Exploiting Locality in Distributed SDN Control

Stefan Schmid (TU Berlin & T-Labs)

My view of SDN before | met Marco and Dan...

Logically Centralized, but Distributed!

-

15t Dimension of Distribution: Flat SDN Control (“"Divide Network”)

1= 3
1= 3

fully central SPECTRUM fully local

2"d Dimension of Distribution: Hierarchical SDN Control (“Flow Space”)

global >

e.g., routing, spanning tree

SPECTRUM

-
\

e.g., handle frequent
events close to data
path, shield global

controllers (Kandoo)

Questions Raised

.

= Which tasks can be solved locally, which tasks need global control?

How to control a network if | have “local view” only?\

How to design distributed control plane (if | can), and how to
divide it among controllers?

Where to place controllers? (see Brandon!)

/

Exploiting Locality in Distributed SDN Control

Our paper:

- Review and apply lessons to SDN from distributed
computing and local algorithms* (emulation
framework to make some results applicable)

- Study of case studies: (1) a load balancing
application and (2) ensuring loop-free forwarding set

- First insights on what can be computed and verified
locally (and how), and what cannot

* Local algorithms = distributed algorithms with constant radius
(“control infinite graphs in finite time”)

Stefan Schmid (T-Labs)

Generic SDN Tasks: Load-Balancing and Ensuring Loop-free Paths

SDNTor TE and Load-Balancing: Re-Route Flows

Concrete Tasks

SDN Task 1: Link' Assignment (,,Semi-Matching Problem™)

= Bipartite: customer to access routers
= How to assign?

PoPs W
redundant links M

customer sites = Quick and balanced?

[operator’s backbone network]

SDN Task 2: Spanning Tree Verification

... but not for distributed control plane!

- Hierarchical control: [root controller]

[Iocal controller] [local controller]

Local vs Global: Minimize Interactions Between Controllers

Useful abstraction and terminology: The “controllers graph”

(e

Global task: inherently need to
respond to events occurring at
all devices.

Take-home 1: Go for Local Approximations!

A semi-matching problem:

[backbone]

Semi-matching

If a customer u connects to a
POP with c clients connected
to it, the customer u costs c.

Minimize the average cost of
customers!

The bad news: Generally the problem is inherently global e.g.,

Take-home 2: Verification is Easier than Computation

Bad news: Spanning tree computation (and even verification!) is an
Inherently global task.

: e ®e| Mo %
M (© \) %OTCH\J

e® OO

OK not OK

2-hop local views of contrullers u and v: in the three examples, cannot distinguish the
local view of a good instance from the local view of the bad instance.

Good news: However, at least verification can be made local, with
minimal additional information / local communication between
controllers (proof labels)!

Stefan Schmid (T-Labs)

Proof Labeling Schemes

Idea: For verification, it is often sufficient if at least one controller
notices local inconsistency: it can then trigger global re-computation!

Requirements:

= Controllers exchange minimal amount of information (“proofs labels™)
= Proof labels are small (an “SMS”)

= Communicate only with controllers with incident domains

= Verification: if property not true, at least one controller will notice...

= ... and raise alarm (re-compute labels)

Stefan Schmid (T-Labs)

Examples

Euler Property: Hard to compute Euler
tour (“each edge exactly once”), but

easy to verify! 0-bits (= no communication) :
output whether degree is even.

Neighbor with
(r’l) (I’,3) sarlr?e distgvrlme

2 alert!

(r’4) Spanning Tree Property: Label encodes root node
plus distance & direction to root. At least one node
notices that root/distance not consistent! Requires

Take-home 3: Not Purely Local, Pre-Processing Can Help!

Idea: If network changes happen at different time scales (e.g.,
topology vs traffic), pre-processing “(relatively) static state” (e.g.,
topology) can improve the performance of local algorithms (e.g., no

need for symmetry breaking)!

Local problems often face two challenges: optimization and symmetry breaking.

The latter may be overcome by pre-processing.

Example: Local Matchings

(M1) Maximal matching (only because of symm!)

(M2) Maximal matching on bicolored graph___ bipartite (like PoP
(M3) Maximum matching (symm+opt!)

*impossible, , easy

assignment)

\ packing LP

Optimization:

(M1, M2): only need to find feasible solution
(M1, M2, M3): need to find optimal solution!
Symmetry breaking:

(M1, M3): require symmetry breaking

(M2, M4): symmetry already broken

(M5): symmetry trivial

E.g., (M1) is simpler if graph can be pre-colored! Or Dominating Set (1. distance-2 coloring
then 2. greedy [5]) , MaxCut, ... The “supported locality model”. ©

Stefan Schmid (T-Labs)

Take-home >3: How to Design Control Plane

Make your controller graph low-degree if you can!

W)

Problem

Approx.
factor

1+¢

(A+1)/2
2+4¢

Matching

Weighted matching
Simple 2-matching 2+¢
Semi-matching o(1)

Edge cover 2

Vertex cover 2

6

4+¢

3

2+¢

2

A+1
21A/2] +1
(A+1)/2
(1)
O(AlogA)
(6+1)/2
4—2/A

Dominating set

Domatic partition
Edge domin. set

Exploiting Locality in Distributed SDN Control

Tu Besﬁfamﬁﬂgmw
&
stafani@net.t-labs tu-berlin.de

ABSTRACT

Largn STV notwarks will be partitioned in multiple sontroiler
domaains; mch controlke is repoesible far ong domaiz, asd
the cantrallors of adjcent domains may Reed L commURIGAE
ta snfores global policis. ‘This paper studics the implications
af tha locl natwork viow of the contrallers. In particular,
wo sstablish & comnoction to the fidd of Iocal algarithms and
distritmtod computing, and discam kesons for the design
af u distributed contral plane. We show thae oxisting focal
algarithms ezn be used ia dovdop aficiont soardination
protocols i which each comtrollor caly noods o to
avents that take place i its local neighborhocd. Howerer,
whilo existing algorithms can be uscd, SN notworks alsa
ugges & new Approach to the sisdy of beality in distributed
enputing, We introduen tho socalkd supporied locaiity
madd of distributed compating. The new modsl is mors
exprossive than the clussical medol that sro commanly used

Jukka Suomela
Halsinki Instituse for Infiormation Technology HIMT
of Science
Ui of Halsinki
jukka.suol “helsinki fi

differsnt parts of the flaw spacn. The probles of mangicg &
nwtwark &nd enforcing palicks in ssch o disiributed cantral
plano, however, cxbibits many similaritios with the ek
of dmigning local algerithms — well-stedicd subficld in
the arca of distributad computing, Local algorithms are
distributed algorithms in which oach device only needs to
nd o aveni st Lk placs n s ocal nighboriocd,
within some eoostan member of bops from it; put otherwiss,
these are algarithms that aaly noed n consiant mumber of
communication rounds o schve the task at hasd.

“Ttis paper highlights that thers ia a kat of patantial far
intorartions botwoon the twe aross, tho distributod eocotral
of SDI notworks asd loml algarithms, O the ooe hand,
wa nrgue that thore are many rocent. reults rolated o loedl
algerithms tha arw rokovant in the eficion mansgemant asd
aporatian of SN neiworks. On the cther hand, wo idamtiy
prapertios of DY notworks which raise sdditional and now

hallongys in t5e dumign of loral algeeithms. We dumeribe

& disparity betwoon thn featarm of SN networks and the
standand moduls of distributed systoms that are used in the
design and analysis of lacal algorithma. Iadood, there ar
Ay tasks that c=n b sclved in renkwodd SON
notwreks, yok they o nct st & lceal algarithm in the

I sans. We suggmt & oow modd of distribatad

in the dosign and analysis of distributed and it
is botter matsh with the Foaturoes of SDN networks.

: and Subject plors

24| od icati Natwork
architocture and Design; 2.4 [Computar-C i
tion Networks]: Distibuted Systorms; P11 |Computa-

tion by A bstract Dievices]: Medeb o Computation
Keywords
local algorithms, software dofincd notwerking

L INTRODUCTION

The pasadigm of software defined natworking (SDN)
ndvoeatos o more centralized approach of noiwoek contrl,
and cporate & ndwark from

mazaging difernnt admintrative domeins of the notwork o

Termimice e enle: digial o bl coples = al or part of s work Jor prracmalcr

caicn
ot e g ey for comprans o e work e by s s

b . Mesqacat perron (o o Slacnor.
MSTNCL A gt 16, 3001, Hoeg Koy, Chin.

computing that scparaies the rolatively static network struc-
tura (2., physical netwark equipment) and dynamic inpuis
(2.8, current traffie pattorn).

L1 Running Examples

Wi begin cur cxploration of the intaractice botwoen dis-
tribustod SDN eontral Mﬂhﬂlﬂmh‘nl\‘llh WD BeOnarios
that we will =0 & ruRning examphe,

Example 1. Link assigement. Consider an [nbernat Sarvics.
Provider with & number of Points-of-Frosenee v e ¥, and &
number of customers u & [, For ok customer, thare are
multiple redundant connections botweon the customer’s site
and the cperntor's notwark. We ean reprment the eonnections
between the customer sites and the accms routars in the
operator’s netwark os o bipartite graph © = (U7 UV, E),
where an edge {u,v} < E indicatos that there is a network

link from customer site u to tho aceom router in paint-al-

Conclusion

= Local algorithms provide insights on how to design and operate distributed
control plane. Not always literally, requires emulation! (No communication
over customer site!)

- Take-home message 1. Some tasks like matching are inherently global if
they need to be solved optimally. But efficient almost-optimal, local
solutions exist.

= Take-home message 2: Some tasks like spanning tree computations are
iInherently global but they can be locally verified efficiently with minimal
additional communication!

- Take-home message 3: If network changes happen at different time scales,
some pre-processing can speed up other tasks as well. A new non-purely
local model.

= More in paper... ©

- And there are other distributed computing techniques that may be useful for
SDN! See e.g., the upcoming talk on “Software Transactional Networking”

Stefan Schmid (T-Labs)

Backup: Locality Preserving Simulation

Controllers simulate execution on graph:

[backbone] [backbone]
YN[[|
local controllers V
at PoPs
U
Algorithmic view: Reality:
distributed computation of the best controllers V simulate execution:;
matching each node v in V simulates its

iIncident nodes in U

Locality: Controllers only need to communicate with
controllers within 2-hop distance in matching graph.

Stefan Schmid (T-Labs)

Backup: From Local Algorithms to SDN: Link Assignment

A semi-matching problem: Semi-matching

Connect all customers U:
exactly one incident edge. If
a customer u connects to a
POP with c clients connected
to it, the customer u costs c
(not one: quadratic!).

Minimize the average cost of
customers!

[backbone J

The bad news: Generally the problem is inherently global (e.qg.,
a long path that would allow a perfect matching).

The good news: Near-optimal solutions can be found efficiently
and locally! E.g., Czygrinow (DISC 2012): runtime independent
of graph size and local communication only.

Stefan Schmid (T-Labs)

