVERVIEW

Broomrocket consists of three components that make it useful and extensible: Natural Language Processing
(NLP), an object relation and placement algorithm as well as a mesh provider plugin system.

ACM Games



4 • Sanja Bonic, Janos Bonic, and Stefan Schmid

3.1 NLP

Early in the development phase, we made a decision to use NLP as we did not want people to have to learn
yet another markup language or additional syntax. Everyone should be able to quickly iterate on scene design
ideas, even with little to no 3D modeling or programming background. While game development is not the only
application for Broomrocket and the general concept behind it, it is the main use case and target audience for
us. We could have chosen to use a JSON-style or similar syntax to better and easier represent a scene in terms
of coordinates, sizing, and more, at which point creating this data representation would mean that we would
have had to reinvent the wheel of VRML [23], or any of the many other proprietary and open source 3D model
formats which would have yielded no obvious beneit or novel applicability. Hence, we decided to make a tool
and respective algorithms that work with the existing tools and skill sets of content creators. For that purpose,
NLP seems to be the most appropriate choice.
Our main logic loop for the NLP part, for which we used SpaCy 3.5.3 [6] and one of its core small language

models, en_core_web_sm 3.5.0, is to extract the relevant nouns, prepositions, and their relation to each other. One
advantage of SpaCy is that it comes with a dependency parser whereas libraries like NLTK [3] call out to a Java
implementation to achieve dependency parsing or need many additional dependencies and installations. For our
use case of quick prototyping with editing capabilities for inal touches, we needed to make it as easy as possible
for people to install and use while running the software locally. This requirement is met by SpaCy.
In its current implementation, Broomrocket allows for sequential text ield input as well as ile input for

reproducible idea validation. For a quick test, adding input to the text ield is suicient whereas for iterations
on a 3D scene, the ile input can be very useful. After the input is processed and we understand the relations of
recognized entities to each other, we start loading the downloaded models and placing them inside the scene.

3.2 Object Relation and Placement Algorithm

Each sentence is processed and its models placed individually, but one feature of Broomrocket is that it knows
what is in the scene, which means that the user can refer to something that has already been placed by the initial
reference name given. For example, in the sentence sequence ‘Make a house and a garden.’, ‘There is a forest
behind the garden.’, and ‘Add 2 lower pots in front of the house.’, our algorithm can recognize the number of lower
pots as long as it is given in its numerical form, place the pots in front of the previously placed house, and will
correctly add a forest behind the previously placed garden. Since the garden has no prepositional attachment,
it is distributed on the assigned axis alongside the house. We decided not to add additional dependencies to
Broomrocket which is why spelled out numbers only work up to ninety-nine thousand with this version of
Broomrocket and we do not support constructs such as dozens, ounces, hundreds of thousands, millions, etc..
When we place objects in the scene, we give the objects the name that was queried, meaning that an initial

sentence like ‘Make a house.’ will result in a house object with the name house added to the empty scene. This
allows us to query the placed object hierarchy and position follow-up objects next to the object reference for an
object that was mentioned at the start of the scene creation.
Once the objects to be added are clear and we have checked for existing objects, we move on to the spatial

representations and the models’ coordinates. In its initial version, Broomrocket supports the following features:

• We added representations of mm, cm, m, feet, inches and various other units to Broomrocket so that these
instructions can be properly recognized and used for placement with the x, y, and z axes in relation to the
object.

• Commonly used prepositions, such as left, right, next to, up, down, above, under, below, in front of, behind,
between, at the back/front, in the background, are converted to their respective axes and placed accordingly.

One limitation of this system is that we cannot rely on meshes having a semantically correct orientation. For
this reason, we designed Broomrocket with the following internal coordinate understanding: front is +� , back is

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 5

Fig. 1. Visualization of Broomrocket’s internal coordinate understanding and bounding box representation

PLACEMENT PREFERENCE

P
L

A
C

E
M

E
N

T
 P

R
E

F
E

R
E

N
C

E

Behind the house, there is a lamp on the table.

L
A

M
P

−� , left is −�, right is +�, top is +�, and bottom is −�. Each individual direction is calculated separately, based on
the new object’s reference object, and results in a bounding box as well as a preferred location within that box, as
shown in Fig. 1.

The inal placement of a mesh is calculated as an intersection of all directional bounding boxes as well as the
irst location mentioned in the sentence. For the example sentence of ‘Behind the house, there is a lamp on the
table.’, that means that there are two directional bounding boxes representing the reference objects for our new
object. One directional bounding box, the house, stretches from its furthest point on the −� axis to ininity. The

ACM Games



6 • Sanja Bonic, Janos Bonic, and Stefan Schmid

other directional bounding box goes from the top of the table, which is represented by the highest � coordinate,
to +� ininity. As the irst mentioned location is behind the house, Broomrocket takes that as the origin placement.
This results in the lamp being placed at the edge of the table, rather than in the middle, since we do not yet have
a dataset with such high level semantic labelling that we could infer that a lamp would rather be in the center of
the table.

3.3 Mesh Providers

Broomrocket allows for extensibility with regards to datasets through its plugin system which currently features
three mesh providers: cube, custom folder, and Sketchfab. Further mesh providers could be implemented using
any other 3D model distribution platform or dataset. Our cube mesh provider uses a 1x1m cube as default shape
for any object that needs to be placed. It is the default fallback in case a keyword cannot be found using other
mesh providers. For the online 3D model distribution platform showcase, we chose Sketchfab [21] for creators
who aim at getting more of a look and feel for the game they are developing than default shapes can achieve. In
addition, users may also pick a folder with their own assets, where our algorithm will look for the given keywords
and either place the requested model or the default cube if the keyword cannot be found inside the folder.
Currently available 3D datasets used in research usually either cannot be used commercially, are raw pho-

togrammetry scans, or contain only a very small niche category of models and poses. With this limitation in
mind and our initial prerequisite of making Broomrocket available for use for everyone, we decided to create a
usable mix of these three mesh providers allowing 3D scene generation entirely from a default cube, a custom
asset library, or user-choice licensed models found on Sketchfab which can either it the content’s needs or be
replaced once the prototype level or game design are found to be satisfying. APIs are usually rate-limited, though,
as is also the case with Sketchfab, which is why we recommend creating your own asset library with curated or
created models. Broomrocket is meant to be lightweight, fast, and allow for quick iterations in the early stages of
3D content creation.

In order to satisfy licensing requirements by licenses from Sketchfab that require attribution, we also generate
a license ile with the created 3D scene that should be included in the release if models are kept and not replaced
in the inal version of the game or other 3D content that is created. Since Broomrocket’s implementation is open
source, everyone can add additional datasets and search parameters to it their needs and licensing requirements,
allowing for high extensibility and additional application areas.

4 IMPLEMENTATION

As a static 3D scene generation algorithm using natural language user input, Broomrocket is still fairly limited in
its uses. In this section, we describe the current implementation steps as additional information to the commented
code that is made available as open source under the MIT license. For the concrete implementations, we chose
Blender as it is widely used in the games and 3D content creation industry by both independent artists as
well as established studios, and the open source game engine Godot. Due to their open source nature, they
lend themselves well to academia and are very extensible. We chose not to restrict our prototype to creating a
minimalistic rendering engine with scene exports as we want others to be able to use our code and algorithms as
well as the outputs they create to extend and edit them even further. With Blender and Godot as the 3D tools of
our choice, we used the relevant APIs to create easily usable add-ons that could be installed from the respective
interfaces if someone wanted to maintain the releases. For the purposes of this paper, we only provide installation
instructions and the source code itself [22].

Once Broomrocket is loaded, the user can provide their input either via a text ield, or load multiple sentences
from a ile. In either case, the input is segmented by punctuation and is recorded in the interface as individual
items. The user has the choice to run only selected sentences from the list or run all of them at once.

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 7

Fig. 2. High-level architecture diagram of the internal components and data flow of Broomrocket for Blender

Blender 

Operators

Broomrocket

Core

SpaCyNLPProvider spaCy

Sentence

Mesh Provider

Blender Engine Provider

Mesh provider parameters MeshMetadata

Blender API

Placement Algorithms

Internally, Broomrocket processes sentences as separate entities and completely inishes processing one
sentence before it starts the next one. This allows Broomrocket to partially process input in case a sentence fails,
and it is necessary for correct object relation since sentences may refer to previously placed meshes. The high-level
architecture diagram in Fig. 2 shows the internal components and data low of the example implementation for
Broomrocket’s algorithm.

4.1 NLP

As a irst step, a sentence is processed into tokens by SpaCy. We use these tokens to construct a placement data
structure. Initially, we tried to use the tree structure created by SpaCy, but soon discovered edge cases where the
tree structure is incorrectly linking conjunctions or incorrectly recognizing entities which led to faulty results, as
further explained in the results (Section 5).

Instead, we had to resort to implementing a custom algorithm that links nouns in a sentence to either a verb or
an adposition. The verb-linked nouns provide information about the objects the user wants to add to their scene,
while adposition-linked nouns are a irst clue to the prepositions we need to recognize spatial terms that may be
translated to 3D coordinates. We iterate over the tokens and process nouns according to the following rules:

(1) Nouns are stored in their singular form, their plural form is marked in the inal data structure.
(2) If no verb or adposition has been found yet, the nouns are added to a temporary bufer which is added to

the verb or adposition when found.
(3) If a verb is found, the verb is recorded as the action to take. Previously bufered nouns and any subsequent

nouns are linked to the verb.
(4) If an adposition is found, the adposition is recorded as a spatial reference word. Previously bufered nouns

and subsequent nouns are linked to the adpositions.
(5) If two consecutive nouns are found without a conjunction, but with a compound marker, the noun is

merged with the previous noun, delimited with a whitespace (e.g. lower and pot are recognized as lower
pot).

ACM Games



8 • Sanja Bonic, Janos Bonic, and Stefan Schmid

(6) If two consecutive nouns are found without a conjunction and no compound marker, the linking to any
previous verbs or adpositions is cleared and the following nouns are collected into the temporary bufer
again.

(7) If a number is found in written form, it is translated into its numeric form.
(8) If a number is found, the subsequent noun with an entity type of QUANTITY is treated as a distance

denomination. The nouns are translated into numeric multipliers of units.
(9) If a number is found and the subsequent noun is attached to a verb, the number is treated as a quantity. In

its irst version, Broomrocket does not support adposition-linked numerals (e.g. behind the 2 houses).
(10) If an adverb is found, it is recorded to be added to the next adposition (e.g. next to the house where next is

an adverb and to is the adposition).

During various iterations of this algorithm, we found the following special cases which we ixed with the
above steps in the algorithm:

• In case of the adpositions in, at, or to followed by a noun and then an of, such as in front of, we record the
noun as the spatial reference word instead of the adposition because front, back, and some other spatial
terms are recognized as nouns.

• If a noun is (incorrectly) identiied as a compound noun, but the next token is of, we treat the noun as a
spatial reference word. Such is the case with There is a swing right of the house., where right is recognized
as a noun and the swing is its compound, which would result in a keyword search for swing right.

• The imperative verb place is sometimes incorrectly identiied a noun by SpaCy. We transform it to a verb if
encountered at the beginning of a sentence.

We process the sentence into a data structure that records the action to take, a list of objects to place, and
any spatial references found. Actions are simple records of the verb, which are currently not interpreted, but
may in future be used for actions beyond placing meshes, such as changing materials, scaling, rotating, editing,
or removing objects. The objects to place are recorded in a singular form, for search in a mesh database, along
with their cardinality. Spatial references store their term, such as behind, along with their referenced objects, and
optional distance denomination (numbered distance and units, e.g. 50 m or ten inches). Referenced objects are
stored in a similar fashion as the objects to place in their singular form with a plurality lag.

4.2 Object Relation and Placement Algorithm

Once the NLP processing is complete, any spatial reference objects in the scene are resolved to meshes, and their
coordinates are made available. All mesh coordinates are treated according to their bounding boxes. In its irst
version, Broomrocket does not support convex mesh collisions.

The placement algorithm implements a plugin system where each spatial reference word can be processed by
separate plugins. Each plugin must return a three-dimensional volume in which to place the mesh. If multiple
spatial reference words are found in a sentence, such as behind the house on the porch, the appropriate plugin is
called for each of these words. The resulting volumes are then intersected to produce a inal volume in which the
meshes can be placed. Additionally, each plugin must return the best possible position for each object that is to
be placed.
Currently, we implement one plugin in multiple variations to provide support for keywords such as behind,

left of, in front of, above and more. Since these are identical in nature, we describe the behavior of the algorithm
using the example of the behind placement strategy.
The algorithm treats the negative X coordinates as behind an object. In future iterations, the algorithm may

be improved to provide contextual placement based on the user’s current viewport or object custom data, if
present. The code then iterates over all reference objects paired with the current behind spatial reference word.
Their lowest X coordinate is taken and any possible distance denomination is subtracted from the coordinate.

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 9

This value represents the upper bound of the X coordinate in the returned value, while the lower bound will be
negative ininity. The Y and Z bounding box coordinates will match the bounding box of the reference object. If
the objects to be placed exceed the placement bounding box, the algorithm will extend it in the Y and Z directions
to it the objects.

For each object to place, the algorithm will then compute the best spawn point translation such that the lowest
Z coordinate matches the lowest Z coordinate of the reference object or objects, while the ideal X coordinate will
be computed to be as high as possible. The Y coordinate will be computed such that the objects are placed in a
row along the Y axis, distributed between the highest and lowest Y coordinate of the reference objects.
Finally, when all plugins have supplied their placement volumes and ideal spawn points, the volumes are

intersected from each plugin and the meshes are placed. First adpositions in the sentence take placement
precedence as the translations of the meshes are calculated starting with the irst plugin and iterating from there.
If this calculation order cannot be fulilled due to the bounding box of further adpositions not allowing for it, for
example in case of height limitations between reference objects, the next translation preference in the order is
taken into account.

As previously mentioned, the above algorithm can be applied to all directional keywords, if we replace the axis
and orientation accordingly.

5 RESULTS

Broomrocket’s Python implementation for Blender covers over 3,300 lines of code and uses SpaCy with its small
en_core_web_sm model, its dependencies as well as some additional dependencies for HTTP requests in order to
connect to Sketchfab. For Sketchfab, users will need an account and API key which they may add via the add-on
interface panel. Without Sketchfab, the code can run on users’ local computers oline, using either our default
cube mesh provider or the users’ selected asset library folder.
In the Godot integration showcase, we only support a minimal set of features to demonstrate the algorithm

itself, without implementing the user interface for inserting multiple sentences or a Sketchfab integration. The
separation of functionality into an engine-independent server covers just under 3,000 lines of code, of which most
is identical to the Blender add-on, representing the core of our algorithm with its abstractions. Godot-speciic code
comprises roughly 2,000 lines of additional code written in GDScript, including a conversion of Broomrocket’s
internal coordinate system to Godot’s diferent coordinate understanding.

One of the major challenges for Broomrocket was the diference in quality of downloaded meshes that can be
found online as well as their metadata. Some models are uploaded with inconsistent origin points and scaling.
Broomrocket cannot account for scaling as it does not understand the semantic probabilities of a house that is 1
km long versus a house that is 10 cm long. What we did account for, though, are initial ofsets, which we ignore
by looking at the bounding boxes of the loaded mesh instead of taking the original model’s coordinates.

Aside from individual mesh download issues, we also experienced several drawbacks to using NLP instead of
clearly deined keywords, namely that we need to rely on the NLP library coming back with meaningful results,
which in our very few use cases already proved to be an expected mistake. We showcase two examples (Fig. 3
and Fig. 4) where we had to build our algorithm speciically around these linguistic bugs, that are present in both
NLTK and SpaCy.

In Fig. 3, any human would clearly understand the imperative form of the verb to place at the beginning of the
sentence, but both of the NLP libraries that we tried recognize the noun place instead. Our workaround for this
particular word was a not very elegant but workable conditional clause in our code.
A larger problem arises with the sentence There is a pool and a ball behind the house and the garden. (Fig. 4).

The ball and the garden are recognized as conjuncted here. We cannot tell why, but assume that the determinants
are not given enough weight in this particular form of sentence, leading to the sentence being recognized as

ACM Games



10 • Sanja Bonic, Janos Bonic, and Stefan Schmid

Fig. 3. Both SpaCy and NLTK recognize the imperative verb ‘place’ as a noun, which we had to fix for our implementation.
This visualization was done using SpaCy’s visualization tool.

Fig. 4. A larger sentence with SpaCy’s interpretation, depicting a wrong conjunction dependency between the ball and the
garden.

����������������������������������������������������������
�
� �
� �
� �
���
	 �
�� 	
�	 	
�	 	
�	 	
�	��
	� ��
	����

���

���� ����

����

����
���� ����

��

��� ��� �����

There is a pool and a ball behind the house, and a garden. If the Oxford comma was used consistently across the
English language, such a mistake might not have happened. Equally, we assume that determinants are used
interchangeably in many NLP models or are given varying weights leading to ‘a’ and ‘the’ often being treated
equally when they should not be.
Broomrocket does not account for prepositions that are not coded into the currently existing placement

strategies. One possible way to ix this is to implement and test more placement strategies to cover more spatial
terms, or to create scenes with descriptions that are then used to train a machine learning model. Both of
these would be viable future research projects. Currently unsupported spatial terms include anything implying
a collision of meshes, such as into, inside, surrounding, etc. as well as direct diagonal terminology, although
Broomrocket does support more than one spatial term within one sentence (e.g. behind the house on the table),
leading to more lexibility than just regular one-dimensional placement on the x, y, or z axis.
Despite its complex calculations, Broomrocket is still a ‘dumb’ algorithm with many workarounds in its

implementation accounting for various NLP, tool-related, and mesh-speciic quirks. In an ideal world where
all assets were designed to be game-ready, the mesh metadata would include better positioning, labelled mesh
hierarchies, orientation metadata, material slot names, and named attachment locations in order to enable a truly
sophisticated object relation and placement algorithm. We show the diference in quality by using Sketchfab
as the mesh provider in Fig. 5, where meshes have no custom metadata applied and the scaling of the separate
objects cannot be properly adjusted. The algorithm works, but the resulting scene is not as usable for good level
prototyping. In Fig. 6, we use a custom asset library, where we have created three objects ś a ground, a house,
and a porch. The house includes several connected vertices without a face. These faceless objects are used as

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 11

Fig. 5. Sketchfab mesh provider with licensing information for the keywords used. Licenses can be chosen by preference for
the online mesh provider, allowing for immediate commercial applicability. Unfortunately, Broomrocket cannot adjust the
sizing of downloaded meshes.

Fig. 6. Improved placement with a custom asset library that includes additional positioning metadata. The porch is located
in front of the house, ignoring the overhanging roof for the front bounding box placement.

ACM Games



12 • Sanja Bonic, Janos Bonic, and Stefan Schmid

metadata for our algorithm to determine the correct positioning for objects, resulting in a smooth placement of
the porch despite the overhanging roof in our example.

Finally, the irst Broomrocket implementations do not cover commonBlender or Godot commands like removing,
scaling, rotating, editing, sculpting, painting, or animation. They are focused primarily on the placement and
static 3D scene generation using plain English text input by both technical and non-technical users.

6 EVALUATION

We evaluated the correctness of Broomrocket’s behavior through reproducible unit tests. These cover the SpaCy
integration and the placement strategies and helped us ind the bugs in the NLP library as mentioned in the
results (section 5). The aforementioned unit tests are our primary method of formal evaluation and passed fully
and reproducibly, once we ixed the bugs originating in the NLP library.

6.1 NLP test cases

In table 2, we detail the tests that we used for our NLP evaluation. Each test case contains a sentence that is
processed by the NLP integration and the expected resulting data structure shown in the Action, Objects and
Spatial references columns.

6.2 Placement strategies

Table 3 contains test cases for Broomrocket’s placement strategies. Each test calls the placement strategy that
should be evaluated with the speciied number of cubes and the listed reference objects. The placement strategy
is expected to return the stated placement volume and placement preference. Each volume is described with its
bounding box as (����,����,����,����,����,���� ).

6.3 Extensibility

Broomrocket is designed as an algorithm that can be implemented in any 3D engine and programming language.
The implementations for Blender 3.5 and Godot 4.2 serve as a showcase for our underlying algorithm. We
structured the implementations in a way that makes them simple to adapt to other systems. Speciically, we
provide two diferent implementation options to use the algorithm.

The irst option is a pure Python implementation, which allows for further extension and improvements to the
algorithm. The included Engine superclass is the integration point for any additional implementations. This class
requires two functions to be provided: the load_gltf function for loading glTF [14] iles into the current 3D scene,
and the list_objects function for providing an abstract representation of all objects that are currently present in
the scene. Further code may be necessary to provide a user interface integration, depending on the engine that is
being implemented.

Subsequently, if a diferent NLP provider than SpaCy is required, the NLPProvider abstract class and its parse
function, which converts a human sentence into structured data, should be implemented. For additional asset
libraries apart from the default cube provider, a local asset folder, or Sketchfab, the MeshProvider abstract class
and its id, name, and ind methods need to be implemented. The mesh provider would also need to extend the
LoadableMesh class and provide the load_gltf method.
In order to illustrate the efort required for further Python integrations, we provide the amount of code used

for the Blender add-on in each category for the existing implementation in table 4. The source code contains
region markers for each section for easier navigation.

The second option is to use our server which implements the NLP, object relation, and placement functionality
engine-independently. The server sends the relevant instructions to the client and queries it for information

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 13

Test sentence Action Objects
Spatial references
Object Location Distance

Place 2 houses place house (2)

Add a lower pot 5 meters behind the pools add lower pot pool (plural) behind 5 meters

Make 2 houses make house (2)

Add a pool 5 meters behind the house add pool house behind 5 meters

Add two lower pots in front of the house add lower pot (2) house front

There is a car and a ball to the left
of the house in front of the tree is car, ball

house left
tree front

There is a mountain in the background is mountain background in

There is a billboard in the front is billboard front in
There is a swing right of the house

and the garden
is swing house, garden right

Place a lawnmower next to the house place lawnmower house next to
Place a bench on the porch

in front of the door
place bench

porch on
door front

Place a lower pot in front of the house place lower pot house front

Place a house place house

Make a house make house

Behind the house and the forest
there is a ball and a pool is

ball house
behind

pool forest
There is a ball and a pool

behind the house and the forest
is

ball house
behind

pool forest

Place a garden behind the house place garden house behind

There is a pond in the back of the house is pond house back

Add a cloud above the house add cloud house above

Make another house make house

Add rain below the cloud add rain cloud below

Add rain under the cloud add rain cloud under

Add a gnome between the houses add gnome house (plural) between

Add a lamp on the table add lamp table on

Add 50 trees and 2 balls around the house add tree (50), ball (2) house around

Table 2. Broomrocket NLP integration tests

about the objects present in the 3D scene. Any programming language and 3D engine are suitable for a client-side
implementation, as we demonstrate with our Godot plugin using GDScript.

7 CONCLUSION

Broomrocket is an object relation and placement algorithm for 3D scene creation with two concrete open source
implementations using the popular 3D tools Blender or Godot as rendering engines. It combines 3D concepts
with NLP and optional dedicated user asset libraries or an online 3D model distribution platform, where only
objects that match the license chosen by the user are downloaded and properly attributed, for immediate usage

ACM Games



14 • Sanja Bonic, Janos Bonic, and Stefan Schmid

Algorithm Test name Objects Reference objects Placement volume Preference

No
������_���ℎ 1 (−0.5, 0.5, −0.5, 0.5, 0.0, 1.0)

Y-orientation
���_���ℎ�� 2 (−0.5, 0.5, −1.0, 1.0, 0.0, 1.0)

Front

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (0.5, ��� , −0.5, 0.5, −0.5, 0.5)

Y-orientation
Minimize X

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (0.5, ��� , −0.5, 0.5, −0.5, 1.0)

������ − �� � � 1
(−0.5, 0.5, −1.0, 0.0, −0.5, 1.0)

(0.5, ��� , −1.0, 1.0, −0.5, 1.0)
(−0.5, 0.5, 0.0, 1.0, −0.5, 1.0)

������ − ������� 2 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (0.5, ��� , −1.0, 1.0, −0.5, 1.0)

Behind

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−��� , −0.5, −0.5, 0.5, −0.5, 0.5)

Y-orientation
Maximize X

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−��� , −0.5, −0.5, 0.5, −0.5, 1.0)

������ − �� � � 1
(−0.5, 0.5, −1.0, 0.0, −0.5, 1.0)

(−��� , −0.5, −1.0, 1.0, −0.5, 1.0)
(−0.5, 0.5, 0.0, 1.0, −0.5, 1.0)

������ − ������� 2 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−��� , −0.5, −1.0, 1.0, −0.5, 1.0)

Left

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−0.5, 0.5, −��� , −0.5, −0.5, 0.5)

Y-orientation
Maximize Y

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−0.5, 0.5, −��� , −0.5, −0.5, 1.0)

������ − �� � � 1
(0.0, 1.0, −0.5, 0.5, −0.5, 0.5)

(−1.0, 1.0, −��� , −0.5, −0.5, 0.5)
(−1.0, 0.0, −0.5, 0.5, −0.5, 0.5)

������ − ������� 2 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−0.5, 0.5, −��� , −0.5, −0.5, 1.0)

Right

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−0.5, 0.5, 0.5, ��� , −0.5, 0.5)

Y-orientation
Minimize Y

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−0.5, 0.5, 0.5, ��� , −0.5, 1.0)

������ − �� � � 1
(0.0, 1.0, −0.5, 0.5, −0.5, 0.5)

(−1.0, 1.0, 0.5, ��� , −0.5, 0.5)
(−1.0, 0.0, −0.5, 0.5, −0.5, 0.5)

������ − ������� 2 (−0.5, 0.5, −0.5, 0.5, −0.5, 1.0) (−0.5, 0.5, 0.5, ��� , −0.5, 1.0)

On

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−0.5, 0.5, −0.5, 0.5, 0.5, ��� )

Y-orientation
Minimize Z

������ − �� � � 1
(−0.5, 0.5, −1.0, 0.0, −0.5, 0.5)

(−0.5, 0.5, −1.0, 1.0, 0.5, ��� )
(−0.5, 0.5, 0.0, 1.0, −0.5, 0.5)

������ − ������� 2 (−1.0, 1.0, −1.0, 1.0, −0.5, 0.5) (−1.0, 1.0, −1.0, 1.0, 0.5, ��� )

Above

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−0.5, 0.5, −0.5, 0.5, 0.5, ��� )

Y-orientation
Minimize Z

������ − �� � � 1
(−0.5, 0.5, −1.0, 0.0, −0.5, 0.5)

(−0.5, 0.5, −1.0, 1.0, 0.5, ��� )
(−0.5, 0.5, 0.0, 1.0, −0.5, 0.5)

������ − ������� 2 (−1.0, 1.0, −1.0, 1.0, −0.5, 0.5) (−1.0, 1.0, −1.0, 1.0, 0.5, ��� )

Under

������ 1 (−0.5, 0.5, −0.5, 0.5, −0.5, 0.5) (−0.5, 0.5, −0.5, 0.5, −��� , −0.5)

Y-orientation
Maximize Z

������ − �� � � 1
(−0.5, 0.5, −1.0, 0.0, −0.5, 0.5)

(−0.5, 0.5, −1.0, 1.0, −��� , −0.5)
(−0.5, 0.5, 0.0, 1.0, −0.5, 0.5)

������ − ������� 2 (−1.0, 1.0, −1.0, 1.0, −0.5, 0.5) (−1.0, 1.0, −1.0, 1.0, −��� , −0.5)

Table 3. Broomrocket placement algorithm tests

Category LoC Classes Standalone functions

Broomrocket core 975 27 0

Placement strategies (incl. tests) 785 18 0

SpaCy NLP provider (incl. tests) 537 2 0

Dummy mesh provider 24 1 0

Local mesh provider 119 2 0

Sketchfab mesh provider 133 3 0

Blender engine integration 240 4 0

Blender UI integration 468 19 4

Total (incl. imports) 3,331 76 4

Table 4. Broomrocket for Blender components broken down into lines of code, classes, and functions

in game development and other 3D content creation. This work allows less technical users to start generating
3D scenes and includes commercial usage. By adding NLP to the toolchain, we have eliminated the additional
learning curve of yet another syntax or yet another ile format. Using standard text ile imports over manual text

ACM Games



Broomrocket: Open Source Text-to-3D Algorithm for 3D Object Placement • 15

input, everyone can rapidly iterate on and reproduce their scene creation by editing narrative text. Broomrocket
can speed up content creation time by not having to manually import and re-adjust objects, which is especially
valuable for quick prototyping sessions and proofs of concept. It works best in combination with dedicated asset
libraries as those can include higher quality meshes and metadata for the placement algorithm.
The general concept of Broomrocket can be applied to other 3D software including game engines, and due

to the general extensibility of the concept and algorithms, new features can be added quickly and iteratively.
It is a start into quick and eicient prototype design or release-ready environment design, depending on the
datasets and inputs used. Other iterations of the concepts and ideas used in Broomrocket could focus on either
integrations with diferent game engines, integrations with diferent 3D model distribution platforms, more
ine-grained placement, atmospheric conditions such as post-processing ilters as well as procedural materials
and texturing, potentially combined with generative models.

Most importantly, more semantic combinations between material properties and words as well as attachment
properties and semantic grouping are required to unleash the true potential of text-to-3D scene creation. In our
work, we are not accounting for collisions, which works well for prototype level design and quick game design
checks, but collisions would indeed be required for other applications such as character design, where meshes
will inadvertently collide with each other, especially around the facial area. For real commercial applicability,
more commands for scaling, rotating, editing, sculpting, painting, and more would need to be added.

REFERENCES
[1] George Anastassakis and Themis Panayiotopoulos. 2012. AN ARCHITECTURAL PATTERN FOR X3D-BASED VIRTUAL ENVIRON-

MENTS - An Object-oriented Approach. In Proceedings of the International Conference on Computer Graphics Theory and Applications

and International Conference on Information Visualization Theory and Applications - GRAPP, (VISIGRAPP 2012). INSTICC, SciTePress,

466ś471. https://doi.org/10.5220/0003863404660471

[2] Olavo Da Rosa Belloc, Rodrigo B. D. Ferraz, Marcio Calixto Cabral, Roseli De Deus Lopes, and Marcelo Knörich Zufo. 2012. Virtual

Reality procedure training simulators in X3D. (2012), 153ś160. https://doi.org/10.1145/2338714.2338741

[3] Steven Bird. 2006. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on Interactive Presentation Sessions (Sydney,

Australia) (COLING-ACL ’06). Association for Computational Linguistics, USA, 69ś72. https://doi.org/10.3115/1225403.1225421

[4] Blender Foundation 2023. Blender website. Retrieved June 30, 2023 from https://blender.org

[5] Epic Games 2023. Unreal Engine 5: Procedural Content Generation Overview. Retrieved November 11, 2023 from https://docs.unrealengine.

com/5.2/en-US/procedural-content-generation-overview/

[6] ExplosionAI 2023. SpaCy website. Retrieved June 30, 2023 from https://spacy.io/

[7] gd3kr. 2023. Blender GPT. Retrieved November 11, 2023 from https://github.com/gd3kr/BlenderGPT

[8] Godot Engine 2023. Godot website. Retrieved November 1, 2023 from https://godotengine.org/

[9] GraphN 2023. Dash. Retrieved November 11, 2023 from https://www.polygonlow.io/

[10] Young-Seok Hwang, Jung-Sup Um, Biswajeet Pradhan, Tanupriya Choudhury, and Stephan Schlueter. 2023. How does ChatGPT evaluate

the value of spatial information in the 4th industrial revolution? Spatial Information Research (2023). https://doi.org/10.1007/s41324-

023-00567-5

[11] Cristina Improta. 2023. Poisoning Programs by Un-Repairing Code: Security Concerns of AI-generated Code. In 2023 IEEE 34th

International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE Computer Society, Los Alamitos, CA, USA,

128ś131. https://doi.org/10.1109/ISSREW60843.2023.00060

[12] Heewoo Jun and Alex Nichol. 2023. Shap-E: Generating Conditional 3D Implicit Functions. arXiv:2305.02463 [cs.CV]

[13] Fahad Khan, Kashif Irfan, Razzaq Saad, Maqbool Fahad, Farid Ahmad, and Rao Anwer. 2008. Using VRML to Build a Virtual Reality

Campus Environment. Lecture Notes in Engineering and Computer Science 2170 (07 2008).

[14] Khronos Group 2023. glTF Overview - The Khronos Group Inc. Retrieved November 1, 2023 from https://www.khronos.org/gltf/

[15] Zhang Lin, Chen Zhixing, and Zhao Chunxiao. 2010. Research and modeling the ancient architecture system in VRML. In 2010

International Conference on Computer and Communication Technologies in Agriculture Engineering, Vol. 3. 587ś590. https://doi.org/10.

1109/CCTAE.2010.5544864

[16] Hartmut Luttermann and Manfred Grauer. 1998. VRML-basierte Präsentation raum-zeitlicher Geschäfts- und Wissenschaftsdaten mit

WWW-Browsern. In Informatik ’98. Springer Berlin Heidelberg, Berlin, Heidelberg, 57ś66.

[17] Alexey Mazalov, Bruno Martins, and David Matos. 2015. Spatial Role Labeling with Convolutional Neural Networks. In Proceedings of

the 9th Workshop on Geographic Information Retrieval (Paris, France) (GIR ’15). Association for Computing Machinery, New York, NY,

ACM Games

https://doi.org/10.5220/0003863404660471
https://doi.org/10.1145/2338714.2338741
https://doi.org/10.3115/1225403.1225421
https://blender.org
https://docs.unrealengine.com/5.2/en-US/procedural-content-generation-overview/
https://docs.unrealengine.com/5.2/en-US/procedural-content-generation-overview/
https://spacy.io/
https://github.com/gd3kr/BlenderGPT
https://godotengine.org/
https://www.polygonflow.io/
https://doi.org/10.1007/s41324-023-00567-5
https://doi.org/10.1007/s41324-023-00567-5
https://doi.org/10.1109/ISSREW60843.2023.00060
https://arxiv.org/abs/2305.02463
https://www.khronos.org/gltf/
https://doi.org/10.1109/CCTAE.2010.5544864
https://doi.org/10.1109/CCTAE.2010.5544864


16 • Sanja Bonic, Janos Bonic, and Stefan Schmid

USA, Article 12, 7 pages. https://doi.org/10.1145/2837689.2837706

[18] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. 2022. Point-E: A System for Generating 3D Point Clouds

from Complex Prompts. arXiv:2212.08751 [cs.CV]

[19] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion: Text-to-3D using 2D Difusion.

arXiv:2209.14988 [cs.CV]

[20] Procedural Worlds 2023. GeNa Pro. Retrieved November 11, 2023 from https://www.procedural-worlds.com/products/professional/gena-

pro/

[21] Sketchfab 2023. Sketchfab website. Retrieved June 30, 2023 from https://sketchfab.com/

[22] Something Pink 2024. Broomrocket: Open Source Text to 3D Scene Creation. Retrieved February 9, 2024 from https://something.pink/

software/broomrocket/

[23] VRML Speciication 2023. VRML97. Retrieved June 30, 2023 from https://www.web3d.org/documents/speciications/14772/V2.0/

[24] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. 2023. ProliicDreamer: High-Fidelity and Diverse

Text-to-3D Generation with Variational Score Distillation. arXiv:2305.16213 [cs.LG]

[25] World Machine Software 2023. World Machine. Retrieved November 11, 2023 from https://www.world-machine.com/

[26] Hongwei Yi, Chun-Hao P. Huang, Shashank Tripathi, Lea Hering, Justus Thies, and Michael J. Black. 2022. MIME: Human-Aware 3D

Scene Generation. arXiv:2212.04360 [cs.CV]

[27] Livia Ştefan, Sorin Hermon, and Marina Faka. 2018. Prototyping 3D Virtual Learning Environments with X3D-based Content and

Visualization Tools. BRAIN. Broad Research in Artiicial Intelligence and Neuroscience 9 (05 2018).

ACM Games

https://doi.org/10.1145/2837689.2837706
https://arxiv.org/abs/2212.08751
https://arxiv.org/abs/2209.14988
https://www.procedural-worlds.com/products/professional/gena-pro/
https://www.procedural-worlds.com/products/professional/gena-pro/
https://sketchfab.com/
https://something.pink/software/broomrocket/
https://something.pink/software/broomrocket/
https://www.web3d.org/documents/specifications/14772/V2.0/
https://arxiv.org/abs/2305.16213
https://www.world-machine.com/
https://arxiv.org/abs/2212.04360

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	3.1 NLP
	3.2 Object Relation and Placement Algorithm
	3.3 Mesh Providers

	4 Implementation
	4.1 NLP
	4.2 Object Relation and Placement Algorithm

	5 Results
	6 Evaluation
	6.1 NLP test cases
	6.2 Placement strategies
	6.3 Extensibility

	7 Conclusion
	References

