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Networks Are Complex

* Many outages are due to network configuration errors = human errors

 Examples (see Ratul Mahajan’s NetVerify.Fun blog):
— The December 2018 CenturyLink outage
— The June 2020 T-Mobile outage
— The July 2020 Cloudflare outage
— The August 2020 CenturyLink outage



Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
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Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.



Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
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should be globally reachable. be accessible only internally.
<
O :
© :
o :
© :
Q .

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.



Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).
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Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.



Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X andY block what is

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.



Particularly Challenging for Humans:
Reasoning icy-Compliance under Failures

X and Y announce to
Internet what is from
G* (prefix).

X and Y block what is

and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)
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Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.



The Hope: Automation

* Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?



The Hope: Automation

Can we automate the verification of the policy-compliance of
configurations? Even under failures? Or even synthetize them?
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A main challenge: should be fast as network configurations are not only
complex for humans but also computers (many problems PSPACE-hard).



Roadmap

A Static Problem: Policy Compliance
Under Failures

— AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

A Dynamic Problem: Scheduling
Consistent Network Updates

— Latte and quantitative extensions (PODC 2015,
ICALP 2018, PERFORMANCE 2021)
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How (MPLS) Networks Work

Forwarding based on top label of label stack
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* Forwarding based on top label of label stack

flow 1

Default routing of
two flows
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Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)
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Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

in, W T ‘ Default routing of

two flows

If (v,,v;) failed,
push 30 and
forward to v,.

d pop label
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Fast Reroute Around 1 Failure

* Forwarding based on top label of label stack (in packet header)

1
2 12

in 10
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Vv, mlp V, V; = V, o OUL,

in, W 2 Default routing of
T \ two flows
T2V \What about multiple link failures?
push
forward to v,.
* For pop label
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2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing
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Push recursively 40:.
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2 Failures: Push Recursively

in,
: V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

|n1 10
: v1—> vz—*> A —} V, - out;
T VAN

One failure: push 30:

Vg — Vg Vo — Vg But masking links one-by-
giéi one can be inefficient:
in (v5,v3,Vg) could be shortcut
B to (v5,Vg)
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2 Failures: Push Recursively

in,
; V1-0> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!
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2 Failures: Push Recursively

in,
; V1-O> Vz-b V3 mmlp- V, g OUL,
in, ‘/l T \ Original Routing

More efficient but also more complex:
Cisco does not recommend using this option!

: > T One failure: push 30:
|n2 ' ﬂwlll 11‘&
30121 21

3111

in . Also note: due to push, header size
1 2 . . I
A A _> vz_\_. V4 may grow arbitrarily!

Ir12 4|0|30|11 1 22 O around (VZ,V3)
40|30|21 n

Vs ma VoV, m Vg * out, Push recursively 40:.

30111 3111 route around (v,,vg)
30|21 31|21

But masking links one-by-




Responsibilities of a Sysadmin

Routers and switches store
list of forwarding rules, and
conditional failover rules.
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Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

Reachability?
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by the forwarding rules loop-free?




Responsibilities of a Sysadmin

E.g. NORDUnet: no traffic via
Iceland (expensive!).

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?
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routed via a node C (e.g., intrusion
detection system or a firewall)?




... and everything even under multiple failures?!
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... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

Generalization: service chaining!



Approach: Automation and Formal Methods

T To-T_ [ Tn-Label | Outl o
(o1, v2) | push(10)
g ush(20)

T 10 )
20 swap(21)
To 1 swap(12)
21 swap(22)
11 swap(12)

Compilation pX — qXX

T 12

Tos 40

Tun 30 swap(31)
30 swap(31)
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local FFT Out-I | In-Label | Out-I op rX ; pX

™ (v2.0s) | 11| (v2,06) | push(30) .
Y L lmes) | 21| (vave) | push(30) Inte rp retation

(v2, v6) 30 (va,vs) | push(40)

alobal FFT | Outl | In-Label | Outl op

Tho (va,v3) 11 (va,v6) | swap(61)

N (v, v3) 21 (vg.vg) | swap(T1)

(v2, ) 61 5) | push(40)

(vav6) | 71| (vg.vs) | push(40)

Router configurations Pushdown Automaton and
(Cisco, Juniper, etc.) Prefix Rewriting Systems



Approach: Auto

2
V) s V; mp V3w V- OUT;

/l T 22
- |
Vs — Vg —— V; —— Vg mpOUL,

local FFT Out-I' | In-Label | Out-I op

(v, v3) 11 (v2,v6) | push(30)
(v2,v3) 21 (v9,v6) | push(30)
(v2,v6) 30 (v9,v5) | push(40)
global FFT | Out-I | In-Label | Out-I op

7 (v2, v3) 11 (v2, v6) (6
(v2, v3) 21 (02, v6) (7
(v2,v6) 61 (v2, sh(40)
(v2,ve) 71 (va, sh(40)

Router configurations
(Cisco, Juniper, etc.)

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Compilation

0
Q5

Interpretation

ods

pX = gXX
pX = g¥X
qY = rYY
rY=-r
rX = pX

Pushdown Automaton and
Prefix Rewriting Systems



AalWiNes

Philippines
2 About
MPLS Reachability Analysis & Visualization Tool iy

Indonesia A tool for MPLS reachability analysis and visualization
Model Aarnet

from:

« Aalborg University
Query <ip> [.#Sydneyl] .* [Brisbane2#.] <ip> 0 Timar q

Examples: :
<ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0 arwin
<smpls ip> [.#Sydney1] .* [Brisbane2#.] <mpls* smpls ip> 1 Have a look at the

« University of Vienna

Initial header:
RO CSigleifo B [ - #Sydneyl] .* [Brisbane2#.)

Perth2
Final header: ip

Query:

. . & . olomon
| Mlice_Springs irns |
Max link failures: _
Q-
regular

Islands
s Toknsville
expression

Options

Run Validation

1ckhampton
Vi

ide? | Brisbane2 o
Result Satisfied

\ Arml dale
Query: <ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0

2
Melbou rcr?éﬂ;y PeY
<ip6> : [ ¥ #Sydney1]
° 0 o
<s43,ip6> : [Sydneyl#Brisbanel] @ Dozens of
TA
<544,ip6> : [Brisbanel#Brisbane2]

£ networks
<ip6> : [Brisbane2#® ]

Online demo: https://demo.aalwines.cs.aau.dk
Source code: https ithub.com/DEIS-Tools/AalWiNes


https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

Example

Can traffic starting with [] go through s5, under up to k=2 failures?

T Query: 3 regular expressions
2 §5 | —— @ (initial and final header, route)
o, \ k=2 [] 51 >>55>>57 []
o YES

" (Polynomial time!)

s1 s4 sé6 s8



Why AalWiNes is Fast (Polytime):
Automata Theory

* For fast verification, we can use the result by Biichi: the
set of all reachable configurations of a pushdown
automaton a is regular set

* We hence simply use Nondeterministic Finite Automata

(NFAs) when reasoning about the pushdown automata Juls Richard Bieh

1924-1984

Swiss logician

* The resulting regular operations are all polynomial time



Case Study: NORDUnet

Regional service provider

24 MIPLS routers geographically —
distributed across several countries

Running Juniper operating system
More than 30,000 labels

Ca. 1 million forwarding rules in our
model

NORDURet Fibre:

For most queries of operators:
answer within seconds

= Commercial Capacity

NORDUnet

Pardic Gateway for Ressanch & Edusation




Generalizes to Quantitative Properties

* AalWiNes can also be used to test quantitative properties

* |f query is satisfied, find trace that minimizes:
* Hops

* Latency (based on a latency value per link)

* Tunnels
Transitions annotated
, with weights.
o0 U

e Approach: weighted pushdown automata

* Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)

* Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis



Roadmap

A Static Problem: Policy Compliance
Under Failures

— AalWiNes: Fast Automated What-if Analysis

for MPLS Networks (INFOCOM 2018, ACM CoNEXT
2018, ACM CoNEXT 2019, TACAS 2021)

A Dynamic Problem: Scheduling
Consistent Network Updates

— Latte and quantitative extensions (PODC 2015,
ICALP 2018, PERFORMANCE 2021)




More Adaptable Networks

Automation and programmability also enables networks to be more adaptable

Attractive for:
— Fine-grained traffic engineering (e.g., at Google)
— Accounting for changes in the demand
(spatio-temporal structure)
. . COMMUN{ICATIONS Search P
— Security policy changes ACM o o s oo s e s o v

Home / Magazine Archive / March 2016 (Vol. 59, No. 3) / A Purpose-Built Global Network: Google's Move to SDN / Full Text

— Service relocation
. A Purpose-Built Global Network: Google's Move to SDN
— Maintenance work

Communications of the ACM, March 2016, Vol. 59 No. 3, Pages 46-54

— Link/node failures P

vewss: & 0 © B B swase G o m [

» Forgot Password?
» Create an ACM Web Account

SIGNIN

ARTICLE CONTENTS:
Article




Introduces a New Challenge: Scheduling Updates

Controller Platform
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Invariant: Traffic from untrusted hosts to trusted hosts via firewall!
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Introduces a New Challenge: Scheduling Updates

Controller Platform

1 ‘ asynchronous
S

untrusted
hosts

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!



Latte: Synthesis of
Shortest Consistent Update Schedules

Much work on the design of efficient algorithms for consistent network updates

Our goal: automated synthesis of fast updates accounting for temporal properties
— E.g., different packet types have different requirements and processing times
— Builds upon NetSynth (gives fixed update order)

A classic tool to reason about asynchronous distributed systems: petri nets
— Configurations: tokens located at places

Our extension: Timed-Arc Colored Petri Nets (TACPN)

— Tokens also contain: color information (e.g., different packet types) and time information (e.g.,
modeling age)
— Places and input arcs have time constraints for each color



Latte: Synthesis of
Shortest Consistent Update Schedules

Much work on the design of efficient algorithms for consistent network updates

Our goal: automated synthesis of fast updates accounting for temporal properties
— E.g., different packet types have different requirements and processing times
— Builds upon NetSynth (gives fixed update order)

A classic tool to reason about asynchronous distributed systems: petri nets
— Configurations: tokens located at places

Our extension: Timed-Arc Colored Petri Nets (TACPN)

— Tokens also contain: color information (e.g., different packet types) and time information (e.g.,
modeling age)
— Places and input arcs have time constraints for each color D
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Example: Encoding Network Updates in TACPNs

Packets can be of

@ Gadget to inject packets: different types

(timings): colors

Color types:
pckType is { VPN, SSH, VoIP}
dot is {e}

Variables:
pek is pckType

Constants:
vpnMaz = 3, sshMax = 1, voipMaz = 3

StartNetwork 1'(dot) 0 So

T
* — [0, 00) 1 (pck) N
[dot] @ I L ‘,‘\O\ [pckType]

=7 VPN < vpnMax

SSH < sshMazx
VoIP < wvoipMaz

Initially: token at Jump to place S, and

this place generate packet of
arbitrary type




Example: Encoding Network Updates in TACPNs

@ Gadget to model switches:

If token up here:

packets go old path

SinitialEnf
7 -~ 3

1/ (pek) 1'(e)
VPN — [vpnMin, vpnMazx]
SSH — [sshMin, sshMax]
VoIP — [voipMin, voipMaxzx]

SSVPN < wpnMaz
SSH < sshMazx
VoIP < wvoipMaz

Stinal

S
[pckType] |

~ =

VPN < upnMaz
SSH < sshMax
VoIP < wvoipMazx

1 (pek)
VPN — [vpnMin, vpnMaxz]
SSH — [sshMin, sshMax]

PN < vpnMaz
VoIP — [voipMin, voipMaxzx] 1’(.)

1'(e) SSH < sshMaz

VoIP < wvoipMaz

~ -

SFinalEnf

If token down here: switch

updated to new path



Example: Encoding Network Updates in TACPNs

@ Gadget to model switches:

If token up here:

packets go old path

SinitialEnf
7 -~ 3

1/ (pek) 1'(e)
VPN — [vpnMin, vpnMazx]
SSH — [sshMin, sshMax]
VoIP — [voipMin, voipMaxzx]

SSVPN < wpnMaz
SSH < sshMazx
VoIP < wvoipMaz

Stinal

S
[pckType] |

~ =

VPN < upnMaz

1 (pek)
VPN — [vpnMin, vpnMaxz]
SSH — [sshMin, sshMax]
VoIP — [voipMin, veipMaz] 1’ (.)

SSH < sshMax
VoIP < wvoipMazx

, “THPN < wpnMaz
1(e) SSH < sshMaz

VoIP < wvoipMaz

Different timing .
constraints for packets SFinalEnf

If token down here: switch

updated to new path



Example: Encoding Network Updates in TACPNs

@ Gadget to model switch update:

How to change between initial and final switch configuration

Constants:
SFiga‘lEnf Min = 50000
{\O\ [dot] Maz = 250000
a

A
,
1'(e) "(o) Slnilic‘l‘lEnf

1
T I‘ * —F [0-, OO) fO| [dot]
W /i
[ g

1'(e)
_* = [Min, Maz]

[dot] '\O\ * < Maz
'

StartU'pfdat eS

Starting here, the update can

take time between min and max




Example: Encoding Network Updates in TACPNs

@ Connecting the pieces: initialization of update sequence for all n switches

Constants:
ﬁzi :12550000 StartUpdateS, StartUpdateSg StartUpdateS,
Py o~ N
! I[dot] ! 1[dot]
N~ < Mazx N~ < Max
1'(e) 1'(e)
StartUpdateSequence Step1 Stepn_1 1(e) EndUpdate
1'(e) 1'(e) c. . 1'(e)
[dot] @ - ..O O *—+[Cr1, —I]‘_ \.Q [dot]
* e [dot] Thn * < oo

* < Ch 1

After updating Switch S, (delay C,),
go to Switch S,, etc.



Analysis

The constructed nets can be analyzed efficiently via
their unfolding into existing timed-arc Petri nets.

r
(p.R) (p.G) (p.B) (p,sum)
(5.¢) Y\B<8
(2.B)(7.B) 4 < 10
<1 <1 <8 < oo
R — [5,9] . -
* = [4,7] _%><[4-.r_F _
(2'(z) +3'(Q)) 2 x'[5,9] 5 x [0, o]
unfold
t ANNNNNA binding b(z)=R
4'(fF)
4

[ Preserves bisimilarity! }




Improved Latency of Update Schedules

Compared to conservative delays as produced

by NetSynth:
Network | Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement %]
TLex 4 0.74 3.58 0.25 02.30%
Hibernialreland 5 1.02 6.05 0.28 05.50%
Harnet 6 142 9.08 0.28 96.97%
UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 202 16.78 0.28 08.36%
Xeex 10 5.86 26.68 0.28 08.97%
Sunet 11 10.23 3245 0.28 09.15%
SwitchL3 12 18.88 38.78 0.28 09.29%
Psinet 14 89.67 53.01 0.28 09.48%
Uunet 15 211.86 61.05 0.28 09.55%
Renater2010 16 480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%
VilWavenet2011 35 timeout 336.06 295.35 12.11%

Network topologies from the Topology Zoo
Experiments run on a 64-bit Ubuntu 18.04 laptop



Improved Latency of Update Schedules

Compared to conservative delays as produced

by NetSynth:
Network | Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement [%]
TLex 4 0.74 3.58 0.25 02.30%
Hibernialreland 5 1.02 6.05 0.28 05.50%
Harnet 6 1.42 9.08 0.28 96.97%
UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 2.02 16.78 0.28 98.36%
Xeex 10 5.86 26.68 0.28 98.97%
Sunet 11 10.23 3245 0.28 09.15%
] 18.88 38.78 0.28 09.29%
Up to route length 16, optimal update 89.67 53.01 0.28 99 48%
time can be Computed. 211.86 61.05 0.28 99.55%
480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%
VilWavenet2011 35 timeout — J 12.11%

Too many updates concurrently: could be
tackled with static analysis (future work).

Network topologies from the Toj
Experiments run on a 64-bit Ubuntu 18.04 laptop



Conclusion

Finally: networks are moving from manual to more automated
operations

Supported by emerging programmable networks and their solid
theoretical foundations and languages

Automata-theoretical approaches can be used to perform fast what-if
analysis of the policy compliance (e.g., P-Rex, Aal/WiNes, etc.)
— E.g., MPLS networks, but also Segment Routing networks

More adaptive network operations further require tools for consistent
network update scheduling (e.g., Latte)

Current research focus on:
— Accounting for quantitative aspects

— Improving performance further with Al, without losing formal guarantees (e.g.,
configuration of CEGAR)



Further Reading

The AalWines project

https://aalwines.cs.aau.dk/ Netverify.fun
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TAPAAL: Tool for Verification of Timed-Arc Petri Nets e ith the increasing scale of communication networks, failures (e.g. link

— 2020.06-30 - TAPAAL won failures) are becoming the norm rather than the exception. Given the

2 gold medals atMCC'20

TAPAAL i a ool for o

+ modeling, simulaton and verlfication of
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commonly used graphical modal of distbuted computations introduced by Carl
Adam Peti n his disseration n 1962). The time extansion wa considar allows for
expict modelling of realime, which Is associated with the tokens i the net
(each tokens has fs own age) and arcs from places to fransitons are labelled by
time inforvls tha restric the age of tokens that can be used in order 1o fre the
raspaciive transiton. In TAPAAL tool a furter extension of this model vith age
invariants, urgent ransilons, transport arcs (which are more expressive than for
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The TAPAAL tool offers a graphical editor for crawing TAPN models, simulator for experimenting wih the designed nets and &
verification environment that automatically answers logical qusries formulated in a subset of CTL logic (essentially EF. EG, AF. AG

given number
TAPAAL Is now equipped verifiation enginos. 5 TAPAAL (for continuous time semantis,
dscrata tims semaniics and a new eficlent éngine for tha verfication Oplionaly, the user can
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