
Stefan Schmid

TU Berlin & Telekom Innovation Labs (T-Labs)

Algorithmic Challenges in Network

Function Virtualized Networks

Joint work mainly with
Tamás Lukovszki, Matthias Rost, Carlo Fürst

SDN outsources and
consolidates control
over multiple devices to
(logically) centralized
software controller

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

4

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller Platform

Flexible Networked Systems: Programmable...

App 1: Mobile Service App 2: Big Data Analytics

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

… and Virtualized!

App 1: Mobile Service App 2: Big Data Analytics

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

… and Virtualized!

A multi-dimensional packing problem!
Offline: multi-dimensional knapsack.

Online: multi-dimensional parking permit problem.

It’s a Great Time to Be a Scientist
”We are at an interesting inflection point!”

Keynote by George Varghese
at SIGCOMM 2014

Confluence: innovation!

Programmability and
virtualization

Algorithms

How to Exploit Flexibilities?
Example 1: Virtual Network Embedding

❏ Flexible embedding of virtual machines…

❏ … and their interconnecting network.

8

❏ How to max utilization? A network embeddig problem!

Flavors of VNet Embedding Problems (VNEP)

Minimize embedding footprint of a
single VNet :

Maximize profit over time:

Minimize max load of multiple
VNets or collocate to save energy:

Time

spread or
collocate?

Endpoints fixed:

A ticket at a cloud hosting company…

10

«A tenant requested an upgrade,
needs 30 more VMs.

Why did the request fail?
There are hundreds of idle cores!»

Let’s Exploit Allocation Flexibilities to Maximize Utilization

11

Let’s Exploit Allocation Flexibilities to Maximize Utilization

12

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

Let’s Exploit Allocation Flexibilities to Maximize Utilization

13

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

Let’s Exploit Allocation Flexibilities to Maximize Utilization

14

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Let’s Exploit Allocation Flexibilities to Maximize Utilization

15

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit VM
placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

?

Let’s Exploit Allocation Flexibilities to Maximize Utilization

16

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit VM
placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

❏ NP-hard 

?

Thank you for your attention!

Thank you for your attention!

Wait a minute!
These problems need to be solved!

And they often can, even with guarantees.

Theory vs Practice

Goal in theory:

Embed as general as possible guest graph
to as general as possible host graph

Reality:

Datacenters, WANs, etc. exhibit
much structure that can be
exploited! But also guest
networks come with simple
specifications

19

Virtual Clusters

n1 n2

b2
b1

❏ A prominent abstraction for batch-processing
applications: Virtual Cluster VC(n,b)
❏ Connects n virtual machines to a «logical» switch with

bandwidth guarantees b

❏ A simple abstraction

20

Virtual Clusters

n1 n2

b2
b1

❏ A prominent abstraction for batch-processing
applications: Virtual Cluster VC(n,b)
❏ Connects n virtual machines to a «logical» switch with

bandwidth guarantees b

❏ A simple abstraction

21

How do datacenter topologies look like?

Fat-Tree Networks in Reality

A Typical Datacenter Topology

23

But due to ECMP, often ok to think of it like this.

How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

24

How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

OPT

OPT?

25

How to embed a Virtual Cluster in a Fat-Tree?

t = 0: solve leaves!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

How to optimally embed x
VMs here, x ∈ {0, ..., n}?

Cost = 0 or ∞!
26

How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y]

+ cross-traffic + connections to v

v

27

How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y]

+ cross-traffic + connections to v

v

Or just account on upward link
(number of leaving links!)

How to embed a Virtual Cluster in a Fat-Tree?

t = 2: solve height 2!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

29

How to embed a Virtual Cluster in a General Graph?

How to embed?

Guest Graph

Host Graph

30

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

(or simply: min-cost flow of volume n)

31

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

(or simply: min-cost flow of volume n)

32

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

(or simply: min-cost flow of volume n)

enough to embed n
VMs

capacity =
floor(available
resources / unit
demand)

33

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

(or simply: min-cost flow of volume n)

Guaranteed integer
if links are integer!
(E.g., successive
shortest paths)

34

Guarantees Over Time

❏ How to provide guarantees over time?

❏ Realm of online algorithms and competitive analysis
❏ Input to algorithm: sequence σ (e.g., sequence of requests)

❏ Online algorithm ON does not know requests t’>t

❏ Needs to be perform close to optimal offline algorithm OFF who knows future!

Competitive Analysis
.

Competitive ratio ρ: max over
all possible sequences σ

ρ = Cost(ON)/Cost(OFF)

35

❏ How to provide guarantees over time?

❏ Realm of online algorithms and competitive analysis
❏ Input to algorithm: sequence σ (e.g., sequence of requests)

❏ Online algorithm ON does not know requests t’>t

❏ Needs to be perform close to optimal offline algorithm OFF who knows future!

Competitive Analysis
.

Competitive ratio ρ: max over
all possible sequences σ

ρ = Cost(ON)/Cost(OFF)

Nice: If competitive ratio is low, there is no need to develop
any sophisticated prediction models (which may be wrong

anyway)! The guarantee holds in the worst-case.

Guarantees Over Time

36

Online Access Control (1)

Time

❏ Assume: end-point locations given

❏ Different routing and traffic models

❏ Price and duration

❏ Which ones to accept?

❏ Online Primal-Dual Framework (Buchbinder and Naor)

Infrastructure

VNets

37

Online Access Control (1)

Time

❏ Assume: end-point locations given

❏ Different routing and traffic models

❏ Price and duration

❏ Which ones to accept?

❏ Online Primal-Dual Framework (Buchbinder and Naor)

Infrastructure

VNets

38

“Prediction is difficult,
especially about the future.”

Nils Bohr

Online Access Control (2)

❏ Traffic models

Customer Pipe

Traffic matrix:
Bandwidth per
VM pair (u,v)

Hose Model

Per VM
bandwidth:
polytope of traffic
matrices.

Aggregate Ingress

ingress outgress ingress
Only ingress
specified: e.g.,
support multicast
etc.

❏ Routing models

Tree

Steiner tree
embedding

Single Path

Unsplittable
paths

Multi-Path

Splittable paths
(more capacity)

Relay costs: e.g., depending on packet rate

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Formulate the packing
(dual) LP: Maximize profit

(Note: dynamic LP!)

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

s.t. constraints

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm
primal-dual framework

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

optimal embedding!

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Embedding cost vs profit?

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

If cheap: accept and
update primal variables
(always feasible solution)

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Else reject

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Computationally hard!

Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Computationally hard!

Use your favorite
approximation algorithm! If
competitive ratio ρ and
approximation r, overall
competitive ratio ρ*r.

A Note on the Hose Model (1)

❏ Recall: Virtual Cluster Abstraction

❏ Two interpretations:
❏ Logical switch at unique location

❏ Logical switch can be distributed

❏ If switch location unique
❏ Polynomial-time algorithms: can try all locations…

❏ … and then do our trick with the extra source.

❏ What about Hose?

vs

A Note on the Hose Model (2)

❏ Hose: More efficient?

❏ Deep classic result: The VPN Conjecture
❏ In uncapacitated networks, hose embedding problems with

symmetric bandwidth bounds and no restrictions on routing

(SymG), can be reduced to hose problem instances in which
routing paths must form a tree (known as the SymT model).

❏ Otherwise it can improve embedding footprint!
❏ But is generally hard to compute

On the Benefit of Hose (1)

Thanks to Matthias Rost

❏ VC: Compute and
bandwidth one unit

❏ Substrate: compute one
unit, links two units

❏ VC Request

On the Benefit of Hose (1)

Thanks to Matthias Rost

❏ VC: Compute and
bandwidth one unit

❏ Substrate: compute one
unit, links two units

❏ VC Request

Impossible to map
without splitting: need
at least 5 independent
paths to location where
center is mapped!

On the Benefit of Hose (2)

Thanks to Matthias Rost

❏ In Hose model, it works!

55

Own Literature (1)
General VNEP:

• It's About Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities
Matthias Rost, Stefan Schmid, and Anja Feldmann.
28th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Phoenix, Arizona, USA,
May 2014.

• Optimizing Long-Lived CloudNets with Migrations
Gregor Schaffrath, Stefan Schmid, and Anja Feldmann.
5th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Chicago, Illinois, USA,
November 2012.

Virtual Cluster:

• How Hard Can It Be? Understanding the Complexity of Replica Aware Virtual Cluster Embeddings
Carlo Fuerst, Maciek Pacut, Paolo Costa, and Stefan Schmid.
23rd IEEE International Conference on Network Protocols (ICNP), San Francisco, California, USA,
November 2015.

• Beyond the Stars: Revisiting Virtual Cluster Embeddings
Matthias Rost, Carlo Fuerst, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), July 2015.

http://net.t-labs.tu-berlin.de/~stefan/ipdps14.pdf
http://net.t-labs.tu-berlin.de/~stefan/ucc12mip.pdf
http://net.t-labs.tu-berlin.de/~stefan/icnp15loc.pdf
http://net.t-labs.tu-berlin.de/~stefan/ccr15emb.pdf

56

Own Literature (2)

Online Resource Allocation and Embeddings:

• Competitive Strategies for Online Cloud Resource Allocation with Discounts: The 2-Dimensional Parking
Permit Problem
Xinhui Hu, Arne Ludwig, Andrea Richa, and Stefan Schmid.
35th IEEE International Conference on Distributed Computing Systems (ICDCS), Columbus, Ohio, USA,
June 2015.

• The Wide-Area Virtual Service Migration Problem: A Competitive Analysis Approach
Marcin Bienkowski, Anja Feldmann, Johannes Grassler, Gregor Schaffrath, and Stefan Schmid.
IEEE/ACM Transactions on Networking (ToN), Volume 22, Issue 1, February 2014.

• Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

http://net.t-labs.tu-berlin.de/~stefan/icdcs15.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6471794&queryText%3DThe+Wide-Area+Virtual+Service+Migration+Problem:+A+Competitive+Analysis+Approach
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5

How to Exploit Flexibilities?
Example 2: Service Chain Embeddings

❏ The Internet?

57

How to Exploit Flexibilities?
Example 2: Service Chain Embeddings

❏ The Internet today: # middleboxes ≈ # routers!

58

NFV = Flexible Allocation

Universal
node

(Server)

❏ NFV: Virtualize the
middlebox
❏ SW middlebox in runs in VM…
❏ … e.g., on a universal node

❏ Benefit:
❏ Flexible and fast deployment
❏ Can re-program it

NFV = Flexible Allocation

Universal
node

(Server)

VM1 VM2❏ NFV: Virtualize the
middlebox
❏ SW middlebox in runs in VM…
❏ … e.g., on a universal node

❏ Benefit:
❏ Flexible and fast deployment
❏ Can re-program it

NFV = Flexible Allocation

Universal
node

(Server)

VM1 VM2❏ NFV: Virtualize the
middlebox
❏ SW middlebox in runs in VM…
❏ … e.g., on a universal node

❏ Benefit:
❏ Flexible and fast deployment
❏ Can re-program it

NFV = Flexible Allocation

Universal
node

(Server)

VM1 VM2

Flexible traffic steering: guide
flows through sequence of
virtualized network functions

Service Chains

❏ Service chain = sequence of to be traversed network
functions between A(lice) and B(ob)

❏ E.g., first go via proxy cache, then through firewall
and then WAN optimizer

An Optimization Problem

❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL))

Model: Chain

Model: Chain

not applied
to blue pair!

❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL))

Model: Chain
load 2

❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL)) load 1

Model: Chain
load 2

❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL)) load 1

For now assume:
Only node capacities, no link capacities.

The SCEP Problem

❏ Maximum service chain embedding problem (SCEP)

❏ Given: sequence of requests: σ=(σ1,...,σk), σi=(si,ti)

❏ Constraints: (1) node capacity and (2) max path length r

❏ Goal: Admit and embed a maximum number of
service chains without violating constraints

The SCEP Problem

❏ Maximum service chain embedding problem (SCEP)

❏ Given: sequence of requests: σ=(σ1,...,σk), σi=(si,ti)

❏ Constraints: (1) node capacity and (2) max path length r

❏ Goal: Admit and embed a maximum number of
service chains without violating constraints

Alternatively, we may
support a bounded stretch!

Online Version of SCEP

❏ Requests arrive one by one

❏ On arrival of a request is to decide: admit or reject

❏ Admission: assign and embed the service chain

❏ Admitted requests cannot be canceled or rerouted

❏ For now: Service chains have no duration

What do we know?

Online SCEP:

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L

What do we know?

Online SCEP:

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L

Good result in practice:
L is likely small!

(But capacities need to be at least log L.)

What do we know?

Online SCEP:

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L

Even holds if service chain is given!
(Like: path given in

online call admission)

What do we know?

Online SCEP:

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L
Reduction from

Maximum Independent Set

Reduction from
Maximum L-Set Packing

0-1 Program so in NP.

Preliminaries for Online Algorithm ACE

Ideas:

– Preprocess: Prune all chains which are too long

– If L is small constant (reasonable), can generate all possible
chains for a given request: n^L

– Exploit connection to online call admission: accept only chains
whose sum of node weights is small

– Node weight depends exponentially on current relative node
load

Background: Online Call Admission

– Capacities on links (not nodes!)

– Routing requests arrive online

– Route (unsplittable!) is subject to optimization

– Goal: Want to accept as many requests as possible

Background: Online Call Admission

– Capacities on links (not nodes!)

– Routing requests arrive online

– Route (unsplittable!) is subject to optimization

– Goal: Want to accept as many requests as possible

There are many possible paths!
A hard problem in capacitated networks, even offline.

However, classic result: any path of a certain property is
good enough for online approximation, and can be found

with Dijkstra.

Background: Online Call Admission

– Capacities on links (not nodes!)

– Routing requests arrive online

– Route (unsplittable!) is subject to optimization

– Goal: Want to accept as many requests as possible

There are many possible paths!
A hard problem in capacitated networks, even offline.

However, classic result: any path of a certain property is
good enough for online approximation, and can be found

with Dijkstra.

In our case, we will focus on node
capacities, not links. No routing needed,

can generate all chains.

Preliminaries for Online Algorithm ACE

ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

We will respect capacity constraints: ensure
that the relative load never exceeds 1

Preliminaries for Online Algorithm ACE

ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

We need to assume that
this is at least log L

Preliminaries for Online Algorithm ACE

ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

The cost is exponential
in the relative load.

Preliminaries for Online Algorithm ACE

Online Algorithm: ACE

Algorithm ACE is very simple:

 When request σj arrives, check if there exists a chain cj , s.t.

1. σj can be routed along cj on a path of valid length r

2.

 If such a chain cj exists, then admit σj and assign it to cj.
Otherwise, reject σj.

Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

By contradiction of how
ACE accepts requests.

Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

By induction over
accepted requests.

Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

By the fact that costs increase
monotonically and also OPT needs

to respect capacities.

Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

The theorem then follows: By definition

By Lemma 3:

By Lemma 2:

L

Lower Bound

Theorem: Assume, k ≥ log m. Any online algorithm for SCEP must
have a competitive ratio of at least Ω(log L).

Proof:
❏ Requests come in log L phases
❏ In phase i: 2i groups of k requests

sharing subsets of size L/2i.
❏ Tradeoff: accepting early means

missing many future requests!
❏ Adversary stops when online

algorithm admitted at most
2j+1*k / log L requests till phase j.
(j must exist)

❏ OPT rejects all requests except
for 2j*k in phase j.

Lower Bound

Theorem: Assume, k ≥ log m. Any online algorithm for SCEP must
have a competitive ratio of at least Ω(log L).

Proof:
❏ Requests come in log L phases
❏ In phase i: 2i groups of k requests

sharing subsets of size L/2i.
❏ Tradeoff: accepting early means

missing many future requests!
❏ Adversary stops when online

algorithm admitted at most
2j+1*k / log L requests till phase j.
(j must exist)

❏ OPT rejects all requests except
for 2j*k in phase j.

Lower bound even holds if chains are given!
And goal is just to accept a maximum number.

Offline SCEP

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard.

Proof idea:

 Reduction of Maximum L-Set Packing Problem (LSP) to SCEP

 Approximation preserving reduction

 LSP is APX-complete

Offline SCEP: Inapproximability Result

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard and not approximable within Lε for
some ε > 0. Without a bound on the chain length the SCEP with
κ(v) = 1, for all nodes v, is Poly-APX-hard.

hardness

capacity

Offline SCEP: Inapproximability Result

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard and not approximable within Lε for
some ε > 0. Without a bound on the chain length the SCEP with
κ(v) = 1, for all nodes v, is Poly-APX-hard.

Proof idea:

 Reduction of Maximum Independent Set Problem (MIS) to SCEP

 Approximation preserving reduction

 MIS is APX-complete and cannot be approximated within Lε for some
ε > 0.

 For graphs without degree bound, the MIS is Poly-APX-complete.

0-1 Linear Program –
NP-completeness

Exact optimal solution via 0-1-ILP

Summary

 Network virtualization introduces
algorithmic flexibilities

 Don‘t be afraid, even if others say it is
hard! 

 A first look at provably good online
admission control and embedding of
service chains

97

Own Literature

• Online Admission Control and Embedding of Service Chains
Tamás Lukovszki and Stefan Schmid.
22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO),
Montserrat, Spain, July 2015.

• Network Service Chaining with Optimized Network Function Embedding Supporting Service Decompositions
Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, and Piet
Demeester.
Journal Computer Networks (COMNET), Elsevier, to appear.

http://net.t-labs.tu-berlin.de/~stefan/sirocco15.pdf
http://net.t-labs.tu-berlin.de/~stefan/comnet15sc.pdf

Thank you!

