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SDN outsources and 
consolidates control 
over multiple devices to 
(logically) centralized 
software controller
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App 1: Mobile Service App 2: Big Data Analytics

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

… and Virtualized!

A multi-dimensional packing problem!
Offline: multi-dimensional knapsack.

Online: multi-dimensional parking permit problem.



It’s a Great Time to Be a Scientist
”We are at an interesting inflection point!”

Keynote by George Varghese 
at SIGCOMM 2014

Confluence: innovation!

Programmability and 
virtualization

Algorithms



How to Exploit Flexibilities?
Example 1: Virtual Network Embedding

❏ Flexible embedding of virtual machines…

❏ … and their interconnecting network.
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❏ How to max utilization? A network embeddig problem!



Flavors of VNet Embedding Problems (VNEP)

Minimize embedding footprint of a 
single VNet :

Maximize profit over time:

Minimize max load of multiple 
VNets or collocate to save energy:

Time

spread or 
collocate?

Endpoints fixed:



A ticket at a cloud hosting company…
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«A tenant requested an upgrade, 
needs 30 more VMs. 

Why did the request fail?
There are hundreds of idle cores!»



Let’s Exploit Allocation Flexibilities to Maximize Utilization
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s1

t1
s2

t2

Start simple: exploit flexible 
routing between given VMs

❏ Integer multi-commodity flow 
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit VM 
placement flexibilities!

❏ Most simple: Minimum Linear 
Arrangement without capacities

❏ NP-hard 

?



Thank you for your attention!



Thank you for your attention!

Wait a minute! 
These problems need to be solved!

And they often can, even with guarantees. 



Theory vs Practice

Goal in theory:

Embed as general as possible guest graph 
to as general as possible host graph

Reality:

Datacenters, WANs, etc. exhibit 
much structure that can be 
exploited! But also guest 
networks come with simple 
specifications
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Virtual Clusters

n1 n2

b2
b1

❏ A prominent abstraction for batch-processing 
applications: Virtual Cluster VC(n,b)
❏ Connects  n virtual machines to a «logical» switch  with 

bandwidth guarantees b

❏ A simple abstraction
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applications: Virtual Cluster VC(n,b)
❏ Connects  n virtual machines to a «logical» switch  with 

bandwidth guarantees b

❏ A simple abstraction
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How do datacenter topologies look like?



Fat-Tree Networks in Reality 



A Typical Datacenter Topology
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But due to ECMP, often ok to think of it like this.



How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!
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How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!

OPT

OPT?
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How to embed a Virtual Cluster in a Fat-Tree?

t = 0: solve leaves!

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!

How to optimally embed x 
VMs here, x ∈ {0, ..., n}?

Cost = 0 or ∞!
26



How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y] 

+  cross-traffic + connections to v

v
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How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y] 

+  cross-traffic + connections to v

v

Or just account on upward link 
(number of leaving links!)



How to embed a Virtual Cluster in a Fat-Tree?

t = 2: solve height 2!

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem!
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How to embed a Virtual Cluster in a General Graph?

How to embed?

Guest Graph

Host Graph

30



How to embed a Virtual Cluster in a General Graph?

Algorithm: 
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities 

- Compute min-cost max-flow from s to t 

(or simply: min-cost flow of volume n)

31



How to embed a Virtual Cluster in a General Graph?

Algorithm: 
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities 

- Compute min-cost max-flow from s to t 

(or simply: min-cost flow of volume n)

32



How to embed a Virtual Cluster in a General Graph?

Algorithm: 
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities 

- Compute min-cost max-flow from s to t 

(or simply: min-cost flow of volume n)

enough to embed n 
VMs

capacity = 
floor(available 
resources / unit 
demand) 

33



How to embed a Virtual Cluster in a General Graph?

Algorithm: 
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities 

- Compute min-cost max-flow from s to t 

(or simply: min-cost flow of volume n)

Guaranteed integer 
if links are integer! 
(E.g., successive 
shortest paths)

34



Guarantees Over Time

❏ How to provide guarantees over time?

❏ Realm of online algorithms and competitive analysis
❏ Input to algorithm: sequence σ (e.g., sequence of requests)

❏ Online algorithm ON does not know  requests t’>t

❏ Needs to be perform close to optimal offline algorithm OFF who knows future!

Competitive Analysis
.

Competitive ratio ρ: max over 
all possible sequences σ

ρ = Cost(ON)/Cost(OFF)
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❏ How to provide guarantees over time?

❏ Realm of online algorithms and competitive analysis
❏ Input to algorithm: sequence σ (e.g., sequence of requests)

❏ Online algorithm ON does not know  requests t’>t

❏ Needs to be perform close to optimal offline algorithm OFF who knows future!

Competitive Analysis
.

Competitive ratio ρ: max over 
all possible sequences σ

ρ = Cost(ON)/Cost(OFF)

Nice: If competitive ratio is low, there is no need to develop 
any sophisticated prediction models (which may be wrong 

anyway)! The guarantee holds in the worst-case.

Guarantees Over Time

36



Online Access Control (1)

Time

❏ Assume: end-point locations given

❏ Different routing and traffic models

❏ Price and duration

❏ Which ones to accept?

❏ Online Primal-Dual Framework (Buchbinder and Naor)

Infrastructure

VNets
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Time

❏ Assume: end-point locations given

❏ Different routing and traffic models

❏ Price and duration

❏ Which ones to accept?

❏ Online Primal-Dual Framework (Buchbinder and Naor)

Infrastructure

VNets
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“Prediction is difficult, 
especially about the future.”

Nils Bohr



Online Access Control (2)

❏ Traffic models

Customer Pipe

Traffic matrix: 
Bandwidth per 
VM pair (u,v)

Hose Model

Per VM 
bandwidth: 
polytope of traffic 
matrices.

Aggregate Ingress

ingress outgress ingress
Only ingress 
specified: e.g., 
support multicast 
etc.

❏ Routing models

Tree

Steiner tree
embedding

Single Path

Unsplittable 
paths

Multi-Path

Splittable paths
(more capacity)

Relay costs: e.g., depending on packet rate



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

Formulate the packing 
(dual) LP: Maximize profit

(Note: dynamic LP!)



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

s.t. constraints



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm
primal-dual framework



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

optimal embedding!



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

Embedding cost vs profit?



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

If cheap: accept and 
update primal variables 
(always feasible solution)



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

Else reject



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

Computationally hard!



Online Access Control (3)
Competitive Analysis

Does not know t’>t.
Competitive ratio:

r = Cost(ON)/Cost(OFF)

Primal and Dual 

Algorithm

Computationally hard!

Use your favorite 
approximation algorithm! If 
competitive ratio ρ and 
approximation r, overall 
competitive ratio ρ*r. 



A Note on the Hose Model (1)

❏ Recall: Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location

❏ Logical switch can be distributed

❏ If switch location unique
❏ Polynomial-time algorithms: can try all locations…

❏ … and then do our trick with the extra source.

❏ What about Hose?

vs



A Note on the Hose Model (2)

❏ Hose: More efficient?

❏ Deep classic result: The VPN Conjecture
❏ In uncapacitated networks, hose embedding problems with 

symmetric bandwidth bounds and no restrictions on routing 

(SymG), can be reduced to hose problem instances in which 
routing paths must form a tree (known as the SymT model). 

❏ Otherwise it can improve embedding footprint!
❏ But is generally hard to compute



On the Benefit of Hose (1)

Thanks to Matthias Rost

❏ VC: Compute and
bandwidth one unit

❏ Substrate: compute one
unit, links two units

❏ VC Request



On the Benefit of Hose (1)

Thanks to Matthias Rost

❏ VC: Compute and
bandwidth one unit

❏ Substrate: compute one
unit, links two units

❏ VC Request

Impossible to map
without splitting: need
at least 5 independent
paths to location where
center is mapped!



On the Benefit of Hose (2)

Thanks to Matthias Rost

❏ In Hose model, it works!
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How to Exploit Flexibilities?
Example 2: Service Chain Embeddings

❏ The Internet?
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How to Exploit Flexibilities?
Example 2: Service Chain Embeddings

❏ The Internet today: # middleboxes ≈  # routers!

58



NFV = Flexible Allocation

Universal 
node

(Server)

❏ NFV: Virtualize the
middlebox
❏ SW middlebox in runs in VM…
❏ … e.g., on a universal node

❏ Benefit:
❏ Flexible and fast deployment
❏ Can re-program it
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NFV = Flexible Allocation

Universal 
node

(Server)

VM1 VM2❏ NFV: Virtualize the
middlebox
❏ SW middlebox in runs in VM…
❏ … e.g., on a universal node

❏ Benefit:
❏ Flexible and fast deployment
❏ Can re-program it



NFV = Flexible Allocation

Universal 
node

(Server)

VM1 VM2

Flexible traffic steering: guide
flows through sequence of
virtualized network functions



Service Chains

❏ Service chain = sequence of to be traversed network
functions between A(lice) and B(ob)

❏ E.g., first go via proxy cache, then through firewall
and then WAN optimizer



An Optimization Problem



❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL))

Model: Chain
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Model: Chain
load 2

❏ n nodes

❏ L NF types: F1,..., FL

❏ Instances of Fi: fi
(1), fi

(2),...

❏ A node can apply at most κ(v)
functions

❏ Requests: σ=(σ1,...,σk),
σi=(si,ti)

❏ For each σi, si and ti need to be
connected via a service chain
ci=(f1

(x1), f2
(x2),..., fL

(xL)) load 1

For now assume:
Only node capacities, no link capacities.



The SCEP Problem

❏ Maximum service chain embedding problem (SCEP)

❏ Given: sequence of requests: σ=(σ1,...,σk), σi=(si,ti)

❏ Constraints: (1) node capacity and (2) max path length r

❏ Goal: Admit and embed a maximum number of
service chains without violating constraints



The SCEP Problem

❏ Maximum service chain embedding problem (SCEP)

❏ Given: sequence of requests: σ=(σ1,...,σk), σi=(si,ti)

❏ Constraints: (1) node capacity and (2) max path length r

❏ Goal: Admit and embed a maximum number of
service chains without violating constraints

Alternatively, we may 
support a bounded stretch!



Online Version of SCEP

❏ Requests arrive one by one

❏ On arrival of a request is to decide: admit or reject

❏ Admission: assign and embed the service chain

❏ Admitted requests cannot be canceled or rerouted

❏ For now: Service chains have no duration



What do we know?

Online SCEP: 

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L
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– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L

Good result in practice: 
L is likely small!

(But capacities need to be at least log L.)
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Online SCEP: 

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L

Even holds if service chain is given!
(Like: path given in 

online call admission)



What do we know?

Online SCEP: 

– There exists an O(log L) competitive online algorithm

– (log L) lower bound for any online algorithm

Offline SCEP:

– APX-hard for unit capacities and constant L ≥ 3

– Poly-APX-hard, when there is no bound on L

– Exact optimal solution via 0-1-ILP

– NP-completeness for constant L
Reduction from 

Maximum Independent Set

Reduction from 
Maximum L-Set Packing

0-1 Program so in NP.



Preliminaries for Online Algorithm ACE

Ideas: 

– Preprocess: Prune all chains which are too long

– If L is small constant (reasonable), can generate all possible
chains for a given request: n^L

– Exploit connection to online call admission: accept only chains
whose sum of node weights is small

– Node weight depends exponentially on current relative node
load



Background: Online Call Admission

– Capacities on links (not nodes!)

– Routing requests arrive online

– Route (unsplittable!) is subject to optimization

– Goal: Want to accept as many requests as possible
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There are many possible paths! 
A hard problem in capacitated networks, even offline. 

However, classic result: any path of a certain property is 
good enough for online approximation, and can be found 

with Dijkstra.



Background: Online Call Admission

– Capacities on links (not nodes!)

– Routing requests arrive online

– Route (unsplittable!) is subject to optimization

– Goal: Want to accept as many requests as possible

There are many possible paths! 
A hard problem in capacitated networks, even offline. 

However, classic result: any path of a certain property is 
good enough for online approximation, and can be found 

with Dijkstra.

In our case, we will focus on node 
capacities, not links. No routing needed, 

can generate all chains.



Preliminaries for Online Algorithm ACE

ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a 
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2



ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a 
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

We will respect capacity constraints: ensure 
that the relative load never exceeds 1

Preliminaries for Online Algorithm ACE



ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a 
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

We need to assume that 
this is at least log L

Preliminaries for Online Algorithm ACE



ACE = Admission Control and Chain Embedding Algorithm

Idea: Exploit connection to Virtual Circuit routing! Let‘s define a 
cost for hosting a NF for a chain which is exponential in the
relative load of the node

 relative load at node v before the j-th request:

 cost of v before processing the j-th request:

where m = 2L + 2

The cost is exponential
in the relative load.

Preliminaries for Online Algorithm ACE



Online Algorithm: ACE

Algorithm ACE is very simple:

 When request σj arrives, check if there exists a chain cj , s.t.

1. σj can be routed along cj on a path of valid length r

2.

 If such a chain cj exists, then admit σj and assign it to cj. 
Otherwise, reject σj.



Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L
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By contradiction of how 
ACE accepts requests.
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Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

By induction over 
accepted requests.
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Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

By the fact that costs increase 
monotonically and also OPT needs 

to respect capacities.



Analysis of ACE

Theorem: Assume, minv(k(v)) ≥ log m. Then ACE never violates
capacity and length constraints and is O(log L) competitive.

Proof sketch:

 Lemma 1: Requests admitted by ACE are feasible and respect capacity
constraints.

 Lemma 2: Sum of node costs (over all nodes) after last request k is
proportional (up to L log m factors) to the number of accepted requests |A|

 Lemma 3: Let A* be the set of requests accepted by OPT but not ACE. Then:

L

L

The theorem then follows: By definition

By Lemma 3:

By Lemma 2:

L



Lower Bound

Theorem: Assume, k ≥ log m. Any online algorithm for SCEP must 
have a competitive ratio of at least Ω(log L).

Proof:
❏ Requests come in log L phases
❏ In phase i: 2i groups of k requests

sharing subsets of size L/2i. 
❏ Tradeoff: accepting early means

missing many future requests!
❏ Adversary stops when online 

algorithm admitted at most
2j+1*k / log L requests till phase j. 
(j must exist)

❏ OPT rejects all requests except
for 2j*k in phase j.



Lower Bound

Theorem: Assume, k ≥ log m. Any online algorithm for SCEP must 
have a competitive ratio of at least Ω(log L).

Proof:
❏ Requests come in log L phases
❏ In phase i: 2i groups of k requests

sharing subsets of size L/2i. 
❏ Tradeoff: accepting early means

missing many future requests!
❏ Adversary stops when online 

algorithm admitted at most
2j+1*k / log L requests till phase j. 
(j must exist)

❏ OPT rejects all requests except
for 2j*k in phase j.

Lower bound even holds if chains are given!
And goal is just to accept a maximum number.                    



Offline SCEP

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard.

Proof idea:

 Reduction of Maximum L-Set Packing Problem (LSP) to SCEP 

 Approximation preserving reduction

 LSP is APX-complete



Offline SCEP: Inapproximability Result

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard and not approximable within Lε for
some ε > 0. Without a bound on the chain length the SCEP with
κ(v) = 1, for all nodes v, is Poly-APX-hard.

hardness

capacity



Offline SCEP: Inapproximability Result

Theorem: Let L ≥ 3 be a constant and κ(v) = 1, for all v. Then the
offline SCEP is APX-hard and not approximable within Lε for
some ε > 0. Without a bound on the chain length the SCEP with
κ(v) = 1, for all nodes v, is Poly-APX-hard.

Proof idea:

 Reduction of Maximum Independent Set Problem (MIS) to SCEP 

 Approximation preserving reduction

 MIS is APX-complete and cannot be approximated within Lε for some
ε > 0.

 For graphs without degree bound, the MIS is Poly-APX-complete.



0-1 Linear Program –
NP-completeness

Exact optimal solution via 0-1-ILP



Summary

 Network virtualization introduces
algorithmic flexibilities

 Don‘t be afraid, even if others say it is
hard! 

 A first look at provably good online 
admission control and embedding of
service chains
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Thank you!


