Provable Data Plane Connectivity
with Local Fast Failover

Introducing OpenFlow Graph Algorithms

Michael Borokhovich (Ben Gurion Uni, Israel)
Liron Schiff (Tel Aviv Uni, Israel)
Stefan Schmid (TU Berlin & T-Labs, Germany)

Provable Data Plane Connectivity
with Local Fast Failover

Graph Algorithms

Michael Borokhovich (Ben Gurion Uni, Israel)
| : Liron Schiff (Tel Aviv Uni, Israel)
p / Stefan Schmid (TU Berlin & T-Labs, Germany)

Robust Routing Mechanisms

Before failover:

 Link failures today are not
uncommon

* Modern networks provide
robust routing mechanisms

* i.e., routing which reacts to
failures

e example: MPLS local and global
path protection

Fast In-band Failover

* Important that failover happens
fast = in-band

* Reaction time in control plane can be
orders of magnitude slower [1]

* For this reason: OpenFlow Local
Fast Failover Mechanism

ctrl plane

e Supports conditional forwarding rules
(depend on the local state of the link:
live or not?)

* Gives fast but local and perhaps

“suboptimal” forwarding sets

e Controller improves globally later...
data plane

4

* Important that failov
fast = in-band

* Reaction time in cont
orders of magnitude

* For this reason: Open
Fast Failover Mechanism y ! / ctrl plane
1‘

» Supports conditional forwarding rules \
(depend on the local state of the link:
live or not?)

fi

* Gives fast but local and perhaps
“suboptimal” forwarding sets

* Controller improves globally later...
data plane

5

* Important that failove
fast = in-band

* Reaction time in cont
orders of magnitude

e For this reason: Open

Fast Failover Mecthanism

Contribution: Very Robust Routing Possible with OpenFlow

Theorem: «ldeal» Forwarding Connectivity Possible

There exist algorithms which guarantee that packets always reach
their destination, independently of the number and locations of
\failures, as long as the remaining network is connected. Y

Contribution: Very Robust Routing Possible with OpenFlow

Theorem: «ldeal» Forwarding Connectivity Possible

There exist algorithms which guarantee that packets always reach
their destination, independently of the number and locations of

\failures, as long as the remaining network is connected. Y
Three algorithms: Essentially classic graph algorithms (routing,
« Modulo graph search) implemented in OpenFlow.

+ Depth-First Make use of tagging to equip packets with
. Breadth-First meta-information to avoid forwarding loops.

Contribution: Very Robust Routing Possible with OpenFlow

Theorem: «ldeal» Forwarding Connectivity Possible

Analysis of their complexity: maximum stretch

The (route length compared to ideal route), number

always reach

]Eh.e of tags, number of OpenFlow rules. antlons of
ai d.
\Jail———~ — Y,
Three algorithms: Essentially classic graph algorithms (routing,
« Modulo graph search) implemented in OpenFlow.

+ Depth-First Make use of tagging to equip packets with
. Breadth-First meta-information to avoid forwarding loops.

Overview of Contributions

High-Level Algorithms

Algorithm 2 Algorithm DFS
Input: current node: v;, input port: in, packet dest: d »
packet failover global params: pkt.start, packet tag array 1- if p + =0 then

PRt e o -
Ollt{put: U}lltliut Algorithm 1 Algorithm Mobp

L: if pkt.start = Input: current node: v;, packet dest: d, packet tag array:

2 out + defa Lot

3 if out failec {Pkt-2; e pht s ar = then
L Output: output port: out

pht.start o
5 pktw.pa 11 if no tag then {same as pkt.v; = 0} .
6: out 1 20 oul + default_route(i,d))
7: else 3: else
gj ! ;:FJ:J{:;;: 4: out « (pkt.v; mod A;)+1
10: out —phta D PREvi+—out
11: ifeut=a, 6 while out failed do pht.v. par do
12: out —pk T: out +— (pkt.v; mod A;)+1

13: goto [19]
14: while out fai - .
9: return out

%

pkt.vi < out

15: out + out -
16: if out = A; + 1 wnen
17: out « pkt.v; par s §rren
18: goto [19] ’j ik "dﬂ
1 +1 then
19: pkt.v;.cur < out 32
20: return out T

Flow-Table Implementations

Flow Table A, — 1

Maich

Instructions

] Gr &, — I, Table Flow Tabla B

1 | Drop [——
m | Instructions
Flow Table A, T
MEh T fpstructions I T
3 ‘ahla
] Cr A, Table 0.2 | Send-Parent) 3 3 | Tabla 5
1 Dirop R s . .
A-2| A-2 | A-1 | Tablea,
Table 5: DFS: Flow Tables of switch 1. A, —1 A, —1 Ay T'ahla O
* T = 7 7, TablE T
1 1 ® T
Flow Table A (Start) 2 2 * I'abla 3
— 3]} = Tahla 4
St _":!r‘t,fh g Instructions .
— T T [GroTToorT -l Al * Table 4,
) 2 | Gr 03] Tabla 1 = A, * Tahle {
T = s o T
) n_| Gr 0.n, Table 1 2 * ® Fwd 2
+ E Table B

Complexity Analysis

THEOREM 1. MoOD ensures data plane connectivity when-

Related Work

T R L LT * Borokhovich, OPODIS'13

[¢

Module nlogd Exp(n) O(n*d)
DFS nlogd 2|E| o(n*d)
BFS nlogd 2kn O(n*d)
BFS* k(logd+logn) 2kn O(n*(d+k))

e [1] Liu et al. NSDI'13

* Graph-search literature

Arramsiane oL Camtributions

We expect that our algorithms scale up to

500-node networks (ignoring link capacities)
(e.g., using our NoviKit 250 switches, with 32MB flow
table space and full support for extended match fields)

Gr A, Table 0.2 (Send-Parent]

able 5: DFS: Flow Tables of switch 4.

v-Table Implementations

Flow Table B
Match . <
I G| .'|.:'-_?.‘l‘"|l‘l' (7T I Instruction
| [1] = phi.v,.par
I I By Table 3
2 2 3 Tahla
El 3 1 Table 5
A, A, - Ac—1 | Table a,
A, — 1 Sy — 1 A Tahle C
= T PRL_T, par
1 1 Table 2
2 I'able 3
3 Tahle 4
W B [able A,
A, A, Tahle C
T Fod T
2 Fwd 2

Complexity Analysis

THEOREM 1. MoOD ensures data plane connectivity when-

{ Module nlogd Exp(n) O(n*d)
DFS nlogd 2|E| O(n*d)
BFS nlogd 2kn O(n*d)

BFS* k(logd+logn) 2kn O(n*(d+k))

Related Work

Borokhovich, OPODIS’13
[1] Liu et al. NSDI’13

Graph-search literature

Orrosmsiconn. of Co=tributions

We expect that our algorithms scale up to

500-node networks (ignoring link capacities) | | :
(e.g., using our NoviKit 250 switches, with 32MB flow /-Table lmp ementations
table space and full support for extended match fields) -

~Tablc Flow Table B
' Match R R
I T | PEL.U,.Cur | phi.v.par I Instructions

— === Inherent tradeoffs between

— e robustness and network load
.| Same objective: ideal connectivity. || oo e O tagging

But their link-reversal algorithms

W A +1

Table S DES. Flow Tables o

not applicable to OpenFlow: require / /: [TR |
dynamic state at router. /

Complexity Analysis\\ %elated Work

Lower bounds with & « Borokhovich, OPODIS’13
e | implications on optimality + [1] Liu et al. NSDI'13

:z, Of our algorlthms' ﬁ O(n*(d+k)) -1 Graph-search literature

Conclusion

* Fast failover: example of a function
that should be kept in the data plane

* QOur result shows that non-trivial functions can be computed in the
OpenFlow data plane!

* Qur algorithms: may serve in compilers for higher-level languages, e.g.,
FatTire

13

Backup Slides

Complexity

* Today switches allow to match a few hundreds bits which can
support a network of few dozens elements

* Some advanced experimental switches allow to match any offset in
the packet thereby supporting huge networks of a few hundreds
elements

* The ability to match every offset is expected to be supported by
future versions of OpenFlow standard

15

OpenFlow Failover in a Nutshell

OpenFlow 101

* OpenFlow based on a pipeline of forwarding tables: each
switch has multiple flow tables and a group table

* Each flow table in the switch contains a set of flow entries;
each flow entry consists of match fields, counters, and an

ordered list of action buckets

* Groups can be applied on a packet while processed

* Each action bucket contains a set of actions to execute, and
provides the ability to define multiple forwarding behaviors

* The group table consists of multiple groups, where different
groups can have different types, e.g., fast failover

Packet
In

port

Action
Set={}

Table

Packet +
ingress port +
metadata

>

OpenFlow Switch

Action
Set

Table

Table
n

Packer ; Execule |
¢ Action =
: Set !

Action
Set

Packet
Out

Each packet carries an Action set: empty at the start, updated while packet is
processed, executed at the end.

Without controller, an OpenFlow
switch forwards according to:

Static configuration

Links status

Packet header

Input port

\—1_> U_J

\
Y

—

Related Theory Literature

 Automata and Labyrinths [Budach 1978]
* No finite automaton can explore all graphs

* Graph exploration by a finite automaton [Fraigniaud, licinkas,
Peerb, Pelcc, Peleg 2005]

* (logn) memory for n nodes graph
* O(D logd) for a graph with diameter D and maximum degree d
(DFS is optimal).

* An Agent Exploration in Unknown Undirected Graphs with

Whiteboards [Sudo, Baba, Nakamura, Ooshita, Kakugawa, Masuzawa
2010]

* O(log d) memory in each node.

Module Algorithm

Algorithm 1 Algorithm MobD

Input: current node: v;, packet dest: d, tags array:
{pkt. Uj }j-.’—: [m]
Output: new next hop: next
1: if no tag then {same as pkt.v; = 0}

2: nert +— de fauwlt_route(i,d)

3: else

4: nert +— (pkt.v; mod A;) + 1
5: pkt.v; +— next

G: while (v;, v,00) is failed do

7: nexrt <+ (pkt.v; mod &) + 1
3: pkt.v; +— next

9: return nexrt

DFS Algorithm

Input: current node: v;, packet dest: d, tags array: T
Output: new next hop: next

1: if pkt.start = 0 then Table A Group 0,
2: nert < de fault_route(i,d) i start=0 and dsiy; =N
3: if (v;,next) failed then :f:fr‘:;?:fﬂd LU A w
4: phkt.start <+ 1 Table B D s=icoi=s
5: pht.v; par <— in e ~ Table x @
G- nert «— 1 if in = ouri] & curli]=A; -
: e goto Table curfi] + 1 -\‘\
T: else ifin = curli] = A I:> if not sent:
5: nert «+— pkt.v;.cur + 1 S b i = ZEE“TSQT: o1 J
9: if nert = A; +1 then thtf::'a]detwm) f sent: Drop
10: next +— pkt.v;. par Group x @
. - r— Table C @
11: goto 17 =
12: while (v;, next) failed or next = pkt.v;.par do forward packet to pari] LU set curfi] = |
13: nert <« next + 1 Frv forward te x
14: if nert = A; + 1 then
15: nexrt < pkt.v;.par Figure 1: DFS Tables illustration for node i.
16: goto 17

phkt.v; .cur +— next
15%: return nexrt

BFS Algorithm

Table A Group 0,
if start=0 and dst=j: w'—\
[apply Group 0,) J try default route for dest j]
goto Table 1 If succeeded:
set sent=1
Table B @-
7 curlil=0 & parlil=0 : It Table x
set parli] = in, goto Table C .
if in = our[i] & cur[i]<A; - . -
goto Table curfi] + 1 if Mot sent:
if in = curli] = A;: apply Group x

goto Table C goto Table x+1
if in = curfi] if sent: Drop

returm packet to in-port ___,.-"

Group x @
Table C @ "

~ ~, !
i set curli] = x
forward packet vo par(i]

setstart =1
L A try forward to x

Figure 2: BFS Tables illustration for node i.

Complexity

Module nlogd Exp(n) O(n*d)
DFS nlog d 2|E| O(n*d)
BFS n log d 2kn O(n*d)

BFS* k(log d+log n) 2kn O(n*(d+k))

