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Interconnecting networks:  

a critical infrastructure

of our digital society.

+network

The Challenge
Growing Traffic, e.g., due to AI/ML
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An Inefficiency
Fixed and Demand-Oblivious Topology

How to interconnect? Focus on this talk: scale-out network.
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⇢ Example: fat-tree topology (bi-regular) 

⇀ 2 types of switches: top-of-rack (ToR) connect to hosts, 

additional switches connecting switches to increase throughput
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⇢ Example: expander topology (uni-regular) 

⇀ Only 1 type of switches: 

lower installation and management overheads

An Inefficiency
Fixed and Demand-Oblivious Topology



Highway which ignores 

actual traffic: frustrating!
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Highway which ignores 

actual traffic: frustrating!

Many flavors, but in 

common: fixed and oblivious 

(“ignorant”) to actual demand.
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A Vision
Flexible and Demand-Aware Topologies
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A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:
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new flexible
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Analogy

Golden Gate Zipper
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Different 

structures!

Griner et al., SIGMETRICS 2020 6

The Motivation
Much Structure in the Demand: Complexity Map



Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!
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Sounds crazy?
Optical circuit switches are already deployed
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Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
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The Big Picture
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Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Reality more complicated than that…

Challenge: Traffic Diversity

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

23
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Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius
(SIGCOMM‘20), 
Mars 
(SIGMETRICS‘23) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static
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Which approach 
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Examples: 
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A Solution: Cerberus

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

We have a first approach: 

Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022
36
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Flow Size Matters

37

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 

14
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Similar tradeoff for 

400Gbps or 800Gpbs
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Cerberus

1 2 3 4 5 6 7 8

Optical Switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: Small flows go via static switches…

44
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … medium flows via rotor switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 46
15



flow sizes

Cerberus
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Cerberus Framework  

Websearch- 2010

Datamining- 2011
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n ToRs

k spine switches

reconfig times

𝑹𝒓, 𝑹𝒅, 𝜹

Optimal Partition

(static, rotor, 

demand-aware)

flow size thresholds 

(small, medium, large)

Throughput analysis

vs Rotor-Net and Expander-Net

16



Throughput Analysis

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…

48

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

⇒

Throughput of network 𝜽∗:
worst case 𝑇

50

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput: Expander-Net

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

static-net

51

Permutation matrix

Bandwidth tax
Expected path length

Namyar et al., SIGCOMM 2021
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Throughput: Demand-Aware

𝑇

Demand Matrix

52

Permutation matrix

Permutation matrix is the best demand matrix for demand-aware net!

19



Throughput: Cerberus

𝑇

Demand Matrix
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Throughput: Summary

𝑇

Demand Matrix

For the given 

input 

parameters:

n, k, Rd, Rr

54
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Throughput Bounds

⇀ Throughput bounds for many designs not fully understood yet

⇀ Particularly simple demand-aware network design: Vermillion*

⇀ Periodic reconfigurations (like Sirius) which can be adapted

⇀ How close can we approximate self-adjusting netowrks?

Addanki et al., arXiv 2025: 
https://arxiv.org/pdf/2405.20869

Addanki et al., Vermillion: 
https://arxiv.org/pdf/2504.09892

22

https://arxiv.org/pdf/2405.20869
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⇢ Reconfigurable datacenter networks naturally support 

heterogeneous network elements 

⇢ And therefore also incremental hardware upgrades

More benefits of optical & 
reconfigurable switching

23

See interview with Amin Vahdat, Google in CACM: 

https://www.youtube.com/watch?v=IxcV1gu8ETA 



⇢ Experimental frameworks

Research at INET (1) 
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⇢ How to control RDCNs on the network layer (using local routing)

Research at INET (2) 
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⇢ Congestion control for highly dynamic networks

Research at INET (3) 

24



⇢ Making demand-aware RDCNs more practical (direct routing only)

Research at INET (4) 

24



⇢ Buffering aspects

Research at INET (5) 

24



⇢ How to efficiently collect and exploit information about flows

Research at INET (6) 

24



Thank you! Questions?

Slides 

available 

here: 



Online Video Course

64
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YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course


http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites



June’25 CACM Article

67
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