Fast Automated What-if Analysis and Updates for

Policy-Compliant Networks Even Under Failures
Stefan Schmid (TU Berlin)

Fast Automated What-if Analysis and Updates for

Policy-Compliant Networks Even Under Failures
Stefan Schmid (TU Berlin)

«

AALBORG
UNIVERSITY

In collaboration with Jiri Srba‘s team
at Aalborg University, Denmark

Networks Are Complex

* Many outages are due to network configuration errors = human errors

 Examples (see Ratul Mahajan’s NetVerify.Fun blog):
— The December 2018 CenturyLink outage
— The June 2020 T-Mobile outage
— The July 2020 Cloudflare outage
— The August 2020 CenturyLink outage

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

X Y

8 |lc D G H
£ | e
i O A B E F
Gl G2 PL P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

Cluster with services that X Y Cluster with services that should

should be globally reachable. be accessible only internally.
<
O :
© :
o :
© :
Q .

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X Y
8 N
€ g
O C D G H
£ L e
i O A B E F
Gl G2 PL P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X andY block what is

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X and Y block what is

and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)
Gl GZ Pl P2

o
hd
c
) .
P9 :
{If link (G,X) fails and traffic from G is rerouted via Y

H H
MmN NN RN N RN N E N N E N N E N N E N N E NN EE N EEEEEEEEEEEE AN AN AN AN EEE AN AN AN AN AN AN AN AN AN AN AN AN EEEEEEEEEEEEEEEEEEEEE 5

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

The Hope: Automation

* Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?

The Hope: Automation

Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?

ooo

N

A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard).

Roadmap

A Static Problem: Policy Compliance
Under Failures

— AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

A Dynamic Problem: Scheduling
Consistent Network Updates

— Latte and quantitative extensions (PODC 2015,
ICALP 2018, PERFORMANCE 2021)

Roadmap

A Static Problem: Policy Compliance
Under Failures

— AalWiNes: Fast Automated What-if Analysis
for MPLS Networks (INFOCOM 2018, ACM CoNEXT

201TACAS 2021)

A Dynamic Problem: Scheduling
Consistent Network Updates

— Latte and quantitative extensions (PODC 2015,
ICALP 2018, PERFORMANCE 2021)

How (MPLS) Networks Work

Forwarding based on top label of label stack

Vq Vv, V3 Vy

/\ \ \ Default routing of
two flows

Vs Ve A Vg

How (MPLS) Networks Work

* Forwarding based on top label of label stack

flow 1

Default routing of
two flows

flow 2

How (MPLS) Networks Work

: Forward‘.’ ,a

3 V, out,
in, ' ‘/l \ > Default routing of
two flows

> V; — Vg i Out,

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

in,

_ }W»Vz* V3 -V, g OUL ,

in, 4/1 T \ Default routing of
two flows

Vs —» Vg —— V; —— Vg i OUt,

* For failover: push and pop label

in,
%
-> AV —} v out
in, W i V230|11 h v o P> outs One failure: push 30:
A/'som 21‘\ route around (v,,v,)

Vs —» Vo mp V; — Vg i OUL,

31|11
3121

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

in, W T ‘ Default routing of

two flows

If (v,,v;) failed,
push 30 and
forward to v,.

d pop label

in O

1 0 12
Vv VvV \Y) out .
Normal 23‘\"0”1 | 3 =g V4 ' One failure: push 30:
SWwWa
P /o/'aom 21‘ m route around (v,,v;)

Vs —» Vo mp V; — Vg i OUL,

31|11
3121

Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

1
2 12

in 10
L g ¢
Vv, mlp V, V; = V, o OUL,

in, W 2 Default routing of
T \ two flows
T2V \What about multiple link failures?
push
forward to v,.
* For pop label

in O

1 0 12
Vv VvV \Y) out .
Normal 23‘\"0”1 | 3 =g V4 ! One failure: push 30:
SWa
P /o('wm 21‘ m route around (v,,v;)

Vs — Vo - V; Vg - Out,

31|11
3121

2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

|n1 10
%N

in. W Y1 . v k Y3 ' Va - outy One failure: push 30:
2 Miﬁlii 54\ route around (v,,vs)

Vs — Vg V; — Vg i Out,

31]11

nE push 30 53
in 10 180 5 Two failures:

21 .
_ V, /> Vs —]> V, @ out, first push 30: route
In, *% Po 22 around (v,,V,)
[30]11 1 2,V3
40|30]21 ”n

Push recursively 40:.

oo Vs mallp V malpp V o Vo o OUL,
30111 3111 route around (v,,vg)
30|21 31|21

2 Failures: Push Recursively

in,
: V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

|n1 10
: v1—> vz—*> A —} V, - out;
T VAN

One failure: push 30:

Vg — Vg Vo — Vg But masking links one-by-
giéi one can be inefficient:
in (v5,v3,Vg) could be shortcut
B to (v5,Vg)
7'v8/
G e

40(30(21

Push recursively 40:.
Vs il Vo mallp V; ml VS*OU'E y
30111 3111 route around (v,,vg)
30|21 31021

mZ 4|0|30|11 1‘f 22 O around (VZ,V3)
21

2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!

push 30:

: — > T One failure:
|n2 ' ﬂwlll 11‘“
30121 21
Ve - Vg v, . V. But masking links one-by-
giéi one can be inefficient:
(v5,v3,vg) could be shortcut

to (v-,vg).

in, !mm uf 0O around (v,,V;)

40(30(21

Vs ma VoV, m Vg * out, Push recursively 40:.

30111 3111 route around (v,,vg)
30|21 31|21

2 Failures: Push Recursively

in,
; V1-O> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!

: > T One failure: push 30:
|n2 ' ﬂwlll 11‘&
30121 21

3111

in . Also note: due to push, header size
1 2 . . I
A A _> vz__. V4 may grow arbitrarily!

Ir12 4|0|30|11 1 22 O around (VZ,V3)
40|30|21 n

Vs ma VoV, m Vg * out, Push recursively 40:.

30111 3111 route around (v,,vg)
30|21 31|21

But masking links one-by-

Responsibilities of a Sysadmin

Routers and switches store
list of forwarding rules, and
conditional failover rules.

ey S
T

"

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

Reachability?

&

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Responsibilities of a Sysadmin

E.g. NORDUnet: no traffic via
Iceland (expensive!).

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

* Policy: Is it ensured that traffic from A
to B never goes via C?

* Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

Generalization: service chaining!

Approach: Automation and Formal Methods

T To-T_ [Tn-Label | Outl o
(o1, v2) | push(10)
g ush(20)

T 10)
20 swap(21)
To 1 swap(12)
21 swap(22)
11 swap(12)

Compilation pX — qXX

T 12

Tos 40

Tun 30 swap(31)
30 swap(31)
61 e swap(62)
G

) | swap(72)
31| o) | pon

) | swap(11) pX : q YX
72| (vr,vs) | swap(22)

e

d V) ey V, mp v3;>v4.>out1
in, W %5 TN
. . rY=r

Vs — Vg —— V; —— Vg mpOUL,

local FFT Out-I | In-Label | Out-I op rX ; pX

™ (v2.0s) | 11| (v2,06) | push(30) .
Y L lmes) | 21| (vave) | push(30) Inte rp retation

(v2, v6) 30 (va,vs) | push(40)

alobal FFT | Outl | In-Label | Outl op

Tho (va,v3) 11 (va,v6) | swap(61)

N (v, v3) 21 (vg.vg) | swap(T1)

(v2,) 61 5) | push(40)

(vav6) | 71| (vg.vs) | push(40)

Router configurations Pushdown Automaton and
(Cisco, Juniper, etc.) Prefix Rewriting Systems

Approach: Auto

2
V) s V; mp V3w V- OUT;

/l T 22
- |
Vs — Vg —— V; —— Vg mpOUL,

local FFT Out-I' | In-Label | Out-I op

(v, v3) 11 (v2,v6) | push(30)
(v2,v3) 21 (v9,v6) | push(30)
(v2,v6) 30 (v9,v5) | push(40)
global FFT | Out-I | In-Label | Out-I op

7 (v2, v3) 11 (v2, v6) (6
(v2, v3) 21 (02, v6) (7
(v2,v6) 61 (v2, sh(40)
(v2,ve) 71 (va, sh(40)

Router configurations
(Cisco, Juniper, etc.)

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Compilation

0
Q5

Interpretation

ods

pX = gXX
pX = g¥X
qY = rYY
rY=-r
rX = pX

Pushdown Automaton and
Prefix Rewriting Systems

AalWiNes

Philippines
2 About
MPLS Reachability Analysis & Visualization Tool iy

Indonesia A tool for MPLS reachability analysis and visualization
Model Aarnet

from:

« Aalborg University
Query <ip> [.#Sydneyl] .* [Brisbane2#.] <ip> 0 Timar q

Examples: :
<ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0 arwin
<smpls ip> [.#Sydney1] .* [Brisbane2#.] <mpls* smpls ip> 1 Have a look at the

« University of Vienna

Initial header:
RO CSigleifo B [- #Sydneyl] .* [Brisbane2#.)

Perth2
Final header: ip

Query:

. . & . olomon
| Mlice_Springs irns |
Max link failures: _
Q-
regular

Islands
s Toknsville
expression

Options

Run Validation

1ckhampton
Vi

ide? | Brisbane2 o
Result Satisfied

\ Arml dale
Query: <ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0

2
Melbou rcr?éﬂ;y PeY
<ip6> : [¥ #Sydney1]
° 0 o
<s43,ip6> : [Sydneyl#Brisbanel] @ Dozens of
TA
<544,ip6> : [Brisbanel#Brisbane2]

£ networks
<ip6> : [Brisbane2#®]

Online demo: https://demo.aalwines.cs.aau.dk
Source code: https ithub.com/DEIS-Tools/AalWiNes

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

Example

Can traffic starting with [] go through s5, under up to k=2 failures?

T Query: 3 regular expressions
2 §5 | —— @ (initial and final header, route)
o, \ k=2 [] 51 >>55>>57 []
o YES

" (Polynomial time!)

s1 s4 sé6 s8

Why AalWiNes is Fast (Polytime):
Automata Theory

* For fast verification, we can use the result by Biichi: the
set of all reachable configurations of a pushdown
automaton a is regular set

* We hence simply use Nondeterministic Finite Automata

(NFAs) when reasoning about the pushdown automata Juls Richard Bieh

1924-1984

Swiss logician

* The resulting regular operations are all polynomial time

Case Study: NORDUnet

Regional service provider

24 MIPLS routers geographically —
distributed across several countries

Running Juniper operating system
More than 30,000 labels

Ca. 1 million forwarding rules in our
model

NORDURet Fibre:

For most queries of operators:
answer within seconds

= Commercial Capacity

NORDUnet

Pardic Gateway for Ressanch & Edusation

Generalizes to Quantitative Properties

* AalWiNes can also be used to test quantitative properties

* |f query is satisfied, find trace that minimizes:
* Hops

* Latency (based on a latency value per link)

* Tunnels
Transitions annotated
, with weights.
o0 U

e Approach: weighted pushdown automata

* Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)

* Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

Roadmap

A Static Problem: Policy Compliance
Under Failures

— AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

A Dynamic Problem: Scheduling
Consistent Network Updates

— Latte and quantitative extensions (PODC 2015,
ICALP 2018, PERFORMANCE 2021)

More Adaptable Networks

Automation and programmability also enables networks to be more adaptable

Attractive for:
— Fine-grained traffic engineering (e.g., at Google)
— Accounting for changes in the demand
(spatio-temporal structure)
. . COMMUN{ICATIONS Search P
— Security policy changes ACM o o s oo s e s o v

Home / Magazine Archive / March 2016 (Vol. 59, No. 3) / A Purpose-Built Global Network: Google's Move to SDN / Full Text

— Service relocation
. A Purpose-Built Global Network: Google's Move to SDN
— Maintenance work

Communications of the ACM, March 2016, Vol. 59 No. 3, Pages 46-54

— Link/node failures P

vewss: & 0 © B B swase G o m [

» Forgot Password?
» Create an ACM Web Account

SIGNIN

ARTICLE CONTENTS:
Article

Introduces a New Challenge: Scheduling Updates

Controller Platform

=

Y 4
I V4
v 4
V4
untrusted
hosts

RN

\,/’
DS
/A N

8- -

\ 1
SO

\xl

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Introduces a New Challenge: Scheduling Updates

Controller Platform

¢

asynchronous
’ ? DN

DS
\
S/ M X
untrusted
-8-0- -
\
\

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Introduces a New Challenge: Scheduling Updates

Controller Platform

1 ‘ asynchronous
S

untrusted
hosts

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Latte: Synthesis of
Shortest Consistent Update Schedules

Much work on the design of efficient algorithms for consistent network updates

Our goal: automated synthesis of fast updates accounting for temporal properties
— E.g., different packet types have different requirements and processing times
— Builds upon NetSynth (gives fixed update order)

A classic tool to reason about asynchronous distributed systems: petri nets
— Configurations: tokens located at places

Our extension: Timed-Arc Colored Petri Nets (TACPN)

— Tokens also contain: color information (e.g., different packet types) and time information (e.g.,
modeling age)
— Places and input arcs have time constraints for each color

Latte: Synthesis of
Shortest Consistent Update Schedules

Much work on the design of efficient algorithms for consistent network updates

Our goal: automated synthesis of fast updates accounting for temporal properties
— E.g., different packet types have different requirements and processing times
— Builds upon NetSynth (gives fixed update order)

A classic tool to reason about asynchronous distributed systems: petri nets
— Configurations: tokens located at places

Our extension: Timed-Arc Colored Petri Nets (TACPN)

— Tokens also contain: color information (e.g., different packet types) and time information (e.g.,
modeling age)
— Places and input arcs have time constraints for each color D

200

Example: Encoding Network Updates in TACPNs

Packets can be of

@ Gadget to inject packets: different types

(timings): colors

Color types:
pckType is { VPN, SSH, VoIP}
dot is {e}

Variables:
pek is pckType

Constants:
vpnMaz = 3, sshMax = 1, voipMaz = 3

StartNetwork 1'(dot) 0 So

T
* — [0, 00) 1 (pck) N
[dot] @ I L ‘,‘\O\ [pckType]

=7 VPN < vpnMax

SSH < sshMazx
VoIP < wvoipMaz

Initially: token at Jump to place S, and

this place generate packet of
arbitrary type

Example: Encoding Network Updates in TACPNs

@ Gadget to model switches:

If token up here:

packets go old path

SinitialEnf
7 -~ 3

1/ (pek) 1'(e)
VPN — [vpnMin, vpnMazx]
SSH — [sshMin, sshMax]
VoIP — [voipMin, voipMaxzx]

SSVPN < wpnMaz
SSH < sshMazx
VoIP < wvoipMaz

Stinal

S
[pckType] |

~ =

VPN < upnMaz
SSH < sshMax
VoIP < wvoipMazx

1 (pek)
VPN — [vpnMin, vpnMaxz]
SSH — [sshMin, sshMax]

PN < vpnMaz
VoIP — [voipMin, voipMaxzx] 1’(.)

1'(e) SSH < sshMaz

VoIP < wvoipMaz

~ -

SFinalEnf

If token down here: switch

updated to new path

Example: Encoding Network Updates in TACPNs

@ Gadget to model switches:

If token up here:

packets go old path

SinitialEnf
7 -~ 3

1/ (pek) 1'(e)
VPN — [vpnMin, vpnMazx]
SSH — [sshMin, sshMax]
VoIP — [voipMin, voipMaxzx]

SSVPN < wpnMaz
SSH < sshMazx
VoIP < wvoipMaz

Stinal

S
[pckType] |

~ =

VPN < upnMaz

1 (pek)
VPN — [vpnMin, vpnMaxz]
SSH — [sshMin, sshMax]
VoIP — [voipMin, veipMaz] 1’ (.)

SSH < sshMax
VoIP < wvoipMazx

, “THPN < wpnMaz
1(e) SSH < sshMaz

VoIP < wvoipMaz

Different timing .
constraints for packets SFinalEnf

If token down here: switch

updated to new path

Example: Encoding Network Updates in TACPNs

@ Gadget to model switch update:

How to change between initial and final switch configuration

Constants:
SFiga‘lEnf Min = 50000
{\O\ [dot] Maz = 250000
a

A
,
1'(e) "(o) Slnilic‘l‘lEnf

1
T I‘ * —F [0-, OO) fO| [dot]
W /i
[g

1'(e)
_* = [Min, Maz]

[dot] '\O\ * < Maz
'

StartU'pfdat eS

Starting here, the update can

take time between min and max

Example: Encoding Network Updates in TACPNs

@ Connecting the pieces: initialization of update sequence for all n switches

Constants:
ﬁzi :12550000 StartUpdateS, StartUpdateSg StartUpdateS,
Py o~ N
! I[dot] ! 1[dot]
N~ < Mazx N~ < Max
1'(e) 1'(e)
StartUpdateSequence Step1 Stepn_1 1(e) EndUpdate
1'(e) 1'(e) c. . 1'(e)
[dot] @ - ..O O *—+[Cr1, —I]‘_ \.Q [dot]
* e [dot] Thn * < oo

* < Ch 1

After updating Switch S, (delay C,),
go to Switch S,, etc.

Analysis

The constructed nets can be analyzed efficiently via
their unfolding into existing timed-arc Petri nets.

r
(p.R) (p.G) (p.B) (p,sum)
(5.¢) Y\B<8
(2.B)(7.B) 4 < 10
<1 <1 <8 < oo
R — [5,9] . -
* = [4,7] _%><[4-.r_F _
(2'(z) +3'(Q)) 2 x'[5,9] 5 x [0, o]
unfold
t ANNNNNA binding b(z)=R
4'(fF)
4

[Preserves bisimilarity! }

Improved Latency of Update Schedules

Compared to conservative delays as produced

by NetSynth:
Network | Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement %]
TLex 4 0.74 3.58 0.25 02.30%
Hibernialreland 5 1.02 6.05 0.28 05.50%
Harnet 6 142 9.08 0.28 96.97%
UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 202 16.78 0.28 08.36%
Xeex 10 5.86 26.68 0.28 08.97%
Sunet 11 10.23 3245 0.28 09.15%
SwitchL3 12 18.88 38.78 0.28 09.29%
Psinet 14 89.67 53.01 0.28 09.48%
Uunet 15 211.86 61.05 0.28 09.55%
Renater2010 16 480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%
VilWavenet2011 35 timeout 336.06 295.35 12.11%

Network topologies from the Topology Zoo
Experiments run on a 64-bit Ubuntu 18.04 laptop

Improved Latency of Update Schedules

Compared to conservative delays as produced

by NetSynth:
Network | Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement [%]
TLex 4 0.74 3.58 0.25 02.30%
Hibernialreland 5 1.02 6.05 0.28 05.50%
Harnet 6 1.42 9.08 0.28 96.97%
UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 2.02 16.78 0.28 98.36%
Xeex 10 5.86 26.68 0.28 98.97%
Sunet 11 10.23 3245 0.28 09.15%
] 18.88 38.78 0.28 09.29%
Up to route length 16, optimal update 89.67 53.01 0.28 99 48%
time can be Computed. 211.86 61.05 0.28 99.55%
480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%
VilWavenet2011 35 timeout — J 12.11%

Too many updates concurrently: could be
tackled with static analysis (future work).

Network topologies from the Toj
Experiments run on a 64-bit Ubuntu 18.04 laptop

Conclusion

Finally: networks are moving from manual to more automated
operations

Supported by emerging programmable networks and their solid
theoretical foundations and languages

Automata-theoretical approaches can be used to perform fast what-if
analysis of the policy compliance (e.g., P-Rex, Aal/WiNes, etc.)
— E.g., MPLS networks, but also Segment Routing networks

More adaptive network operations further require tools for consistent
network update scheduling (e.g., Latte)

Current research focus on:
— Accounting for quantitative aspects

— Improving performance further with Al, without losing formal guarantees (e.g.,
configuration of CEGAR)

Further Reading

The AalWines project

https://aalwines.cs.aau.dk/ Netverify.fun

RESEARCH, NETWORK, VERIFICATION

out,

Toward Polynomial-
e i N OF Time Verification of

30[21

Networks with
Infinite State Spaces:
s e e [B An Automata-

fallures, creatl T theory: unbounded) numbes
wide range of important network properties In polynomial time, parameterized by the:

ST e o e e i e Theoretic Approach

<asb<cok

Home Download&Demo About

Stefan Sehmid (
A

Jul 20,

20 - & mins read

—
Jiri Stba (v
‘\ e

Jul 20, 2020 - & mins read

TAPAAL: Tool for Verification of Timed-Arc Petri Nets e ith the increasing scale of communication networks, failures (e.g. link

— 2020.06-30 - TAPAAL won failures) are becoming the norm rather than the exception. Given the

2 gold medals atMCC'20

TAPAAL i a ool for o

+ modeling, simulaton and verlfication of
+ Timed-Arc Peti nats

L 202003-18 - TAPAAL 3.6.1 eritical rola auch netwaorke nlav for anr digital eaciety it ic imnartant tn

« developed at Department of Computer Science at AALborg University in pe
Denmark =

- and avaiable for Linux, Windows and Mac 0S X pltiorms. = = 2018-10-21 - TAPAAL 3.6.0

Timedt-Arc Pati Net (TAPN) i a time extension of the classical Perinet mocl (a 4 2018-04-23 - TAPAAL 3.6:1

commonly used graphical modal of distbuted computations introduced by Carl
Adam Peti n his disseration n 1962). The time extansion wa considar allows for
expict modelling of realime, which Is associated with the tokens i the net
(each tokens has fs own age) and arcs from places to fransitons are labelled by
time inforvls tha restric the age of tokens that can be used in order 1o fre the
raspaciive transiton. In TAPAAL tool a furter extension of this model vith age
invariants, urgent ransilons, transport arcs (which are more expressive than for

s X More news.

1

The TAPAAL tool offers a graphical editor for crawing TAPN models, simulator for experimenting wih the designed nets and &
verification environment that automatically answers logical qusries formulated in a subset of CTL logic (essentially EF. EG, AF. AG

given number
TAPAAL Is now equipped verifiation enginos. 5 TAPAAL (for continuous time semantis,
dscrata tims semaniics and a new eficlent éngine for tha verfication Oplionaly, the user can

TAPAAL and ely on the UPPAAL

References

Resilient Capacity-Aware Routing

Stefan Schmid, Nicolas Schnepf and Jiri Srba.

27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual Conference, March
2021.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjgl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT), Barcelona, Spain, December 2020.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules

Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE) and ACM Performance
Evaluation Review (PER), Milan, Italy, November 2020.

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures

Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.

14th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT), Heraklion/Crete, Greece, December
2018.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

45th International Colloquium on Automata, Languages, and Programming (ICALP), Prague, Czech Republic, July 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks

Stefan Schmid and lJiri Srba.

37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Fabien Geyer and Stefan Schmid.

IFIP Networking, Warsaw, Poland, May 2019.

https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/perf20latte.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/icalp18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/ifip19mpls.pdf

3

	Fast Automated What-if Analysis and Updates for Policy-Compliant Networks Even Under Failures
	Fast Automated What-if Analysis and Updates for Policy-Compliant Networks Even Under Failures
	Networks Are Complex
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	The Hope: Automation
	The Hope: Automation
	Roadmap
	Roadmap
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Approach: Automation and Formal Methods
	Approach: Automation and Formal Methods
	AalWiNes
	Example
	Why AalWiNes is Fast (Polytime):�Automata Theory
	Case Study: NORDUnet
	Generalizes to Quantitative Properties
	Roadmap
	More Adaptable Networks
	Introduces a New Challenge: Scheduling Updates
	Introduces a New Challenge: Scheduling Updates
	Introduces a New Challenge: Scheduling Updates
	Latte: Synthesis of �Shortest Consistent Update Schedules
	Latte: Synthesis of �Shortest Consistent Update Schedules
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Analysis
	Improved Latency of Update Schedules
	Improved Latency of Update Schedules
	Conclusion
	Further Reading
	References
	Questions?

