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Networks Are Complex
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• Many outages are due to network configuration errors = human errors

• Examples (see Ratul Mahajan‘s NetVerify.Fun blog):
– The December 2018 CenturyLink outage
– The June 2020 T-Mobile outage
– The July 2020 Cloudflare outage
– The August 2020 CenturyLink outage



Example: BGP in 
Datacenter
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Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans: 
Reasoning about Policy-Compliance under Failures
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Cluster with services that 
should be globally reachable.

Cluster with services that should
be accessible only internally.

Particularly Challenging for Humans: 
Reasoning about Policy-Compliance under Failures
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Particularly Challenging for Humans: 
Reasoning about Policy-Compliance under Failures

Example: BGP in 
Datacenter
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If link (G,X) fails and traffic from G is rerouted via Y 
and C to X: X announces (does not block) G and H 

as it comes from C. (Note: BGP.)



• Can we automate the verification of the policy-compliance of 
configurations? Even under failures? Or even synthetize them? 

• A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard). 

The Hope: Automation

5



• Can we automate the verification of the policy-compliance of 
configurations? Even under failures? Or even synthetize them? 

• A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard). 

The Hope: Automation

5

zzzzzzzzz…? 



Roadmap

• A Static Problem: Policy Compliance 
Under Failures
– AalWiNes: Fast Automated What-if Analysis 

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015, 

ICALP 2018, PERFORMANCE 2021)
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And SR…



How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8
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How (MPLS) Networks Work
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Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop
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Fast Reroute Around 1 Failure

Default routing of
two flows
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Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)
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If (v2,v3) failed, 
push 30 and 
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What about multiple link failures?



2 Failures: Push Recursively
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But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively
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one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!
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But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size 
may grow arbitrarily!



Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied
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• Policy: Is it ensured that traffic from A 
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Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!).
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?
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B

C
E.g. IDS

… and everything even under multiple failures?!

k failures = 
(𝑛𝑛𝑘𝑘) possibilities

Generalization: service chaining!
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Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Approach: Automation and Formal Methods
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Approach: Automation and Formal Methods

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

9



AalWiNes

31
Online demo: https://demo.aalwines.cs.aau.dk/
Source code: https://github.com/DEIS-Tools/AalWiNes

Query: 
regular 

expression

Witness Dozens of 
networks
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https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes


YES
(Polynomial time!)

2 failures

Example
Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: 3 regular expressions 
(initial and final header, route)
k=2 [] s1 >> s5 >> s7 []

11



Why AalWiNes is Fast (Polytime):
Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• For fast verification, we can use the result by Büchi: the
set of all reachable configurations of a pushdown
automaton a is regular set

• We hence simply use Nondeterministic Finite Automata
(NFAs) when reasoning about the pushdown automata

• The resulting regular operations are all polynomial time 

12



Case Study: NORDUnet

• Regional service provider
• 24 MPLS routers geographically 

distributed across several countries
• Running Juniper operating system
• More than 30,000 labels
• Ca. 1 million forwarding rules in our

model
• For most queries of operators: 

answer within seconds

13



Generalizes to Quantitative Properties
• AalWiNes can also be used to test quantitative properties

• If query is satisfied, find trace that minimizes:
• Hops
• Latency (based on a latency value per link)
• Tunnels

• Approach: weighted pushdown automata
• Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis) 
• Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

14

Transitions annotated 
with weights.



Roadmap

• A Static Problem: Policy Compliance 
Under Failures
– AalWiNes: Fast Automated What-if Analysis 

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015, 

ICALP 2018, PERFORMANCE 2021)



More Adaptable Networks

• Automation and programmability also enables networks to be more adaptable

• Attractive for: 
– Fine-grained traffic engineering (e.g., at Google)
– Accounting for changes in the demand

(spatio-temporal structure)
– Security policy changes
– Service relocation
– Maintenance work
– Link/node failures
– …

5



untrusted
hosts

trusted
hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall! 

In NFV: Not necessarily deployed at edge!

Introduces a New Challenge: Scheduling Updates
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• per-destination

• shortest paths DAGs

• equal-split

Latte: Synthesis of 
Shortest Consistent Update Schedules

• Much work on the design of efficient algorithms for consistent network updates

• Our goal: automated synthesis of fast updates accounting for temporal properties
– E.g., different packet types have different requirements and processing times
– Builds upon NetSynth (gives fixed update order)

• A classic tool to reason about asynchronous distributed systems: petri nets
– Configurations: tokens located at places

• Our extension: Timed-Arc Colored Petri Nets (TACPN)
– Tokens also contain: color information (e.g., different packet types) and time information (e.g., 

modeling age)
– Places and input arcs have time constraints for each color

17
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• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to inject packets:1

Initially: token at 
this place

Jump to place S0 and 
generate packet of 

arbitrary type

Packets can be of 
different types 

(timings): colors

18



• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here: 

packets go old path

If token down here: switch 
updated to new path

18



• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here: 

packets go old path

If token down here: switch 
updated to new path

Different timing 
constraints for packets

18



Example: Encoding Network Updates in TACPNs
Gadget to model switch update:
How to change between initial and final switch configuration 

3

Starting here, the update can 
take time between min and max
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Example: Encoding Network Updates in TACPNs

Connecting the pieces: initialization of update sequence for all n switches4

After updating Switch S1 (delay C1), 
go to Switch S2, etc.

18



Analysis

The constructed nets can be analyzed efficiently via 
their unfolding into existing timed-arc Petri nets.

Preserves bisimilarity!

19



Improved Latency of Update Schedules

• Network topologies from the Topology Zoo 
• Experiments run on a 64-bit Ubuntu 18.04 laptop

20

Compared to conservative delays as produced 
by NetSynth: over 90% improvement.



Improved Latency of Update Schedules

Up to route length 16, optimal update 
time can be computed.

Compared to conservative delays as produced 
by NetSynth: over 90% improvement.

• Network topologies from the Topology Zoo 
• Experiments run on a 64-bit Ubuntu 18.04 laptop

Too many updates concurrently: could be 
tackled with static analysis (future work).

20



Conclusion
• Finally: networks are moving from manual to more automated

operations
• Supported by emerging programmable networks and their solid 

theoretical foundations and languages
• Automata-theoretical approaches can be used to perform fast what-if

analysis of the policy compliance (e.g., P-Rex, AalWiNes, etc.)
– E.g., MPLS networks, but also Segment Routing networks

• More adaptive network operations further require tools for consistent
network update scheduling (e.g., Latte)

• Current research focus on:
– Accounting for quantitative aspects
– Improving performance further with AI, without losing formal guarantees (e.g., 

configuration of CEGAR)
21



Further Reading
The AalWines project 
https://aalwines.cs.aau.dk/ Netverify.fun

TAPAAL.net



• per-destination

• shortest paths DAGs

• equal-split
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