
Reclaiming the Brain:
Useful OpenFlow Functions in the Data Plane

Liron Schiff (Tel Aviv Uni, Israel)
Michael Borokhovich (UT Austin, United States)

Stefan Schmid (TU Berlin & T-Labs, Germany)

1

My Talk in One Slide

data plane

ctrl plane N

S

Separation of the planes enables:
simplified network management
and operation
faster innovation

2

My Talk in One Slide

data plane

ctrl plane N

S

Separation of the planes enables:
simplified network management
and operation
faster innovation

However:
controller may miss certain
data plane events
indirection => latency

2

My Talk in One Slide

data plane

ctrl plane N

S

Separation of the planes enables:
simplified network management
and operation
faster innovation

However:
controller may miss certain
data plane events
indirection => latency

What functionality should be kept
in data plane? — A big question!

2

My Talk in One Slide

data plane

ctrl plane N

S

Separation of the planes enables:
simplified network management
and operation
faster innovation

However:
controller may miss certain
data plane events
indirection => latency

What functionality should be kept
in data plane? — A big question!

In this talk: example of functions
that can be kept in the data plane.

2

SDN and OpenFlow

Actions Match

Set VLAN = 11
Forward port 3 IP.src=10.0.*.*

Drop TCP.port = 23

Send Controller IP.dst=192.*.*.*
and VLAN=13

… …

- -

- -

- -

- -

… …

Controller

3

Ope
nF

low

OpenFlow

OpenFlow in a Nutshell

Table 1
- -

- -

- -

… …

Packet
In

Table 2
- -

- -

- -

… …

Table n
- -

- -

- -

… …

Packet
Out

Switch pipeline

Basic Actions
Set a field
Append a label
Forward to a port/controller/flood
Goto Table x

4

OpenFlow in a Nutshell

Table 1
- -

- -

- -

… …

Packet
In

Table 2
- -

- -

- -

… …

Table n
- -

- -

- -

… …

Packet
Out

Failover Group

Action1 Port-1

Action2 Port-2

… …

Action-k Port-k

Table 1
- Gr1

- -

- Gr2
… …

Switch pipeline

Basic Actions
Set a field
Append a label
Forward to a port/controller/flood
Goto Table x

Advanced/optional Actions
Link state based
Round-robin selection

4

OpenFlow in a Nutshell

Table 1
- -

- -

- -

… …

Packet
In

Table 2
- -

- -

- -

… …

Table n
- -

- -

- -

… …

Packet
Out

Failover Group

Action1 Port-1

Action2 Port-2

… …

Action-k Port-k

Table 1
- Gr1

- -

- Gr2
… …

Switch pipeline

Basic Actions
Set a field
Append a label
Forward to a port/controller/flood
Goto Table x

Advanced/optional Actions
Link state based
Round-robin selection

Round Robin Group

Action1

Action2

…

Action-k
4

Fast Failover - Adding Brains to the South

data plane

ctrl plane N

S

Proactive reaction to link failures

Failover Group

Fwd Port 1

Fwd Port 3

… …

Action-k Port-k

5

1

3

Fast Failover - Adding Brains to the South

data plane

ctrl plane N

S

Proactive reaction to link failures

Failover Group

Fwd Port 1

Fwd Port 3

… …

Action-k Port-k

5

1

3

Fast Failover - Adding Brains to the South

data plane

ctrl plane N

S

Proactive reaction to link failures

Failover Group

Fwd Port 1

Fwd Port 3

… …

Action-k Port-k

Non-trivial to use
May quickly introduce loops
May introduce high load

Much better with Tags

Tag

5

1

3

Fast Failover - Adding Brains to the South

data plane

ctrl plane N

S

Proactive reaction to link failures

Failover Group

Fwd Port 1

Fwd Port 3

… …

Action-k Port-k

Non-trivial to use
May quickly introduce loops
May introduce high load

Much better with Tags

Tag

5

1

3

Fast Failover - Adding Brains to the South

data plane

ctrl plane N

S

Proactive reaction to link failures

Failover Group

Fwd Port 1

Fwd Port 3

… …

Action-k Port-k

Non-trivial to use
May quickly introduce loops
May introduce high load

Much better with Tags

Tag

5

1

3

Functions in the South

Reduce interactions with the control plane
Make data plane more robust

Monitoring functions:
Topology snapshot
Blackhole detection
Critical node detection

Communication functions:
Anycast

N

S

6

How it is possible? SmartSouth template.

SmartSouth — in-band graph DFS traversal
State of each node stored in the packet:

parent
current neighbor the node traverses

Implemented using a simple match-action paradigm
Uses Fast Failover technique.

7

payloadpar, curpar, cur par, cur…

How it is possible? SmartSouth template.

Pseudocode —> Match&Action tables

payloadpar, curpar, cur par, cur…
8

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

How it is possible? SmartSouth template.

Pseudocode —> Match&Action tables

payloadpar, curpar, cur par, cur…

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

9

How it is possible? SmartSouth template.

Pseudocode —> Match&Action tables

payloadpar, curpar, cur par, cur…

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

9

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop
Flow Table 2

Match Instructionssb

0 Gr 2, Table 3
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructions
sb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

…

port 1

port 2

Functions in the South: Topology Snapshot
gi

ve
 m

e
a

sn
ap

sh
ot

N

S

Fault tolerant
No connectivity assumption

Requires a single connection to controller
Unlike built-in “Topology service” in OpenFlow

10

Functions in the South: Topology Snapshot
gi

ve
 m

e
a

sn
ap

sh
ot

N

S

Fault tolerant
No connectivity assumption

Requires a single connection to controller
Unlike built-in “Topology service” in OpenFlow

During the DFS traversal, topology
information is written to the packet
header

snapshot datapar, nextpar, next par, next…

10

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause
physical failure
configuration errors
unsupervised carrier network errors

11

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause
physical failure
configuration errors
unsupervised carrier network errors

Two possible implementations:

11

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause
physical failure
configuration errors
unsupervised carrier network errors

Two possible implementations:

DFS traversal with TTL
(log n) DFS traversals (binary search)

TTLpar, nextpar, next par, next…
11

DFS failed

DFS failed

Blackhole found

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

General counters - access only by controller
Our counters:

access during packet processing
counter value can be written to packet or
metadata
implemented using Round-Robin action group

Round Robin Group

Action1

Action2

…

Action-k

Table 1
- -

- -

- -

… …

Table 2
1 -

2 -

… …

K .

Smart “In-band” Counters

12

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Install SmartCounter for each port
Only two DFS traversals required:

First - back&forth on each link

Blackhole detection with SmartCounters

13

3 3

1 0

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Install SmartCounter for each port
Only two DFS traversals required:

First - back&forth on each link

Blackhole detection with SmartCounters

13

3 3

1 0

Second - find port with counter value 1
3 3 3

33

1

3

Functions in the South: Critical Node Detection
ar

e
yo

u
cr

iti
ca

l?

No

Checks if a node is critical for connectivity
Non-critical node may be removed for

maintenance
energy conservation

Cheaper than Snapshot

ar
e

yo
u

cr
iti

ca
l?

Yes

14

Functions in the South: Critical Node Detection
ar

e
yo

u
cr

iti
ca

l?

No

Checks if a node is critical for connectivity
Non-critical node may be removed for

maintenance
energy conservation

Cheaper than Snapshot

ar
e

yo
u

cr
iti

ca
l?

Yes

One DFS traversal with root = v
If v non-critical: it is parent for exactly one
node

14

Functions in the South: Critical Node Detection
ar

e
yo

u
cr

iti
ca

l?

No

Checks if a node is critical for connectivity
Non-critical node may be removed for

maintenance
energy conservation

Cheaper than Snapshot

ar
e

yo
u

cr
iti

ca
l?

Yes

One DFS traversal with root = v
If v non-critical: it is parent for exactly one
node

14

Else: it is parent for more than 1 node

Functions in the South: Anycast

Multiple, unknown destinations, NFV
Alternative path to the control plane
Extendable to service chains

FW

FW

N

S

gidpar, nextpar, next par, next… payload

15

Functions in the South: Anycast

Multiple, unknown destinations, NFV
Alternative path to the control plane
Extendable to service chains

FW

FW

N

S

gidpar, nextpar, next par, next… payload

Anycast - one DFS traversal
If gid match: forward to “self port”
Else: continue DFS traversal

15

gid=5

gid=5

gid=8

gid=8

Functions in the South: Anycast

Multiple, unknown destinations, NFV
Alternative path to the control plane
Extendable to service chains

FW

FW

N

S

gidpar, nextpar, next par, next… payload

Anycast - one DFS traversal
If gid match: forward to “self port”
Else: continue DFS traversal

Priocast - two DFS traversals
First - find highest priority dest
Second - deliver to the best dest

gid, highest_prio

15

gid=5

gid=5

prio=1

prio=2

gid=8

gid=8

SmartSouth in practice

Using existing OpenFlow match fields for tagging:
IPv6 addresses
VLAN tags
MPLS tags
Using this approach we can support up to few dozens of nodes

More tag space in the future
Future OpenFlow will probably support flexible match and set
NoviFlow switches already support UDP payload access

16

Conclusions

“Dumb” data plane can implement useful and complex functionality
Snapshot
Blackhole detection
Critical node detection
Anycast
Smart Counters

Nourish discussion on what should be implemented and where

N

S

17

Conclusions

“Dumb” data plane can implement useful and complex functionality
Snapshot
Blackhole detection
Critical node detection
Anycast
Smart Counters

Nourish discussion on what should be implemented and where

Thank You!

N

S

17

Related Work

Our Opodis
Our hotsdn
Shapira’s link reversal?

Explain why it cannot be implemented in
OpenFlow (since it requires storing state in the
switch)

18

Complexity

Number of messages used by each function
Space required in the header (take from the
HotNets paper)

our algorithm initiates a second traversal which, upon
detecting the counter-1 link, sends its description to the
controller. The repeat field is also used to di↵erentiate
the packets of the two traversals (repeat = 0 in the
second traversal). The controller sends the two packets
with a time di↵erence of twice the maximum delay, and
then waits for the blackhole report.

Detecting Packet-Loss with Smart Counters.
Our mechanism cannot only be used to handle links that
drop every packet (and more importantly, links that
may drop our in-band blackhole detection packets), but
also to monitor packet loss. The main idea is to use
two (additional) smart counters per port, one counter
for outgoing packets and the other one for incoming
packets. Every time a packet is sent through a port,
the outgoing counter of a link is increased; and anal-
ogously for in-ports when a packet is received. When
our blackhole detection packet traverses the network
it triggers the comparison of outgoing and incoming
counters on opposites sides of the links; if the counters
di↵er, a packet-loss is reported. Note that counters may
overflow (and be reset to 0), and accordingly, a packet
may be lost (a false negative); as a possible solution, we
suggest to increase and compare a few smart counters,
with unique and prime sizes.

3.4 Critical Nodes
In this case study, we want to determine whether

a given switch v
i

is critical : Will the removal of v
i

lead to a network partition? We implement the data
plane function to realize this application as follows: the
controller asks a node to check its own criticality, by
sending it a special packet. Upon reception of the packet,
the node starts the traversal from port 1 (or, if port
1 is not live, the first consequent working port). This
first port is stored in the packet in the pkt.firstPort
field. If the node is not critical, the packet sent from
pkt.firstPort will traverse all the nodes in the network,
before it returns back via this port. Thus, if i is not
critical, then no other node except of the neighbor at
port pkt.firstPort will choose i as the parent in further
traversal process.
Now, in order to be able to verify that i is not se-

lected as a parent for its neighbor, we add a bit field
pkt.toParent in the tag of the packet which will be set
to 1 when a node sends a packet to its parent. So, once
the packet is back from the pkt.firstPort port, the node
i advances pkt.v

i

.cur to the next working port, sends
the packet via this port, and continues the SmartSouth

traversal. From this point on, the node i inspects the
pkt.toParent field of all the incoming packets. Once
it sees a packet with pkt.toParent = 1 it immediately
decides that it is a critical node, and informs the con-
troller. If the SmartSouth traversal is finished and no

additional node selected i as the parent, then i informs
the controller that it is not a critical node.

Remark on Complexity. We conclude this sec-
tion with a discussion of the overhead of the di↵erent
SmartSouth services. Clearly, the anycast variants do
not require any out-of-band messages, and only a con-
stant number of messages (of constant size) are needed
for the blackhole and critical node services. The com-
plexity of the snapshot is simply given by the size of
the network that needs to be collected; as discussed, the
snapshot may also be split into multiple messages. The
number of in-band messages of SmartSouth is in the
order of the network size as well (|E| links are visited).
Only the messages of snapshot may become large. Note
that all out-of-band messages can be sent in-band to
any server connected to the first node of the traversal,
thereby allowing complete in-band monitoring.
Table 2 summarized the complexities. In general,

using switches like our NoviKit 250 switch (32MB flow
table space and full support for extended match fields)
and if the size of the data section of packets is limited
to 0.5KB, we believe that our algorithms scale up to a
few hundred nodes.

Service Complexity
out-band #msgs⇥size in-band #msgs⇥size

Snapshot 1⇥O(1) + 1⇥O(|E|) (4|E|� 2n)⇥O(|E|)
Anycast 0 (4|E|� 2n)⇥ |data|
Priocast 0 (8|E|� 4n)⇥ |data|
Blackhole 1 2 log |E|⇥O(1) (8|E|� 4n)⇥O(1)
Blackhole 2 3⇥O(1) 4|E|⇥O(1)
Critical 2⇥O(1) (4|E|� 2n)⇥O(1)

Table 2: Overview of the complexities of the dif-
ferent SmartSouth services. The message size
does not include the DFS part, which adds an-
other O(n log n) bits, where n is the network size.

4. CONCLUSION
We understand our work as a first step, and believe

that our results can nourish the debate on how to par-
tition the functionality between the “dumb data plane”
and the “smart control plane”. While we kept our
case studies simple and “inspirational” on purpose, our
techniques can be extended to implement many other
functions. For example, the smart counter concept in-
troduced in this paper may also be used to infer network
loads. Thus, we believe that our paper opens a rich field
for future research.

Remark. Within the UNIFY project1 we will in-
vestigate how SmartSouth could provide additional
robustness for monitoring dynamically instantiated ser-
vice chains.

1See http://www.fp7-unify.eu/.

6

19

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

20

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

Two possible implementations:
DFS traversal with TTL

(log n) DFS traversals (binary search)

TTLpar, nextpar, next par, next…
T(1) T(2) T(n)

20

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

Two possible implementations:
DFS traversal with TTL

(log n) DFS traversals (binary search)

Smart Counters:
Adding “state” to the switch
Only two DFS traversals required

TTLpar, nextpar, next par, next…
T(1) T(2) T(n)

Table 4
- -

- -

- -

… …

Table 3
- -

- -

- -

… …

Round Robin Group

Action1

Action2

…

Action-k

Table 1
- -

- -

- -

… …

Table 2
- -

- -

- -

… …20

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

21

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

Two possible implementations:

21

Functions in the South: Blackhole Detection
Is

 th
er

e
a

bl
ac

kh
ol

e?

N

S

Detects connectivity loss regardless of the cause

Two possible implementations:

DFS traversal with TTL
(log n) DFS traversals (binary search)

TTLpar, nextpar, next par, next…

21

DFS failed

DFS failed

Blackhole found

How it is possible? SmartSouth template.

Based on in-band graph DFS traversal.
Implemented using a simple match-action paradigm
Uses Fast Failover technique.

22

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

How it is possible? SmartSouth template.

Based on in-band graph DFS traversal.
Implemented using a simple match-action paradigm
Uses Fast Failover technique.

22

How it is possible? SmartSouth template.

Based on in-band graph DFS traversal.
Implemented using a simple match-action paradigm
Uses Fast Failover technique.

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

22

How it is possible? SmartSouth template.

Based on in-band graph DFS traversal.
Implemented using a simple match-action paradigm
Uses Fast Failover technique.

payload

par, nextpar, next par, next…
T(1) T(2) T(n)

graph traversal mechanism implemented in the standard
match-action paradigm; it is based on OpenFlow tables
(at most version 1.3). By using fast failover techniques
(implemented with the FF tables), the template becomes
robust to link failures. (However, in the following, we
will assume that during the execution of SmartSouth,
no more failures will occur. This limitation can be
overcome by using e.g. mechanisms presented in [3].)

SmartSouth implements the first stage of the func-
tion realization: it installs a set of rules and tables in the
data plane. Essentially, SmartSouth constructs a span-
ning tree, i.e., when the function execution is triggered
in the second stage, a trigger packet will traverse the
network according to a depth first search (DFS) order.
The SmartSouth template is summarized in Algo-

rithm 1. It is parametrized with di↵erent service types
(snapshot, anycast, blackhole detection, critical node
detection), and we present the service specific functions
in detail later. Generally, the template first determines
whether the current switch is the first to execute the
requested function (in which case it becomes the DFS
root), or whether the function has been started by some
other node. During the function execution, a single trig-
ger packet traverses the network, subject to the installed
match and action rules. For each node i, we reserve a cer-
tain number of bits in the packet header, the tag, where
the node can store the port of its parent (pkt.v

i

.par), as
well as the port of the neighbor it is currently visiting
(pkt.v

i

.cur). Additionally, the packet header includes a
global tag field pkt.start which indicates whether the
service has already started. As we will see, more tag
fields will be introduced by the specific service. We
denote the total number of ports at node i by �

i

, and
assume that all the tag fields are initialized to 0. When
a node i sees a packet for the first time, it sets pkt.v

i

.par
and starts to traverse its own neighbors by first trying
output port 1 (and setting pkt.v

i

.cur 1). In case
that the port failed (i.e., is not live), the next live port
is selected. Once all the neighbors were traversed, the
node returns the packet to its parent.
Note that since the underlying network topology is

typically not a tree, a node may receive a packet from
an “unexpected” port (i.e., not from pkt.v

i

.cur). In this
case, the node will just return the packet to the port
from which it was received. Once the root node finishes
traversing all its neighbors (port out will be 0 only at
the root node when it wants to send the packet to its
parent, which is 0), SmartSouth terminates.
In addition, each data plane service that we will de-

scribe in the following, implements some service-specific
functions in the template. These functions determine
the behavior of the service upon packet reception at
the di↵erent stages of SmartSouth. The first function
is First visit(): it specifies the actions to be executed
when a node (other than the root) sees a service packet

Algorithm 1 Algorithm SmartSouth – Template
Input: current node: vi, input port: in, packet global

params: pkt.start, packet tag array: {pkt.vj}j2[n]

Output: output port: out
1: if pkt.start = 0 then
2: pkt.start 1
3: out 1
4: else
5: if pkt.vi.cur = 0 then
6: pkt.vi.par in; out 1; First visit()
7: else if in = pkt.vi.cur then
8: out pkt.vi.cur + 1; V isit from cur()
9: else
10: out in; V isit not from cur()
11: goto 26
12: if out = �i + 1 then
13: out pkt.vi.par
14: goto 22

15: while out failed or out = pkt.vi.par do
16: out out+ 1
17: if out = �i + 1 then
18: out pkt.vi.par
19: goto 22

20: Send next neighbor()
21: goto 23
22: Send parent()
23: pkt.vi.cur out
24: if out = 0 then
25: Finish()
26: return out

for the first time. The function V isit not from cur()
describes the behavior of a node i once it receives an
“unexpected” packet, i.e., a packet arriving from a port
di↵erent from pkt.v

i

.cur. The Send next neighbor()
function is called when a node i has received a packet
from the “expected” port (i.e., pkt.v

i

.cur), and forwards
it to the next neighbor, and the Send parent() function
is called when a packet is returned to the parent. The
Finish() function is called only by the root node (since
only the root has an out port 0 once it tries to forward
the packet to the parent).

3. CASE STUDIES
To demonstrate the power of SmartSouth data plane

functions, we present four case studies. See Table 1 for
details of these implementations.

3.1 Snapshots
The computation of topological snapshots is a fun-

damental task in any distributed system. For example,
a snapshot can be useful for network troubleshooting
applications. We will study the following scenario: upon
request, a list of all currently active nodes and their
active links is compiled and sent back to the requester.
For ease of presentation, we will first assume that there
is su�cient space in the packet to include a full snapshot;

3

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, T (i) 1,Fwd 1i
Gr 2 hsb 1, T (i) 2,Fwd 2i
.
Gr �i hsb 1, T (i) �i,Fwd �ii

Table 2: Mod: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i

Match Instructionssb

0 Gr �i, Table �i + 1
1 Drop

. . .

Flow Table 2�i � 1
Match Instructions
sb

0 Gr �i � 1, Drop
1 Drop

Table 3: Mod: Flow Tables for switch i.

B. DFS FAILOVER TABLES

Group Actions
Gr 0.1 hsb 1,Fwd Route(1)i
Gr 0.2 hsb 1,Fwd Route(2)i
.
Gr 0.n hsb 1,Fwd Route(n)i
Gr 1 hsb 1, pkt.vi.cur 1, pkt.start 1,Fwd 1i
Gr 2 hsb 1, pkt.vi.cur 2, pkt.start 1,Fwd 2i
.
Gr �i hsb 1, pkt.vi.cur �i, pkt.start 1,Fwd �ii

Table 4: DFS: Group Table of switch i.

Flow Table 1
Match Instructionssb

0 Gr 1, Table 2
1 Drop

. . .

Flow Table �i � 1
Match Instructionssb

0 Gr �i � 1, Table �i

1 Drop

Flow Table �i

Match Instructionssb

0 Gr �i,Table 0.2 (Send-Parent)
1 Drop

Table 5: DFS: Flow Tables of switch i.

Flow Table A (Start)

Match Instructionspkt.start dst

0 1 Gr 0.1, Table 1
0 2 Gr 0.2, Table 1
.
0 n Gr 0.n, Table 1
⇤ ⇤ Table B

Flow Table B
Match Instructionsin pkt.vi.cur pkt.vi.par

1 0 ⇤ pkt.vi.par in, Table 2
1 1 2 Table 3
2 2 3 Table 4
3 3 4 Table 5
.

�i � 2 �i � 2 �i � 1 Table �i

�i � 1 �i � 1 �i Table C
⇤ 0 ⇤ pkt.vi.par in, Table 1
1 1 ⇤ Table 2
2 2 ⇤ Table 3
3 3 ⇤ Table 4
.

�i � 1 �i � 1 ⇤ Table �i

�i �i ⇤ Table C
1 ⇤ ⇤ Fwd 1
2 ⇤ ⇤ Fwd 2
.
�i ⇤ ⇤ Fwd �i

Flow Table C (Send-Parent)

Match Instructionspkt.vi.par

1 Fwd 1
2 Fwd 2
.
�i Fwd �i

Table 6: DFS Flow Tables of switch i.

22

Data Plane - Match & Action

Actions Match

Set VLAN = 11
Forward port 3 IP.src=10.0.*.*

Drop TCP.port = 23

… …

- -

- -

- -

- -

… …

23

Data Plane - Match & Action

Actions Match

Set VLAN = 11
Forward port 3 IP.src=10.0.*.*

Drop TCP.port = 23

… …

- -

- -

- -

- -

… …

23

Distributed Control Plane

- -

- -

- -

- -

… …

Actions Match

Set VLAN = 11
Forward port 3 IP.src=10.0.*.*

Drop TCP.port = 23

… …

24

Distributed Control Plane

- -

- -

- -

- -

… …

Distributed Control
Actions Match

Set VLAN = 11
Forward port 3 IP.src=10.0.*.*

Drop TCP.port = 23

… …

24

