
Stefan Schmid (TU Berlin)

Fast Automated What-if Analysis and Updates for
Policy-Compliant Networks Even Under Failures

Stefan Schmid (TU Berlin)

Fast Automated What-if Analysis and Updates for
Policy-Compliant Networks Even Under Failures

In collaboration with Jiri Srba‘s team
at Aalborg University, Denmark

Networks Are Complex

3

• Many outages are due to network configuration errors = human errors

• Examples (see Ratul Mahajan‘s NetVerify.Fun blog):
– The December 2018 CenturyLink outage
– The June 2020 T-Mobile outage
– The July 2020 Cloudflare outage
– The August 2020 CenturyLink outage

Example: BGP in
Datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

Da
ta

ce
nt

er

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

4

Example: BGP in
Datacenter

Da
ta

ce
nt

er

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 4

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that
should be globally reachable.

Cluster with services that should
be accessible only internally.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 4

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 4

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 4

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F
If link (G,X) fails and traffic from G is rerouted via Y
and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)

• Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?

• A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard).

The Hope: Automation

5

• Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?

• A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard).

The Hope: Automation

5

zzzzzzzzz…?

Roadmap

• A Static Problem: Policy Compliance
Under Failures
– AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015,

ICALP 2018, PERFORMANCE 2021)

Roadmap

• A Static Problem: Policy Compliance
Under Failures
– AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015,

ICALP 2018, PERFORMANCE 2021)

And SR…

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

7

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

7

flow 2

How (MPLS) Networks Work

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

7

Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

7

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

7

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

7

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

2 Failures: Push Recursively
v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

7pop pop

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

7

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

7

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

7

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint ensurance: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!).

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

8

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

Generalization: service chaining!
8

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Approach: Automation and Formal Methods

9

Approach: Automation and Formal Methods

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

9

AalWiNes

31
Online demo: https://demo.aalwines.cs.aau.dk/
Source code: https://github.com/DEIS-Tools/AalWiNes

Query:
regular

expression

Witness Dozens of
networks

10

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

YES
(Polynomial time!)

2 failures

Example
Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: 3 regular expressions
(initial and final header, route)
k=2 [] s1 >> s5 >> s7 []

11

Why AalWiNes is Fast (Polytime):
Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• For fast verification, we can use the result by Büchi: the
set of all reachable configurations of a pushdown
automaton a is regular set

• We hence simply use Nondeterministic Finite Automata
(NFAs) when reasoning about the pushdown automata

• The resulting regular operations are all polynomial time

12

Case Study: NORDUnet

• Regional service provider
• 24 MPLS routers geographically

distributed across several countries
• Running Juniper operating system
• More than 30,000 labels
• Ca. 1 million forwarding rules in our

model
• For most queries of operators:

answer within seconds

13

Generalizes to Quantitative Properties
• AalWiNes can also be used to test quantitative properties

• If query is satisfied, find trace that minimizes:
• Hops
• Latency (based on a latency value per link)
• Tunnels

• Approach: weighted pushdown automata
• Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)
• Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

14

Transitions annotated
with weights.

Roadmap

• A Static Problem: Policy Compliance
Under Failures
– AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015,

ICALP 2018, PERFORMANCE 2021)

More Adaptable Networks

• Automation and programmability also enables networks to be more adaptable

• Attractive for:
– Fine-grained traffic engineering (e.g., at Google)
– Accounting for changes in the demand

(spatio-temporal structure)
– Security policy changes
– Service relocation
– Maintenance work
– Link/node failures
– …

5

untrusted
hosts

trusted
hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

In NFV: Not necessarily deployed at edge!

Introduces a New Challenge: Scheduling Updates

16

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Introduces a New Challenge: Scheduling Updates

16

asynchronous

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Introduces a New Challenge: Scheduling Updates

16

asynchronous

• per-destination

• shortest paths DAGs

• equal-split

Latte: Synthesis of
Shortest Consistent Update Schedules

• Much work on the design of efficient algorithms for consistent network updates

• Our goal: automated synthesis of fast updates accounting for temporal properties
– E.g., different packet types have different requirements and processing times
– Builds upon NetSynth (gives fixed update order)

• A classic tool to reason about asynchronous distributed systems: petri nets
– Configurations: tokens located at places

• Our extension: Timed-Arc Colored Petri Nets (TACPN)
– Tokens also contain: color information (e.g., different packet types) and time information (e.g.,

modeling age)
– Places and input arcs have time constraints for each color

17

• per-destination

• shortest paths DAGs

• equal-split

Latte: Synthesis of
Shortest Consistent Update Schedules

• Much work on the design of efficient algorithms for consistent network updates

• Our goal: automated synthesis of fast updates accounting for temporal properties
– E.g., different packet types have different requirements and processing times
– Builds upon NetSynth (gives fixed update order)

• A classic tool to reason about asynchronous distributed systems: petri nets
– Configurations: tokens located at places

• Our extension: Timed-Arc Colored Petri Nets (TACPN)
– Tokens also contain: color information (e.g., different packet types) and time information (e.g.,

modeling age)
– Places and input arcs have time constraints for each color

17

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to inject packets:1

Initially: token at
this place

Jump to place S0 and
generate packet of

arbitrary type

Packets can be of
different types

(timings): colors

18

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here:

packets go old path

If token down here: switch
updated to new path

18

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here:

packets go old path

If token down here: switch
updated to new path

Different timing
constraints for packets

18

Example: Encoding Network Updates in TACPNs
Gadget to model switch update:
How to change between initial and final switch configuration

3

Starting here, the update can
take time between min and max

18

Example: Encoding Network Updates in TACPNs

Connecting the pieces: initialization of update sequence for all n switches4

After updating Switch S1 (delay C1),
go to Switch S2, etc.

18

Analysis

The constructed nets can be analyzed efficiently via
their unfolding into existing timed-arc Petri nets.

Preserves bisimilarity!

19

Improved Latency of Update Schedules

• Network topologies from the Topology Zoo
• Experiments run on a 64-bit Ubuntu 18.04 laptop

20

Compared to conservative delays as produced
by NetSynth: over 90% improvement.

Improved Latency of Update Schedules

Up to route length 16, optimal update
time can be computed.

Compared to conservative delays as produced
by NetSynth: over 90% improvement.

• Network topologies from the Topology Zoo
• Experiments run on a 64-bit Ubuntu 18.04 laptop

Too many updates concurrently: could be
tackled with static analysis (future work).

20

Conclusion
• Finally: networks are moving from manual to more automated

operations
• Supported by emerging programmable networks and their solid

theoretical foundations and languages
• Automata-theoretical approaches can be used to perform fast what-if

analysis of the policy compliance (e.g., P-Rex, AalWiNes, etc.)
– E.g., MPLS networks, but also Segment Routing networks

• More adaptive network operations further require tools for consistent
network update scheduling (e.g., Latte)

• Current research focus on:
– Accounting for quantitative aspects
– Improving performance further with AI, without losing formal guarantees (e.g.,

configuration of CEGAR)
21

Further Reading
The AalWines project
https://aalwines.cs.aau.dk/ Netverify.fun

TAPAAL.net

• per-destination

• shortest paths DAGs

• equal-split

References
Resilient Capacity-Aware Routing
Stefan Schmid, Nicolas Schnepf and Jiri Srba.
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual Conference, March
2021.
AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona, Spain, December 2020.
Latte: Improving the Latency of Transiently Consistent Network Update Schedules
Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE) and ACM Performance
Evaluation Review (PER), Milan, Italy, November 2020.
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete, Greece, December
2018.
Congestion-Free Rerouting of Flows on DAGs
Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.
45th International Colloquium on Automata, Languages, and Programming (ICALP), Prague, Czech Republic, July 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning
Fabien Geyer and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.

https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/perf20latte.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/icalp18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/ifip19mpls.pdf

Questions?

	Fast Automated What-if Analysis and Updates for Policy-Compliant Networks Even Under Failures
	Fast Automated What-if Analysis and Updates for Policy-Compliant Networks Even Under Failures
	Networks Are Complex
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	The Hope: Automation
	The Hope: Automation
	Roadmap
	Roadmap
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Approach: Automation and Formal Methods
	Approach: Automation and Formal Methods
	AalWiNes
	Example
	Why AalWiNes is Fast (Polytime):�Automata Theory
	Case Study: NORDUnet
	Generalizes to Quantitative Properties
	Roadmap
	More Adaptable Networks
	Introduces a New Challenge: Scheduling Updates
	Introduces a New Challenge: Scheduling Updates
	Introduces a New Challenge: Scheduling Updates
	Latte: Synthesis of �Shortest Consistent Update Schedules
	Latte: Synthesis of �Shortest Consistent Update Schedules
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Analysis
	Improved Latency of Update Schedules
	Improved Latency of Update Schedules
	Conclusion
	Further Reading
	References
	Questions?

