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Trend
Data-Centric Applications

Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  

a critical infrastructure

of our digital society.
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Traffic does not only grow but also has much structure:
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Time (seconds)

traffic matrices sparse and skewed

Communication Traffic:

Big But Structured
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Recent Representation of Trace Structure:

Complexity Map
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Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.

One Solution?
Today: Demand-Oblivious Topology
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Highway which ignores 

actual traffic: 

frustrating!

One Solution?
Today: Demand-Oblivious Topology

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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One Solution?
Today: Demand-Oblivious Topology

Bandwidth 

tax!
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1 2 3 4 5 6 7 8

e.g., 

mirrors

new flexible

interconnect

Emerging Alternatives 
E.g., Demand-Aware Reconfigurable Datacenter

Ghobadi et al., SIGCOMM 2016 9
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Matches demand
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Crazy? No!

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3
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But: Introduces Tradeoff

⇢ ProjecToR is demand-aware through reconfigurations

⇢ However, reconfigurations take time

Latency

tax!
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Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Spectrum of Topologies
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., Clos
(SIGCOMM‘08),
BCube
(SIGCOMM‘09), 
Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Spectrum of Topologies
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Static
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Demand-
aware
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(SIGCOMM‘16),
FireFly
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SplayNet (ToN‘16)
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⇀ static vs dynamic

Spectrum of Topologies
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Static

Demand-
oblivious

Demand-
aware
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Static

Diverse topology components:

⇀ demand-oblivious and 
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Spectrum of Topologies
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Spectrum of Topologies
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Spectrum of Topologies
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Technology

Structure

Throughput

New!

More!

Cerberus

Agenda
Exploit Trends for Throughput
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1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

Optical Switches
Optical
Spine

Leaf

Unified Network Model
Two-Layers ToR Interconnect
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1 2 3 4 5 6 7 8

. . .

S1 S2 Sk

Typical rack internconnect: ToR-Matching-ToR (TMT) model

Optical
Spine

Leaf

Unified Network Model
Two-Layers ToR Interconnect
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Rotor switch: periodic matchings (demand-oblivious)

time

M1 M2 M3 M1 M2 M3

Si:

M1

M2

Details on Switch Types

Periodic Switch (Rotor)
Rotor

cycle cycle
slot
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Demand-aware switch: optimized matchings

M1 M3 M2M2M1

time

Si:

Details on Switch Types

Demand-Aware Switch
Demand-
Aware
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Static switches: combine for optimized static topology

S1:

M1 M2

S2:

M3

S3:

e.g, tree, Xpander, Clos

Details on Switch Types

Static Switch (Patch Panel)

Static
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1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

Optical Switches
Optical
Spine

Leaf

Unified Model: From Switches to

Topologies

30



⇀ All spine switches are rotor switches

⇀ Can use 1 or 2 hop routings (VLB)

⇀ Emulating a complete graph using (TDMA)

Unified Model

Rotor-Net 
Rotor

Mellette et al., SIGCOMM 2017
Ballani et al., SIGCOMM 2020

Rotor Switches
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Unified Model

Demand-Aware Net

⇀ All spine switches are demand-aware switches

⇀ Can use only 1 hop routings (multi-hop, in on-going work)

⇀ Temporal / dynamic network

Demand-
Aware

e.g., Ghobadi et al., SIGCOMM 2016

Demand-aware Switches
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Unified Model

Expander-Net

⇀ All spine switches are static switches

⇀ Uses multi-hop routing 

⇀ Use known static topologies: e.g., Xpander*, Clos, electrical

Static

*Valadarsky et al., CoNEXT 2016

Static Switches
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Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor

Good for all-to-all traffic!

⇀ Oblivious: very fast

periodic direct connectivity

⇀ Simpler control plane?

Demand-
Aware

Good for elephant flows!

⇀ Optimizable toward traffic

⇀ But slower
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Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ Oblivious: very fast

periodic direct connectivity

⇀ Simpler control plane?

Good for elephant flows!

⇀ Optimizable toward traffic

⇀ But slower

Compared to static networks: latency tax!

low 

latency

tax

high

latency

tax
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Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Good for high throughput!

⇀ direct connectivity saves    

bandwidth along links

Static
(expander)

Good for low latency!

⇀ no need to wait for 

reconfigurable links

⇀ compared to dynamic: 

bandwidth tax (multi-hop)
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Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ Direct connectivity saves    

bandwidth along links

Good for low latency!

⇀ No need to wait for 

reconfigurable links

⇀ Compared to dynamic: 

bandwidth tax (multi-hop)

bandwidth 

tax

latency 

tax
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Latency Tax

B
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T
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low

Rotor

Demand-
Aware

Static

high

low

high

Summary: Tax Map
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Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Shuffling 

All-to-All

ML

Large flows

Telemetry 
/ control

Delay 
sensitive

The Spectrum of Traffic
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Main Observations

⇢ Observation 1: Different topologies provide

different tradeoffs. 

⇢ Observation 2: Different traffic requires different 

topology types. 

⇢ Observation 3: A mismatch of demand and topology 

can decrease throughput and increase flow completion times.

So: Can we match traffic to topology?

40



Main Observations

⇢ Observation 1: Different topologies provide

different tradeoffs. 

⇢ Observation 2: Different traffic requires different 

topology types. 

⇢ Observation 3: A mismatch of demand and topology 

can decrease throughput and increase flow completion times.

So: Can we match traffic to topology?

41



Static

Demand-
oblivious

Demand-
aware

Dynamic
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Static

Demand-
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Demand-
aware

Dynamic
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Rotor
Demand
-Aware

Static

Static

Demand-
oblivious

Demand-
aware

Dynamic
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Cerberus:



Cerberus: It’s A Match!

Static

Demand-
oblivious

Demand-
aware

Dynamic

Our system Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022 46
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⇢ Observation 1: Most flows are small, most bytes in big flows.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution
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Flow transmission time (40Gbps)
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Cerberus

1 2 3 4 5 6 7 8

Optical Switches
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Cerberus*

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

53* 3-headed dog from Greek mythology



Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: Small flows go via static switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … medium flows via rotor switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor).
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flow sizes

Cerberus
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Cerberus Framework  

Websearch- 2010

Datamining- 2011

Hadoop- 2015
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n ToRs

k spine switches

reconfig times

𝑹𝒓, 𝑹𝒅, 𝜹

Optimal Partition

(static, rotor, 

demand-aware)

flow size thresholds 

(small, medium, large)

Throughput analysis

vs Rotor-Net and Expander-Net



Throughput Analysis

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021 58



Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

Metric: throughput 

of a demand matrix…

59

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.



Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

⇒

Throughput of network 𝜽∗:
worst case 𝑇

60

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021



Throughput: Rotor-Net

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

rotor-net

Permutation matrix

61

Skew parameter
Bandwidth tax Latency tax



Throughput: Expander-Net

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

static-net

Namyar et al., SIGCOMM 2021 62

Permutation matrix

Bandwidth tax
Expected path length



Throughput: Demand-Aware

𝑇

Demand Matrix

63

Permutation matrix

Permutation matrix is the best demand matrix for demand-aware net!



Throughput: Cerberus

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches
= =
𝜃 𝜃

64Bandwidth tax Latency tax



Throughput: Summary

𝑇

Demand Matrix

For the given 

input 

parameters:

n, k, Rd, Rr
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⇢ Diverse traffic requires 

diverse technologies/topologies

⇢ Cerberus aims to assign

traffic to its best topology
⇀ Depending on flow size

⇢ Skipped: simulations and prototype

⇢ Many challenges

⇀ Impact on routing and congestion control

⇀ Sensitivity analysis

⇀ Simulation & prototyping

Conclusion
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http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

Thank you!
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Further Reading
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Static DAN Static OptimalityOverview: Models

Dynamic DAN
Robust DAN

Concurrent DANs

Further Reading
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