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Abstract—Segment Routing (SR) promises to provide scalable
and fine-grained traffic engineering. However, little is known
today on how to implement resilient routing in SR, i.e., routes
which tolerate one or even multiple failures. This paper initiates
the theoretical study of static fast failover mechanisms which
do not depend on reconvergence and hence support a very fast
reaction to failures. We introduce formal models and identify
fundamental tradeoffs on what can and cannot be achieved in
terms of static resilient routing. In particular, we identify an
inherent price in terms of performance if routing paths need to
be resilient, even in the absence of failures. Our main contribution
is a first algorithm which is resilient even to multiple failures
and which comes with provable resiliency and performance
guarantees. We complement our formal analysis with simulations
on real topologies, which show the benefits of our approach over
existing algorithms.

I. INTRODUCTION

Segment Routing (SR) [1], [2], [3] emerged to address
operational issues of MPLS-based traffic engineering solutions.
SR provides a fine-grained flow management and traffic
steering, allowing to leverage a potentially much higher path
diversity than shortest path control planes such as OSPF [4]. At
the same time, SR overcomes the scalability issues of MPLS
networks as it does not require any resource reservations and
states on all the routers part of the virtual circuit. SR is also
attractive as, by relying on existing routing protocols, it is
easier to deploy than OpenFlow-based solutions.

While the benefits of segment routing in terms of traffic
engineering and scalability have been articulated well in the
literature, less is known today about how to provide resilience
to link and node failures. In particular, we in this paper are
interested in Fast Reroute (FRR) approaches, which handle
failures quickly and without invoking the control plane or
having to wait for shortest path reconvergence, using statically
predefined failover rules. We are especially interested in highly
robust FRR schemes which even tolerate multiple link failures
as they are more likely to arise in larger networks (e.g., data
center [5], backbone [6] or enterprise [7] networks) as well
as due to shared risk link groups, and for these reasons also
constitute a main concern of network carriers [8].

A. SR in a Nutshell

In a nutshell, segment routing is reminiscent of MPLS, in
that it also relies on label stacks in the packet header: the label
at the top of the stack defines the next node or link. However,
unlike MPLS:

1) Segment routing leverages a source routing paradigm,
in which entire paths are pushed at the network edge
(resp. tunnel ingress). Thus, unlike in MPLS networks,
there is hence no need for lookup tables to replace (e.g.,
swap) labels at each traversing node.

2) The next node (the node on the top of the stack) does
not have to be directly adjacent to the current node. In
this case, to transport packets to the next node, segment
routing relies on shortest path routing (a “segment”). If
the next element is a link, that link has to be directly
adjacent to the current node.

The definition of intermediate points in the label stack allows
to increase the path diversity beyond shortest paths. However,
intermediate points can also be used for Fast Rerouting (FRR):
if a link along the current shortest path from s to t failed,
say at some node u, an alternative intermediate destination (or
waypoint) w can be defined to reroute around the failure. In
this case, node v receives a label stack “t” (only the destination
node t is on the stack), pushes the intermediate destination w
(a waypoint), and hence sends out a packet with label stack
“wt”. Once the packet reaches node w, this node is popped
from the stack and the packet (with stack “t”) routed to t. If
additional failures occur, additional intermediate destinations
can be defined recursively.

B. The Challenge

The key challenge in the design of fast rerouting schemes
is that failover rules need to be proactively and statically pre-
configured: there is no time to recompute paths or communicate
information about failures up- or downstream. This also implies
that FRR rules can only depend on local knowledge and in
particular, are oblivious to possibly additional failures occurring
downstream. Without such global knowledge about failures,
however, if no provisions are made by the algorithm defining
the failover rules, the resulting routes may become inconsistent
(e.g., form a loop). For example, if due to a failed link e, a
node v reroutes the traffic from s to t along an intermediate
segment to w, it can be undesirable that an additional failure of
a link e′ in the segment from v to w will steer the traffic back
to e again. Moreover, besides ensuring connectivity even under
multiple link failures, the FRR mechanism should be efficient,
and in particular, only require a small number of additional
failover segments and a small amount of extra header space.

C. Our Contributions and Paper Organization

This paper initiates the systematic study of static fast failover
in segment routing. We present a number of insights on what
can and cannot be achieved in fast failover in SR, as well as
on potential tradeoffs. In particular:
§II We show that existing solutions for SR fast failover,

based on TI-LFA [9], do not work in the presence of two
or more failures. Furthermore, any TI-LFA extension for
k failures must provision for 2k + 1 stack segments.
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§III We show that at least in principle, existing fast rerouting
techniques based on disjoint arborescences known from
the literature considering non-SR networks [10], [11],
[12], can be emulated in segment routing as well.
However, this emulation comes at a high overhead.

§IV We identify an interesting and fundamental tradeoff
between the efficiency and robustness of failover. In
particular, we show that any failover scheme for SR,
without extensions, which tolerates at least two failures,
can be forced to use very costly routes even in the
presence of a single failure.

§V We present an efficient algorithm which preserves reach-
ability even under multiple link failures. Our algorithm,
called TI-MFA, is an extension of TI-LFA, and comes
with provable correctness guarantees. It is also evaluated
in simulations using Rocketfuel topologies; the latter
demonstrate TI-MFA’s benefits over existing approaches.
We furthermore study the effect of flushing the label

stack in case of a failure, i.e., removing intermediate
destinations to optimize the following failover path.
Maybe surprisingly, the failure rate of TI-LFA nearly
doubles in this setting in our simulations.

In the remainder of §I, we discuss the novelty and limitations
of our contributions, along with further related work. We lastly
conclude in §VI, also outlining possibilities for future work.

D. Novelty

Fast rerouting in SR differs from fast rerouting in other
contexts (such as MPLS and OpenFlow) [11], [12], [13], [14],
[15], [16], [17] in that a segment relies on shortest path routing
and is subject to traditional control plane mechanisms such as
OSPF. As we will show in this paper, the constraint that segment
paths need to be shortest makes the underlying algorithmic
problem very different. Having that said, and as we also
show that in this paper, one can in principle enforce certain
failover routes and emulate mechanisms such as arborescence
routing [11]. This however does not only go against the
fundamental principles of SR, but also comes at a higher
overhead (in terms of the number of segments that need to be
pushed). Finally, to the best of our knowledge, TI-LFA [9] is
the only existing proposal to provide node and link protection
in SR. In particular, Francois et al.’s approach builds upon
IP-FRR concepts such as Remote LFAs (RLFA) and remote
LFAs with Directed Forwarding (DLFA).

However, as we will show in this paper, these approaches
fail in the presence of more than link failure. We thus rely
on a concept from [18], where previously hit link failures are
inserted into the packet header. The conceptual idea is that
then a packet cannot hit the same failed link twice, we provide
more details of their work in Section V-A. The concepts in [18]
differ from our ideas in the sense that we employ segment
routing, whereas [18] either pushes the next hops one at a time
or inserts complete paths into the packet header.

Finally, we note that our model is very different from models
which invoke the control plane, wait for reconvergence or allow
to signal failures upstream: in this case, improved failover
schemes can be computed, e.g., using a linear programming

model and also accounting for the restoration of bandwidth [19];
however, such approaches come with a communication over-
head and delay.

E. Limitations

As our paper is a first exploration of the fast RR paradigm for
segment routing beyond a single failure, we restrict our model
for now to not include later, relatively slow convergence effects.
This allows us take an unrestricted view on the immediate
effects of link failures. In a practical setting, it can also
be modeled by turning off reconvergence protocols, as our
algorithms guarantee delivery if the network remains connected.

F. Other Related Work

There exists much interesting literature on the architectures
and use cases for segment routing, and we refer the reader to
the IETF documents [2], [3] as well as the works by Filsfils et
al. [20] and David Lebrun [1] for a good overview. Existing
algorithmic work on SR mostly revolves around flow control,
traffic engineering and network utilization [21], [22], [23],
[24], but other use cases are considered such as network
monitoring [25]. Optimization problems typically include the
minimization of the number of segments required to compute
segmented paths [26]. Salsano et al. [27] propose methods
to leverage SR in a network without requiring extensions to
routing protocols, and Hartert et al. [28] propose a framework
to express and implement network requirements in SR.

II. LIMITATION OF EXISTING APPROACHES

In order to acquaint ourselves with the problem and in order
to show the challenges and limitations of existing approaches,
we first revisit the TI-LFA approach [9].

Here and throughout this paper, we will only consider the
commonly studied case of symmetric networks. In other words,
if P is the shortest path from v to w, then traversing P in
the reverse direction is also the shortest path from w to v.
Furthermore, we assume all link weights to be positive and
that subpaths of a shortest path are shortest paths as well.

This symmetry allows TI-LFA to adequately push segments
when a packet hits a failed link e = (v, w) at node v: Let
ve-space be the set of all nodes reachable from v via shortest
paths in G, where the link e will not be used, i.e., all nodes
where the current routing will not hit the failed link. We can
define te-space analogously for the destination t.1

The symmetry property now yields that the ve- and the te-
space overlap or at least have adjacent nodes, if e does not
disconnect the graph.2 For a proof intuition, imagine some
node u would be contained in neither space: 1) if the shortest
paths to u from v and t traverse e in different directions, then
one of them could take a shortcut and not use e, and 2) if
both shortest paths traverse e in the same direction, then the
shortest path from v to t would not use e.

1Usually, the terms P - and Q-space are used in the literature, but we
introduce node/link-specific notation here for ease of reference.

2For an in-depth tutorial, we refer to the topic Topology Independent LFA
(TI-LFA) at http://www.segment-routing.net/tutorials/.
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Hence, v can push pre-computed segments on top of the
label stack: 1) if the ve- and the te-space overlap, then a joint
node that minimizes the routing distance, and 2) in case of
mere adjacency, a border node along with a label of a link
that connects both spaces, again minimizing total distance. As
such, pushing two labels always suffices for a single failure.

A. TI-LFA loops indefinitely for two link failures

For a simple example why TI-LFA is no longer guaranteed
to be correct, we refer to Fig. 1. There are three paths to the
destination t, a left one from v` via e`, a middle one from
vm via em, and a right one from vr via er. Assume em fails,
leading w.l.o.g. to vm pushing the label for vr on the stack. If
now er fails as well, then vr pushes the label for vm on the
stack, i.e., the packet loops indefinitely between vm and vr,
even though there is still a path via e`: the problem is that
TI-LFA does not differentiate regarding where the packet is
coming from, which we will tackle in Section III with respect
to the incoming port and in Section V by storing the last hit
failure(s) in the packet header.

Observation 1. Even if the network is still connected after
two link failures, TI-LFA can loop indefinitely.

In order to guarantee that the packet still reaches its
destination, we need to implement a local (pre-computed)
mechanism that enforces that the third path via e` will be
eventually taken, via segment routing.

However, this requires an increase in the number of labels
pushed, for which we extend Fig. 1: for the case of two failures,
replace the link between vm and vr with the construction shown
in Fig. 2, analogously for the link between v` and vm. Then,
four segments are needed to reach t from vr when the links
er, em are failed, already in the case when vr is aware that
both these links are unavailable. With less segments, the packet
can’t circumvent the failed links. This idea can be extended to
k link failures, each requiring two segments, by extending the
network from Fig. 1 appropriately.

Observation 2. Even if all k link failures in the network are
known, at least 2k further segments must be provisioned s.t. the
packet can reach the destination without further additions to
the label stack on-route.

We quickly summarize our findings so far: 1) TI-LFA can
loop already with two link failures, as knowledge of prior
actions is not used/available, 2) unless further segments are
to be pushed on-route, a label stack proportional to the link
failure number is required.

In the following, we now tackle these two observations. In
Section III we use the incoming port of the packet (the in-port)
as “prior knowledge” and perform ongoing additions to the
label stack, by emulating known fast local reroute techniques.
While this seems efficient at first, this approach suffers from a
high overhead in the path length and essentially ignores the
benefits of segment routing. Furthermore, we are not aware
of local fast reroute techniques that can guarantee reachability
beyond a single failure. As thus, in Section V, we take the
approach of storing past link failures in the packet header

t

v` vm vr

e` em er

Fig. 1. Illustration of a network where TI-LFA loops permanently with two
link failures. Consider a packet at node vm headed for t, and fail the links
em, er , both drawn dashed. We can assume w.l.o.g. that TI-LFA picks the
backup path via er to reach t, as em is failed. However, when the the node
vr is reached, the link er cannot be used, and TI-LFA will send the packet
back to vm, to route to t via em. As thus, TI-LFA will loop permanently,
drawn in dotted red. Our proposed algorithm TI-MFA will pick the dash-dotted
green path when reaching vr after being rerouted from the initial node vm,
successfully reaching the destination t.

vm v1 v2 vr
1 ∞ 1

Fig. 2. Construction to increase the minimum number of pushed labels in
Fig. 1. To this end, we replace the link between vm and vr with a path of
weights 1,∞, 1, the remaining network from Fig. 1 is omitted here for ease
of viewing. When segments are pushed at vr to reach vm, without going
across the failed link er , one segment does not suffice: when being at v2,
the shortest path to vm is via the failed link er (not drawn here). Hence, a
second segment is needed, the link between v2 and v1. When an analogous
construction is applied to the link between v` and vm, two further segments
are needed to circumvent em. Hence, to reach t from vr without pushing
further segments along the way, vr needs to push four segments.

and push more segments at once, which leads to provable
reachability of the destination, as long as the network remains
connected under link failures. Our simulations show that for
two link failures and flushing, we have an extra label stack size
of at most 4 (+t), which matches Observation 2 for k = 2.

III. A ROBUST BUT INEFFICIENT SOLUTION

Literature on static resilient routing for non-SR networks
provides powerful techniques to preserve connectivity even
under many link failures [10], [11], [12], [29] . In the following,
we show that such an approach can be employed also with SR.

The deterministic techniques of Chiesa et al. in [10], [11],
[12] rely on building pre-computed routing rules that match
on 1) the destination, 2) incident failures, and (unlike classical
segment routing) 3) the incoming port of the packet. These
works consider k-link-connected networks and aim at reaching
resiliency up to k − 1 failures3. Notwithstanding, they do not
guarantee reachability of the destination t if the only invariant
is that the network remains connected.

We can emulate these techniques if we incorporate a match
on the incoming port or on the top element of the stack before
popping it. However, the main obstacle is that the techniques
of Chiesa et al. do not route along shortest paths, but rather
enforce single-hop routing mechanisms, guiding the packet to
the destination one step at a time, possibly along long detours
in comparison to the global shortest paths.4

3At least a resiliency of bk/2c is guaranteed, with various graph families
also reaching k − 1, we refer to [10], [11], [12] for details.

4The main obstacle to achieving short paths in this context is that manually
adding short failover paths can heavily impact resiliency, requiring specialized
schemes, such as in [30] for hypercubes, torus, and Clos topologies.
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We overcome this obstacle by putting (“forcing”) a link on
top of the label stack each time the packet arrives at a node.

Now, we can install rules on the switches emulating the
techniques by Chiesa et al.: 1) at most one extra label will be
on the top of the destination (a link), which is popped when
reaching the next node, leaving the destination on top of the
label stack to match, 2) incident failures may inherently be
matched upon in SR, and 3) the in-port as described above.

However, this emulation approach comes with a high
overhead and essentially ignores the main features of SR
networks by forcing each link along the route individually.

IV. THE PRICE OF RESILIENCY

We showed that robustness can be achieved using segment
routing, but that our emulation approach removes many inherent
efficiency aspects. Unfortunately, as we show in the following,
there is an inherence price of local resiliency.

Consider the example in Fig. 1, but assign the following
link weights: 1 for em and er, ∞ for e`.

If, similar to TI-LFA, we protect only against one link failure
amongst e`, em, er towards the destination t from vr, vm, v`,
such as TI-LFA, the failover path can always be chosen to
have a short length, respectively small link weights.

However, as soon as we protect against two link failures,
this resiliency comes at a price. As the label-pushing at the
second failure only takes the 1) incident failure and 2) the
destination t5 into account, the node is unaware of the first
failure – and rerouting decisions are only performed when
a failure is hit. Hence, either the failover for em or er must
reroute via the expensive e`, or risk looping indefinitely, similar
to the example in Section II-A. Note that the example from
Fig. 1 can easily be extended to a 3-link-connected graph.

This highlights the price of resiliency against two failures in
local schemes: even if only one failure occurs, an inefficient
failover path has to be taken for some network topologies.

V. EFFICIENT RESILIENT SEGMENT ROUTING

In order to overcome the identified tradeoff, we make
the following observation: while static failover schemes are
inherently oblivious to failures downstream of the path, at least
we could remember the already encountered failures.

Note that TI-LFA implicitly assume knowledge of all failures:
as the rerouting decision is performed at a node incident to the
single failure, all other links are assumed to be available. Hence,
if there is still a path to the destination, packets will reach it.
Nonetheless, as we showed before, if the rerouting node is not
aware of the second failure, TI-LFA loops indefinitely.

As in [18] we thus propose to store already hit failures in
the packet header, for two reasons:

1) The header space usage scales linearly with the number
of hit failures, where a single failure uses similar space
as pushing an intermediate destination on the label stack.

2) Rerouting via intermediate segments is performed locally,
based of pre-computed table entries.

5As vr will be popped from the label stack when reaching vr . If the label
vr would also be taken into consideration, we can use a construction along
the lines of Fig. 2 to ensure that the label stack at vr only consists of t.

We note that all described computations can be performed
ahead of time and stored in a static routing table, whose size
scales with the number of failure combinations.

More specifically, our so-called Topology Indepdendent
Multi-Failure Alternate (TI-MFA) algorithm works as follows,
described from the viewpoint of the node v where the packet
hits another failed link:

1) Flush the label stack except for the destination t.
2) Based on all link failures stored in the packet header,

determine the shortest path P to the destination t in the
remaining network G′.

3) Add segments to the label stack of the packet as follows:
• Index the nodes on P as v = v1, v2, . . . , vx = t.

Compute the node vi on P with the highest index
s.t. the shortest path from v is identical in G′ (with
failures) and G (without failures) and set it as the
top of the label stack. If this node is v, push the link
(v1, v2 = vi) as the top of the label stack. For the
second item on the label stack, start over with vi as
the starting node, etc., until vi = t.

We next show TI-MFA to be correct in theory and efficient
in practice, only using small stack sizes under two link failures.

A. Formal Correctness Analysis

We begin by first going a step back to explain the approach
of Lakshminarayanan et al. [18], which comes in two flavors
called FCP (Failure-Carrying Packets) and source-routing FCP:
• In FCP, a node decides on the next hop by considering

the failures the packet hit so far and the packet destination
t. Delivery in a connected network is guaranteed by the
fact that a packet will not hit a link failure twice: else, an
intermediate node would have ignored that this link failure
was inserted into the packet header. In our context, FCP
thus resembles the hop-by-hop forwarding in Section III,
with the advantage that FCP can aim for short paths and
stronger reachability, but on the other hand, the emulation
idea in Section III did not add failures to the packet header.

• Source-routing FCP behaves analogously, but rather inserts
the whole path to the destination into the packet header,
consistent with the view based on the link failures stored
in the packet header. Should the packet hit a new failure,
it is added to the header, the old path is removed (as in
our case), and a new path is inserted into the header.

The main difference between TI-MFA and the work of
Lakshminarayanan et al. [18] is that in segment routing,
only few intermediate waypoints are provided, whereas FCP
implicitly provides the whole path: either on a hop-by-hop
basis or by inserting the path into the packet header.

We now show the correctness of TI-MFA:

Theorem 1.
Let G be a network where k links fail, s.t. the remaining graph
G′ is connected. TI-MFA routes successfully to the destination.

Proof. Our proof will be via nested induction arguments over
the number of failures hit. Clearly, if no failures are hit, the
destination is reached. Similarly, if only one failure is hit at
a node v, TI-MFA behaves identical to TI-LFA: the packet is
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Fig. 3. Failure rates of TI-LFA on ASNs [31], using the provided weights
or latencies. The numbers on top of the bars represent the total number of
experiments per topology for each algorithm. Only cases where two link failures
are encountered are considered. TI-MFA never failed in our simulations.

routed along a failure-free backup path. Note that due to the
pushed segments, the shortest-path segment routing is identical
in G (without failures) and G′ (with failures) from v.

We now assume the packet already hit x − 1 failures and
hits failure x on its path. We distinguish two cases:
• x = k: Then, due to construction (Item 3), the shortest-

path segment routing is again identical in G′ and G.
• x > k: Assume some link failure x + 1 is hit next (the

first x failures can no longer be hit, due to construction),
else we will reach the destination. Then, we invoke our
inductive construction again: as an invariant, already hit
failures can no longer be hit, i.e., eventually we will either
have hit all failures or reach the destination. However,
once all failures are hit, this implies that the destination
will be reached via the path P .

Note that the correctness of the above arguments relies on
the assumption that the network G′ is connected.

We would like to note that for two link failures, we can show
that the segment stack does not need to be flushed s.t. only
the destination remains6: let P1 be the path the packet takes
as a backup, after hitting the link failure e1, if no second link
failure is hit. To hit a second failure e2, the link e2 must be on
P1. If the label stack is then empty except for t, the destination
will be reached by the above proof arguments. Else, the next
label stack item vi is on P1, behind e2. As the rerouting is
aware of both link failures e1, e2, vi will be reached as the
network remains connected. The remaining part of P1 beyond
vi cannot contain the failed links e1 or e2.

Corollary 1. If the number of link failures is at most k = 2
and the remaining network is connected, TI-MFA is correct
even if the label stack is not flushed on a link failure hit.

B. Simulations

We now evaluate both TI-MFA and TI-LFA in a practical
setting. Our simulations are run on Rocketfuel [31] topologies,
using both variants of provided link weights and latencies.

6We assume that if a link is on top of the label stack and this link fails,
that popping this unavailable link does not count as flushing.
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Fig. 4. Frequency of maximum stack sizes of 1, 2, 3 (+t) in the individual
experiments. The (small) frequencies beyond 3 + 1 are reported in the text.

Specifically, we enumerate all failure cases where TI-LFA
and TI-MFA will hit two failed links. As packets following TI-
LFA and TI-MFA have an identical path until the second link
failure is hit, the instances generated by two link failures and
a destination are the same for both algorithms.7 Furthermore,
we discard all disconnected instances.

Our program, written in C++, simulates the behavior of
TI-LFA and TI-MFA hop-by-hop, recording 1) if the packet
successfully reaches the destination, 2) the maximum label
stack size used, and 3) the length of the path taken. An
experiment is considered as failed, respectively unsuccessful,
if the packet loops indefinitely, for which we record the past
packet states (current node, hit failed links, top of the label
stack) and check for repetitions in the packet state. We also
run TI-LFA/MFA with and without label flushing in case a
failure is hit, i.e., four different algorithms in total.
Success rate/reachability analysis. Both variants of TI-MFA
reach the destination in all instances (as expected), whereas
TI-LFA (no flush) loops indefinitely for roughly one fifth of
the experiments, see Fig. 3. In total, over 5 million experiments
were performed for all four algorithms.

Of particular interest is comparing the success rate for
TI-LFA with (non-standard behavior) and without (standard)
flushing. Interestingly, adding label stack flushing to TI-LFA
actually increases the failure rate for our simulations in all cases,
up to 32% (1221 weights) or a factor of two (6461 latencies).
Hence, based on our simulations, we would advocate against
adding such a feature to TI-LFA.
Maximum stack size analysis. From the algorithm description
of TI-MFA, the size of the label stack is not bounded and could
grow with the path length. We plot the distribution for both
variants of TI-MFA and TI-LFA in Fig. 4, up to a stack size
of 3, not including the destination t (+1). We observe that 3
extra items on the stack suffice for nearly all cases. We list the
remaining stack sizes explicitly: TI-LFA with flushing naturally
never goes beyond a stack size of 2+1, whereas the successful
TI-LFA instances without flushing have at most a stack size of
5+1 (0.025%), respectively 4+1: 0.27% and 3+1: 4%. On the
other hand, TI-MFA with flushing never goes beyond a size of
4+1 (4+1: 0.03%, 3+1: 0.37%), and TI-MFA without flushing

7For this reason, we do not simulate the behavior of TI-LFA/MFA if less
than two failures are hit.
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needs at most a stack size of 6+1 (6+1: 0.0003%, 5+1: 0.02%,
4+1: 0.26%, 3+1: 3.2%).

We thus believe that TI-MFA is efficient in its stack size
usage and conjecture that a stack size of 2k + 1 suffices for k
link failures, when using flushing.
Path length analysis. A natural question is if the 100% success
rate of TI-MFA (in connected topologies) comes at the cost of
increased path lengths, which we plot in Fig. 5 for all successful
instances, for both latency and weight cost functions. As can be
seen, our TI-MFA with flushing performs best in all topologies,
whereas the (close) ranking of the other three algorithm variants
depends on the specific topology.

VI. CONCLUSION

This paper studied algorithms for and limitations of resilient
routing in SR networks subject to multiple link failures and
without invoking the control plane. We believe that our work
opens several interesting directions for future research. In
particular, it remains to study the optimality of our algorithms,
in terms of worst-case resilience but also overhead in terms
of required number of segments. Another interesting direction
is to study the resilience and other properties of a given
configuration. In this respect, it is interesting to note that
a recent result on MPLS networks [32] can also be applied
to SR networks to conduct polynomial-time what-if analyses:
it is possible to efficiently test whether a certain network
configuraiton provides reachability and is policy-compliant
even under multiple failures. However, the precise complexity
of such tests remains a subject for future research.
Acknowledgments. We would like to thank David Lebrun for
helpful discussions regarding segment routing.

REFERENCES

[1] D. Lebrun, “Reaping the benefits of ipv6 segment routing,” in PhD
Thesis (preliminary), 2017.

[2] C. Filsfils, P. Francois, S. Previdi, B. Decraene, S. Litkowski, M. Hornef-
fer, I. Milojevic, R. Shakir, S. Ytti, W. Henderickx, J. Tantsura, S. Kini,
and E. Crabbe, “Segment routing architecture,” in Segment Routing Use
Cases, IETF Internet-Draft, 2014.

[3] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir, “Segment
routing architecture,” in IETF Internet-Draft, 2017.

[4] J. Moy, “OSPF Version 2.” RFC 2328 (Standards Track), Apr. 1998.
[5] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data

centers: measurement, analysis, and implications,” in ACM SIGCOMM
Computer Communication Review, vol. 41, pp. 350–361, 2011.

[6] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an ip backbone,” in Proc. IEEE
INFOCOM, 2004.

[7] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A case
study of ospf behavior in a large enterprise network,” in Proc. ACM
SIGCOMM Workshop on Internet Measurment, 2002.

[8] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and
Y. R. Yang, “R3: resilient routing reconfiguration,” in ACM SIGCOMM
Computer Communication Review, vol. 40, pp. 291–302, 2010.

[9] P. Francois, C. Filsfils, A. Bashandy, and B. Decraene, “Topology
Independent Fast Reroute using Segment Routing,” Internet-Draft draft-
francois-segment-routing-ti-lfa-00, Internet Engineering Task Force, Nov.
2013. https://tools.ietf.org/html/draft-francois-segment-routing-ti-lfa-00.

[10] M. Chiesa, A. Gurtov, A. Mdry, S. Mitrovi, I. Nikolaevkiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static failover
routing (v4),” arXiv:1409.0034 [cs.NI], 2016.

[11] M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in Proc. ICALP, 2016.

[12] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in Proc. IEEE INFOCOM, 2016.

[13] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting
for multi-link failures,” IEEE/ACM Trans. Netw, vol. 24, no. 5, pp. 3014–
3025, 2016.

[14] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in Proc. 12th ACM HotNets, 2013.

[15] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast
failover via forwarding table compression,” SOSR. ACM, 2016.

[16] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
sdn local fast failover: A load-connectivity tradeoff,” in OPODIS, 2013.

[17] Y.-A. Pignolet, S. Schmid, and G. Tredan, “Load-optimal local fast
rerouting for dependable networks,” in Proc. IEEE/IFIP DSN, 2017.

[18] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets,” in Proc. ACM SIGCOMM, pp. 241–252, 2007.

[19] F. Hao, M. Kodialam, and T. Lakshman, “Optimizing restoration with
segment routing,” in Proc. INFOCOM, 2016.

[20] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Fran-
cois, “The segment routing architecture,” in Global Communications
Conference (GLOBECOM), 2015 IEEE, pp. 1–6, IEEE, 2015.

[21] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using segment routing,” in IEEE INFOCOM, 2015.

[22] G. Trimponias, Y. Xiao, H. Xu, X. Wu, and Y. Geng, “On traffic
engineering with segment routing in sdn based wans,” arXiv preprint
arXiv:1703.05907, 2017.

[23] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic
engineering with segment routing: Sdn-based architectural design and
open source implementation,” in Proc. 4th European Workshop on
Software Defined Networks (EWSDN), pp. 111–112, 2015.

[24] M.-C. Lee and J.-P. Sheu, “An efficient routing algorithm based on
segment routing in software-defined networking,” Comput. Netw., vol. 103,
pp. 44–55, July 2016.

[25] F. Aubry, D. Lebrun, S. Vissicchio, M. T. Khong, Y. Deville, and
O. Bonaventure, “Scmon: Leveraging segment routing to improve network
monitoring,” in Proc. IEEE INFOCOM, 2016.

[26] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and G. Bruno,
“Path encoding in segment routing,” in Proc. IEEE GLOBECOM, 2015.

[27] S. Salsano, L. Veltri, L. Davoli, P. L. Ventre, and G. Siracusano,
“Pmsrpoor man’s segment routing, a minimalistic approach to segment
routing and a traffic engineering use case,” in Proc. IEEE/IFIP Network
Operations and Management Symposium (NOMS), pp. 598–604, 2016.

[28] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach to
control forwarding paths in carrier-grade networks,” in ACM SIGCOMM
Communication Review, vol. 45, pp. 15–28, 2015.

[29] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw, vol. 25, no. 2, pp. 1133–1146, 2017.

[30] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Local fast
failover routing with low stretch,” in Proc. ACM SIGCOMM Computer
Communication Review (CCR), 2018.

[31] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, 2004.

[32] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-
manipulating mpls networks,” in Proc. IEEE INFOCOM, 2018.


