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Before failover: 

Decoupling 

• Link failures today are not 
uncommon 

 

• Modern networks provide 
robust routing mechanisms 

• i.e., routing which reacts to 
failures 

• example: MPLS local and global 
path protection 

Robust Routing Mechanisms 

After failover: 
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• Important that failover happens 
fast = in-band 

• Reaction time in control plane can be 
orders of magnitude slower [1] 

• For this reason: OpenFlow Local 
Fast Failover Mechanism 

• Supports conditional forwarding rules 
(depend on the local state of the link: 
live or not?) 

• Gives fast but local and perhaps 
“suboptimal” forwarding sets 

• Controller improves globally later… 

Fast In-band Failover 

data plane 

ctrl plane 
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However, not much is known about how to use 
the OpenFlow fast failover mechanism.  
E.g.: How many failures can be tolerated 
without losing connectivity?  
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However, not much is known about how to use 
the OpenFlow fast failover mechanism.  
E.g.: How many failures can be tolerated 
without losing connectivity?  

How to use mechanism is a non-trivial problem even if underlying 
network stays connected: (1) conditional failover rules need to be 
allocated ahead of time, without knowing actual failures, (2) views at 
runtime are inherently local.  
How not to shoot in your foot with local fast failover (e.g., create 
forwarding loops)? 



Contribution: Very Robust Routing Possible with OpenFlow 

Theorem: «Ideal» Forwarding Connectivity Possible  

There exist algorithms which guarantee that packets always reach 
their destination, independently of the number and locations of 
failures, as long as the remaining network is connected. 
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Contribution: Very Robust Routing Possible with OpenFlow 

Theorem: «Ideal» Forwarding Connectivity Possible  

There exist algorithms which guarantee that packets always reach 
their destination, independently of the number and locations of 
failures, as long as the remaining network is connected. 

Three algorithms:  

• Modulo 

• Depth-First 

• Breadth-First 

Essentially classic graph algorithms (routing, 
graph search) implemented in OpenFlow. 
Make use of tagging to equip packets with 
meta-information to avoid forwarding loops. 

Analysis of their complexity: maximum stretch 
(route length compared to ideal route), number 
of tags, number of OpenFlow rules. 
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Overview of Contributions 
High-Level Algorithms 

Flow-Table Implementations 

Complexity Analysis Related Work 
• Borokhovich, OPODIS’13 

• [1] Liu et al. NSDI’13 

• Graph-search literature 
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We expect that our algorithms scale up to 

500-node networks (ignoring link capacities) 
(e.g., using our NoviKit 250 switches, with 32MB flow 

table space and full support for extended match fields) 
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We expect that our algorithms scale up to 

500-node networks (ignoring link capacities) 
(e.g., using our NoviKit 250 switches, with 32MB flow 

table space and full support for extended match fields) 

Same objective: ideal connectivity. 
But their link-reversal algorithms 
not applicable to OpenFlow: require 
dynamic state at router. 

Lower bounds with 
implications on optimality 
of our algorithms. 

Inherent tradeoffs between 
robustness and network load 
of failover without tagging. 



Conclusion 

• Fast failover: example of a function 
that should be kept in the data plane 

? 
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• Our result shows that non-trivial functions can be computed in the 
OpenFlow data plane! 

 

• Our algorithms: may serve in compilers for higher-level languages, e.g., 
FatTire 



Backup Slides 



Complexity 

• Today switches allow to match a few hundreds bits which can 
support a network of few dozens elements 

 

• Some advanced experimental switches allow to match any offset in 
the packet thereby supporting huge networks of a few hundreds 
elements 

 

• The ability to match every offset is expected to be supported by 
future versions of OpenFlow standard 
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OpenFlow Failover in a Nutshell 
OpenFlow 101 

• OpenFlow based on a pipeline of forwarding tables: each 
switch has multiple flow tables and a group table 

• Each flow table in the switch contains a set of flow entries; 
each flow entry consists of match fields, counters, and an 
ordered list of action buckets 

• Groups can be applied on a packet while processed 

• Each action bucket contains a set of actions to execute, and 
provides the ability to define multiple forwarding behaviors 

• The group table consists of multiple groups, where different 
groups can have different types, e.g., fast failover 

 

 

 

 

Each packet carries an Action set: empty at the start, updated while packet is 
processed, executed at the end. 

Without controller, an OpenFlow 
switch forwards according to: 

• Static configuration  

• Links status 

• Packet header 

• Input port 

 

 



Related Theory Literature 
• Automata and Labyrinths [Budach 1978] 

• No finite automaton can explore all graphs 

• Graph exploration by a finite automaton [Fraigniaud, Ilcinkas, 
Peerb, Pelcc, Peleg 2005] 

• Ω log 𝑛  memory for n nodes graph 
• Θ 𝐷 log 𝑑  for a graph with diameter D and maximum degree d 

(DFS is optimal). 

• An Agent Exploration in Unknown Undirected Graphs with 
Whiteboards [Sudo, Baba, Nakamura, Ooshita, Kakugawa, Masuzawa 
2010] 

• 𝑂 log 𝑑  memory in each node. 

 



Module Algorithm 



DFS Algorithm 

 



BFS Algorithm 



Complexity 

Algorithm Packet Memory Message count Rules space 

Module n log d Exp(n) O(n*d) 

DFS n log d 2|E| O(n*d) 

BFS n log d 2kn O(n*d) 

BFS* k(log d+log n) 2kn O(n*(d+k)) 


