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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.
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Traffic does not only grow but also has much structure:

traffic matrices sparse and skewed
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One Solution?

Today: Demand-Oblivious Topology

.............
oooooooooooo
ooooooooooooo

Many flavors,
but in common:
fixed and

oblivious to
actual demand.




One Solution?

Today: Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to

Highway which ignores actual demand.

actual traffic:

frustrating! :
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One Solution?

Today: Demand-Oblivious Topology
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Emerging Alternatives

E.g., Demand-Aware Reconfigurable Datacenter
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e.g.,
mirrors

new flexible
interconnect

Ghobadi et al., SIGCOMM 2016 9



Emerging Alternatives

E.g., Demand-Aware Reconfigurable Datacenter
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Emerging Alternatives

E.g., Demand-Aware Reconfigurable Datacenter
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Emerging Alternatives

E.g., Demand-Aware Reconfigurable Datacenter
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Emerging Alternatives

E.g., Demand-Aware Reconfigurable Datacenter
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Crazy? No!

-» Spectrum of prototypes

— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

v
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Prototype 1

Prototype 2

Prototype 3
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~» ProjecToR is demand-aware through reconfigurations
-» However, reconfigurations take time




Diverse topology components:
— demand-oblivious and
demand-aware

Demand- Demand-
oblivious aware
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Spectrum of Topologies

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic
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Spectrum of Topologies

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
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Spectrum of Topologies

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic
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Spectrum of Topologies

Demand-
Aware

Dynamic
Diverse topology components:
— demand-oblivious and — ~N
demand-aware
— static vs dynamic Rotor
& N\
Demand-
oblivious
4 )
Static
& )

Static

Demand-
aware

20



Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « ) 4 )
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
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Static
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Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

As always in CS:
It depends..
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Structure

Technology

Cerberus

Throughput

23



Unified Network Model

Two-Layers ToR Interconnect

Optical Switches

Optical
Spine
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Typical rack internconnect: ToR-Matching-ToR (TMT) model
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Unified Network Model

Two-Layers ToR Interconnect
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Typical rack internconnect: ToR-Matching-ToR (TMT) model
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Details on Switch Types

Periodic Switch (Rotor)

Rotor

Rotor switch: periodic matchings (demand-oblivious)

M1 M2 M3

Si:
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Demand-
Aware

Demand-aware switch: optimized matchings

M1 M1 M2 M2

v

time
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Static

Static switches: combine for optimized static topology

S1:

e.g, tree, Xpander, Clos
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Unified Model: From Switches to

Topologies

—

Optical Switches

Optical
Spine
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Typical rack internconnect: ToR-Matching-ToR (TMT) model
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— All spine switches are rotor switches
— Can use 1 or 2 hop routings (VLB)
— Emulating a complete graph using (TDMA)

Rotor Switches

S1 S2 Sk
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Mellette et al., SIGCOMM 2017
Ballani et al., SIGCOMM 2020
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Unified Model

Demand-Aware Net

Demand -
Aware

— All spine switches are demand-aware switches
— Can use only 1 hop routings (multi-hop, in on-going work)
— Temporal / dynamic network

Demand-aware Switches
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e.g., Ghobadi et al., SIGCOMM 2016
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Unified Model

Expander-Net

Static

— All spine switches are static switches
— Uses multi-hop routing
— Use known static topologies: e.g., Xpander®, Clos, electrical

Static Switches
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*Valadarsky et al., CONEXT 2016

33



Design Tradeoffs (1)

The ‘“Awareness-Dimension”

4 ) @ )
Demand -
Rotor
Aware
\— ) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— Oblivious: very fast — Optimizable toward traffic
periodic direct connectivity — But slower

— Simpler control plane?
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) 4

Demand-
Rotor
Aware
J \—
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— Oblivious: very fast — Optimizable toward traffic
periodic direct connectivity — But slower

— Simpler control plane?

Compared to static networks: latency tax!
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Design Tradeoffs (2)

The “Flexibility-Dimension”

Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynamic
éa )
Rotor /
Demand-
Aware
\ _/
e )
Static
(expander)
\ _/

Static
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Good for high throughput!
— Direct connectivity saves
bandwidth along links

Good for low latency!

— No need to wait for
reconfigurable links

— Compared to dynamic:
bandwidth tax (multi-hop)
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Summary: Tax Map
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Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

el
Ll
P

Shuffling
All-to-All

Py

(e
ML

Large flows

Delay
sensitive

,HII,

°° ‘

Telemetr

/ control
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-> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

~> Observation 3: A mismatch of demand and topology
can decrease throughput and increase flow completion times.
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Main Observations

-> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

~> Observation 3: A mismatch of demand and topology
can decrease throughput and increase flow completion times.

So: Can we match traffic to topology?
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Dynamic
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Dynamic

Shuffling
All-to-All Large flows

Demand-
oblivious

Demand-
7 3 W r\
A aware

66 —

Delay Telemetﬁy'

sensitive / control

Static

Our system Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022
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~» Observation 1: Most flows are small, most bytes in big flows.
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Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s
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~» Observation 1: Most flows are small, most bytes in big flows.
-> Observation 2: The transmission time of a flow depends on its size.
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Flow Size Matters

Flow transmission time (40Gbps)
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-»> Observation 1: Most flows are small, most bytes in big flows.

-> Observation 2: The transmission time of a flow depends on its size.

-> Observation 3: For small flows, flow completion time suffers if
network needs to be reconfigured first.
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Flow Size Matters

Flow transmission time (40Gbps)
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Observation 1: Most flows are small, most bytes in big flows.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if
network needs to be reconfigured first.

Observation 4: For large flows, reconfiguration time may amortize.
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Flow Size Matters

Flow transmission time (40Gbps)
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Observation 1: Most flows are small, most bytes in big flows.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if
network needs to be reconfigured first.

Observation 4: For large flows, reconfiguration time may amortize.
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Cerberus

Optical Switches
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Cerberus*

—
K. K. Kq
static rotor demand-aware
switches switches switches
/

* 3-headed dog from Greek mythology 53



Cerberus

Kq
demand-aware
switches

_—
K. K.
static rotor
switches switches
~_

_

Scheduling: Small flows go via static

switches...
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Cerberus

S KI"
static roto
switches switcheas

N

demand-aware
switches

_

Scheduling: ..

medium flows via rotor

switches...
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Cerberus

/ \ﬁ
K. K. Kq
static rotor demand-awaré&
\

switches switches Jk switches J J

| \

Scheduling: .. and large flows via demand-aware switches

(if one available, otherwise via rotor). 56



flow sizes

Flow transmission time (40Gbps)
100ns luys 10us 100us 1ms 10ms 100ms 1s

1 A
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~ Datamining- 2011
0.51| =0 Hadoop- 2015
-0 Pareto distribution

10° 10 10° 10° 107 108 10° 10
Flow size (bytes)

\4

n ToRs

k spine switches
reconfig times
R, R4 6

v

Cerberus

A

Optimal Partition
(static, rotor,
demand-aware)

v

flow size thresholds
(small, medium, large)

\ 4

VS

Throughput analysis

Rotor-Net and Expander-Net
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Demand Matrix

123 45686 78

u
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Metric: throughput

of a demand matrix..

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Demand Matrix

123 45686 78

u

o2 X 6(T)
w
u

0 N OV AW N R

. 1s the maximal scale
down factor by which
traffic is feasible
0<6(T) <1.

Metric: throughput
of a demand matrix..

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput Analysis

Demand Matrix

12 3 456 7 8 K K Kq
s r
static ||  rotor || demand -aware
switches switches switches

. x0T = _.
-'.!

0 N OV AW N R

[G]
%]

. .. 1s the maximal scale .
Metric: throughput down factor by which Throughput of network 6*:

of a demand matrix.. traffic is feasible worst case T

0<6(T) <1.

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021 60



Throughput: Rotor-Net
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Throughput: Expander-Net

55555555

Expected path length

Namyar et al., SIGCOMM 2021



Throughput: Demand-Aware

Demand Matrix

123456 7 8

. ¥ ¥ ¥ ¥ ¥ ¥ 9§ ¥

.. @3 |5@8| 53| @3 |5@3| [E@3| @8 |5@3

u

Permutation matrix

T

0 N OV AW N R

Permutation matrix is the best demand matrix for demand-aware net!
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Throughput: Cerberus

Demand Matrix

Ks Kr Kd
12 3 456 7 8 static rotor demand-aware
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Throughput: Summary

Demand Matrix

123458678

“m

w

u

0 N OV AW N R

For the given
input
parameters:
n, k, Ry R,

ﬂ%‘

By
&
late"Cy ¢
ax/

expander-net | rotor-net | CERBERUS
BW-Tax v v X
LT-Tax X v v
0(T) Thm 2 Thm 3 Thm 5
0" 0.53 0.45 Open
Datamining 0.53 0.6 0.8 (+33%)
Permutation 0.53 0.45 ~ 1(+88%)
Case Study 0.53 0.66 0.9 (+36%)

65



-»> Diverse traffic requires
diverse technologies/topologies

-» Cerberus aims to assign
traffic to its best topology

— Depending on flow size
-» Skipped: simulations and prototype

~» Many challenges
— Impact on routing and congestion control
— Sensitivity analysis

— Simulation & prototyping

Improvement over rotor—net

0= Cerberus x=04 - Cerberus x=05 =0~ Cerberus x=0.6

0+ Naive Cerberus x=0.5 == Optimal switch division x=0.5

:  Under-
1 provisioned

z0 rotor

66



SELF-ADJUSTING NETWORKS

RESEARCH ON SELF-ADJUSTING DEMAND-AWARE NETWORKS Project Overview i Blicng ot Us

AdjustNet

ground with demand self-adjusting networks -

self-adjusting
Networks

Download Slides

http://self-adjusting.net/
Project website

TRACE COLLECTION
WAN AND OC NETWORK TRA

Publication ~ Team  Download Traces

O b0 TP LAY IS AT

The following table lists the traces used in the publication: On the Complexity of Traffic Traces and Implications

To reference this website, please use: bibtex

exact_Boxt & MIUGHd_C. Large_ 1024 csv High Performance Tces 17047800 1513MB  Download
Computing Traces

exact, B, CNS. NoSpec. Large. 1024 csv High Performance Tieces 1108063 93MB  Download
Computing Traces

cesar_Nekbone. 1024 cov High Performance Toces 21745229 1840MB  Download
Computing Traces

Contact Us

https://trace-collection.net/
Trace collection website

Thank you!




Cerberus: The Power of Choices in Datacenter Topology
Design®
A Throughput Perspective

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

JOHANNES ZERWAS, Technical University of Munich, Germany

ANDREAS BLENK, Technical University of Munich, Germany

MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel

The bandwidth and latency requirements of modern datacenter applications have led researchers to propose
various topology designs using static, dynamic demand-oblivious (rotor), and/or dynamic demand-aware
switches. However, given the diverse nature of datacenter traffic, there is little consensus about how these
designs would fare against each other. In this work, we analyze the throughput of existing topology designs
under different traffic patterns and study their unique advantages and potential costs in terms of bandwidth and
latency “tax”. To overcome the identified inefficiencies, we propose CERBERUS, a unified, two-layer leaf-spine
optical datacenter design with three topology types. CERBERUS systematically matches different traffic patterns
e los H'H £ s a d a

aele slool ' itolblo & 1
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On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel
MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace

complexity can provide unique insights into the characteristics of various applications. Based on our approach,
1 s s dal ollo s d sl otio s iloot tal il | DT | 1
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Static DAN

Overview: Models

Static Optimality

Demand-Aware Network Designs of Bounded Degree

Chen Avin  Kaushik Mondal  Stefan Schmid

Abstract Traditionally, networks such as datacenter 1 Introduction
interconneets are designed to optimize worst-case per-

Toward Demand-Aware Networking:
A Theory for Self-Adjusting Networks

Chen Avin Stefan Schmid o L
Ben Gurion University, Isracl University of Vienna, Austria Chen Avin'  Stefan Schmid
avin@csebguacil stefan_schmid@univie.acat ! Ben Gurion University, Isracl 2 University of Vienna, Austria

“This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT

ReNets: Toward Statically Optimal
Self-Adjusting Networks

Abstract

This paper studies the design of self-adjusting networks whose topol-
ogy dynamically adapts to the workload, in an online and demand-aware

formance under arbitrary traffic patterns, Such network — The problem studied in this paper is motivatod by the
designs can however be far from optimal when consider-  advent of more flexible datacenter interconnects, such
ing the actual worklaads and traffic patterns which they  as ProjecToR [20,31). These interconnects aim to over- ongoing cffort to render communication networks more flex-
serve. This insight led to the development of demand-  come a fundamental drawback of traditional datacenter ible. Wluk first empirical results mdkale that these flexibili-
aware datacenter interconnects which can be reconfig-  notwork designs: the fact that network designers must imize the network
ured depending on the workload. decide m advance on how much capacity to provision Sowaid the workload it serves knd & g, providiag the same
Motivated by these trends, this paper initiates the  betwoen electrical packet switches, e.g., between Top- bandwidth at lower infrastructure cost, only little is known
algorithmic study of demand-aware networks (DANs), OFRock (ToR) switches in datacenters. This leads to today about the fundamental algorithmic problems underly-
and in particular the design of bounded-degree net- ing the design of reconfigurable networks. This paper s
works. The inputs to the network design problem area  Provisioned and therefore the interconnect expensive ates the study of the theory of demand-aware, self-adjusting
discrete communication request distribution, D, defined  (¢:8. a fat-tree provides full-bisection bandwidth), or networks. Our main position is that self-adjusting networks dts'sn of efficient datacenter networks has received much
over communicating pairs from the node set V, and a  0ne may risk congestion, resulting in a poor cloud appli- should be seen through the lense of self-adjusting datas- ti the last years. The topol nod-
bound, 4, on the maximum degree. In turn, our ob-  cation ccordingly. systems such as Pro- tructures. Accordingly, we present a taxonomy classifying ern datacenter networks range from trees (7, 8] over hyper-
jective is to design an (undirected) demand-sware net-  jecToR provide a roconfigurable interconnect, allowing the different -lsor-ﬂum el of demand-oblivious, fixed cubes [9, 10] to expander networks [11] and provide high
work N = (V. E) of bounded-degree A, which provides ~ to establish links flexibly and in a demand-aware man- 4 d Siviteie ivity at low cost [1].
st rotin s betwen ey commnicning 77 For campe, dire ke o o ot sort o introduce a e " il s, it sk 13 N S A
e o . e . e B s e fon et Ve b cxompis henhere _0polog s fxed an oblivios o the sctualdemand
{with_resnact 40 D) _which_is a_hasic measure of the  plemented using a bounded number of lasers, mirrors,

‘manner. This problem is motivated by emerging optical technologies
which allow to reconfigure the datacenter topology at runtime. Our
main contribution is ReNet, a self-adjusting network which maintains a
balance between the benefits and costs of reconfigurations. In partic-
ular, we show that ReNets are statically optimal for arbitrary sparse
communication demands, i.c.. perform at least as good as any fixed
demand-aware network designed with a perfect knowledge of the future
demand. Furthermore, ReNets provide compact and local routing, by
leveraging ideas from self-adjusting datastructures.

‘The physical topology is emerging as the next frontier in an

Figure 1: Taxonomy of topology optimization

1 Introduction

Modern datacenter networks rely on efficient network topologies (based on
fat-trees [1], hypercubes [2, 3], or expander [4] graphs) to provide a high
connectivity at low cost [5]. These datacenter networks have in common that
their topology is fired and oblivious to the actual demand (i.e., workload
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Abstract

‘We currently witness the emergence of interesting new network topologies optimized towards the
traffic matrices they serve, such as demand-aware datacenter interconnects {e.g.. ProjecToR) and
demand-aware peer-to-peer overlay networks (e.g., SplayNets). This paper introduces a formal
framework and approach to reason about and design robust demand-aware networks (DAN). In
particular, we establish a connection between the communication frequency of two nodes and
the path length between them in the network, and show that this relationship depends on the
entropy of the communication matrix. Our main contribution is a novel robust. yet sparse, family
of networks, short 7DANs, which guarantee an expected path length that is proportional to the

entropy of the communication patterns.

Dynamic DAN
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to minimize the routing cost between arbitrary communication

We introduce u simple model which captures the
We present the SplayNet algorithm and formally analyze its
and prove its in specific We

edge expaation, o study he imitatlons of say dermd-optimised
network. Finally, we our study to multi-tree networks,
unﬂﬁlumrﬁnmmd—kwm
splay trees.

L. INTRODUCTION
In the 1980s, Sleator and Tarjan [22] proposed an appealing
new paradigm to design efficient Binary Search Tree (BST)
datastructures: rather than optimizing traditional metrics such

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin®, Christian Scheideler, Michacl Borokhovich, Bernhard Hacupler, Zvi Lotker

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks

We, in this paper, initiate the study of a distributed gencral-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node. the tree root, distributed datastructures and networks
such as skip graphs (2], [13] have (o support routing requests
between arbitrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable, Figure 1 illustrates the difference
between classic and distributed binary scarch trees.

In this paper, we ask: Can we reap similar benefits from self-
adjusting entire networks, by adaptively reducing the distance
between frequently communicating nodes?

As a first step, we explore fully decentralized and self-
adjusting Binary Search Tree networks: in these networks,
nodes are amanged in a binary tree which respects node
identifiers. A BST topology is attractive as it supports greedy
routing: a node can decide locally 10 which port to forward a
request given its destination address.

or communication pattern) they currently serve. Rather, they are designed
for all-to-all communication patterns, by ensuring properties such as full
bisection bandwidth or O(logn) route lengths between any node pair in a
constant-degree n-node network. However, demand-oblivious networks can
be inefficient for more specific demand patterns, as they usually arise in
tica: Bennirical studioe chon: that traffie nattarne § g

Concurrent DANs
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metwark topologics: networks that dynamically adapt themselves ures. and in purticular, CBTrees [12). CBNet gradually adapt]
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