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Spectrum of Networking Research at Uni Vienna

Algorithms (e.g. virtual 
network embedding, e.g., 

SDN network updates)

Security (e.g., of 
virtual switches)

Machine learning 
(exploring…)

Formal method
(hot now, e.g., WNetKAT)

Looking for PhD students, Summer 
interns, project partners, …



E.g., Security Analysis of OVS 
ACM SOSR 2018 Best Paper



Virtual Switches are Complex, e.g.: 
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Compromising the Cloud
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E.g., Consistent Flow Rerouting for SDN
PODC 2015, SIGMETRICS 2016, ICALP 2018
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E.g., following up on HUJI…
DSN 2017, CCR 2018



Local Fast Rerouting

• Failover without invoking control
plane

• Perfect resiliency: Schapira et al. 
(INFOCOM, ICALP, etc.)

• But what about load? Related to
symmetric block design theory
(BIBDs) and distributed computing 
without communication!
– Order in which to choose arborescences

Ctrl

9



Roadmap

• Networks are increasingly complex: a case for 
formal methods?

• Networks are increasingly flexible: a case for self-
adjusting networks?

000



Managing Complex Networks is 
Hard for Humans



Human Errors

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes 
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted 
router data tables.

Experienced a network connectivity issue […] interrupted the airline's 
flight departures, airport processing and reservations systems

Credits: Nate Foster

Datacenter, enterprise, carrier networks: mission-critical infrastructures.
But even techsavvy companies struggle to provide reliable operations.
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If link (G,X) fails and traffic from G is rerouted via Y 
and C to X: X announces (does not block) G and H 

as it comes from C. (Note: BGP.)
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The Case for Automation!
Role of Formal Methods?

Managing Complex Networks is 
Hard for Humans



Example: MPLS Networks

Default routing of
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Default routing of
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Example: MPLS Networks
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2 Failures: Push Recursively
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first push 30: route 
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Push recursively 40: 
route around (v2,v6)

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size 
may grow arbitrarily!
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Failover Tables

Flow Table

Protected 
link Alternative 

link
Label

Forwarding Tables for Our Example

Version which does not 
mask links individually!

18



MPLS Tunnels in 
Today‘s ISP Networks

19



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!).
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

E.g. IDS

… and everything even under multiple failures?!

k failures = 

(
𝑛
𝑘
) possibilities
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So what formal methods offer here?

A lot!
INFOCOM 2018



MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

22



Leveraging Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!
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• Network: a 7-tuple

Mini-Tutorial: A Network Model

Nodes

Links

Incoming 
interfaces

Outgoing 
interfaces

Set of labels in 
packet header

23



Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is:                               and

Interface 
function

• Network: a 7-tuple

Mini-Tutorial: A Network Model

23



• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers, 
outgoing interfaces together with modified headers. 

Routing 
function

Mini-Tutorial: A Network Model
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out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing in Network

• Example: routing (in)finite sequence of tuples

Node 
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these 
links are down.

v1

h1

v2

h2 h3

in1 in2

24



Pop:

Push:

Swap:

Example Rules: 
Regular Forwarding on Top-Most Label

Push label on 
stack

Swap top of 
stack

Pop top of 
stack

25



Failover-Push:

Example Failover Rules 

Emumerate all 
rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first backup Try second backup



A Complex and Big Formal Language! 
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 

(
𝑛
𝑘
) possibilities

27
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This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown 
stack symbols, not the labels of transitions.

k failures = 

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!
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Time for Automata Theory!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite 
Automata (NFAs) when reasoning about the pushdown 
automata

• The resulting regular operations are all polynomial time 

• Important result of model checking

28



Preliminary Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS

• Using Moped tool

29



YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

30



But What About Other Networks?!

Rules of general networks (e.g., SDN): 

arbitrary header rewriting vs
in x L* → out x L*

The clue: exploit the specific structure of MPLS rules.

(Simplified) MPLS rules: 

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h 
of packets arriving at in,

and define to which port out to 
forward as well as new header h’. 



Roadmap

• Networks are increasingly complex: a case for 
formal methods?

• Networks are increasingly flexible: a case for self-
adjusting networks?

000



Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

The new 
frontier!

Flexibility of communication networks 

33
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What do self-adjusting networks offer?

Toward entropy-proportional routing
DISC 2017 (+ a BA), ANCS 2018, arXiv 2018



A Brief History of Self-Adjusting Networks

Demand-Oblivious

Fixed

Demand-Aware

Fixed Reconfigurable

Focus on datacenters but more general…

36



Traditional Networks
• Lower bounds and hard trade-offs, 

e.g., degree vs diameter

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies: 
provide full bisection bandwidth



Traditional Networks
• Lower bounds and hard trade-offs, 

e.g., degree vs diameter

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies: 
provide full bisection bandwidth

Vision: DANs and SANs
• DAN: Demand-Aware Network

– Statically optimized toward the 
demand

• SAN: Self-Adjusting Network

– Dynamically optimized toward the 
(time-varying) demand

TOR switches

Mirrors

Lasers



Empirical Motivation

Heatmap of rack-to-rack traffic
ProjecToR @ SIGCOMM 2016

• Real traffic pattners are far from
random: sparse structure

• Little to no communication
between certain nodes

A case for DANs! 

• But also changes over time

A case for SANs!

Structure!

38
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Analogous to Datastructures: Oblivious…

Demand-Oblivious

Fixed

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand: 

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many many many many

Many requests 
for leaf 1…

… then for 
leaf 3…

many
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Demand-Oblivious

Fixed

many many many many

Many requests 
for leaf 1…

… then for 
leaf 3…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand: 

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many

Amortized cost corresponds 
to max entropy of demand!

Analogous to Datastructures: Oblivious…
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Demand-Aware

Fixed Reconfigurable

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• Optimize: place frequently accessed
elements close to the root
– Recall example demand: 

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• E.g., Mehlhorn trees

• Amortized cost O(loglog n)

Amortized cost corresponds 
to empirical entropy of demand!

loglog n

… Demand-Aware …
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Demand-Aware

Fixed Reconfigurable

• Demand-aware reconfigurable BSTs 
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e., 
O(1)
– Recall example demand:       

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Self-adjusting BSTs e.g., useful for 
implementing caches or garbage
collection

… Self-Adjusting!
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Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup O(log n) Exploit spatial locality: 
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

42



Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality: Route 
lengths depend on

conditional entropy of demand

Exploit temporal locality as well
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Oblivious Networks…

Demand-Oblivious

Fixed

• Traditional, fixed networks (e.g. expander)

• Optimize for the worst-case

• Constant degree: communication partners
at distance O(log n) from each other, 
uniformly and independently of their
communication frequency

• Example

demands: 
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Oblivious Networks…

• Traditional, fixed networks (e.g. expander)

• Optimize for the worst-case

• Constant degree: communication partners
at distance O(log n) from each other, 
uniformly and independently of their
communication frequency

• Example

demands: 

Conditional entropy constant:
DANs would be much better!

Demand-Oblivious

Fixed

44



… DANs …

• Demand-aware fixed networks can
take advantage of spatial locality

• Optimize: place frequently
communicating nodes close

• O(1) routes for our demands:

Demand-Aware

Fixed Reconfigurable
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Demand-Aware

Fixed Reconfigurable• Demand-aware reconfigurable 
networks can additionally take
advantage of temporal locality

• By moving communicating
elements close

… SANs!



Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

Diving a Bit Deeper: DAN
Workload: can be seen 

as graph as well.
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Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

Much from 4 to 5.

Makes sense to add link!

Diving a Bit Deeper: DAN
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Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

1 communicates to many.

Bounded degree: route 
to 7 indirectly.

Diving a Bit Deeper: DAN
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DAN: Relationship to…

Sparse, low-distortion graph spanners 
– Similar: keep distances in a „compressed

network“ (few edges)

– But: 
• We only care about path length between 

communicating nodes, not all node pairs

• We want constant degree

• Not restricted to subgraph but can have
„additional links“ (like geometric spanners)

extra link

degree

don‘t care 
about 4-6



DAN: Relationship to…

Minimum Linear Arrangement (MLA)
– MLA: map guest graph to line (host graph) so 

that sum of distances is minimal

– DAN similar: if degree bound = 2, DAN is line or
ring (or sets of lines/rings)

– But unlike “graph embedding problems“
• The host graph is also subject to optimization

• Does this render the problem simpler or harder?  

2

31

4

5



Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

4 and 6 don’t 
communicate…

… but “extra” link still
makes sense: not a 

subgraph.

Diving a Bit Deeper: DAN
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Lower Bound: Idea
• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Build optimal Δ-ary tree for each 
source i: entropy lower bound 
known on EPL known for binary trees 
(Mehlhorn 1975 for BST but proof 
does not need search property) 

• Consider union of all trees

• Violates degree restriction but valid 
lower bound
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Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) 

Ω(HΔ(Y|X)) 

Lower Bound: Idea
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(Tight) Upper Bounds: Algorithm Idea

v

u
w

h

u v w

high-high• Idea: construct per-node 
optimal tree
– BST (e.g., Mehlhorn)

– Huffman tree

– Splay tree (!)

• Take union of trees but 
reduce degree
– E.g., in sparse distribution: 

leverage helper nodes between 
two “large” (i.e., high-degree) 
nodes
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Example: Self-Adjusting 
Network (SANs) Trees

t=1 t=2

1 4

2

5

7

4

7

5

2

1

adjust

Challenges: How to minimize reconfigurations?
How to keep network locally routable?

New connection!

000
SplayNet: Towards Locally Self-
Adjusting Networks. TON 2016.



SAN Idea 1: SplayNet
• Idea: Binary Search Tree (BST) network

• Supports local routing

– Left child, right child, upward?

• Search preserving reconfigurations like splay trees: 
zig, zigzag, zigzag

• But splay only to Least Common Ancestor (LCA)

19

4
15

22

18
1 7

3
12

8

10

LCA

SplayNet



SAN Idea 1: SplayNet

SplayNet
Concurrent Self-Adjusting Distributed Tree Networks

19

15 22

18

4

1 7

3 8

10

LCA

• Idea: Binary Search Tree (BST) network

• Supports local routing

– Left child, right child, upward?

• Search preserving reconfigurations like splay trees: 
zig, zigzag, zigzag

• But splay only to Least Common Ancestor (LCA)



SAN Idea 1: SplayNet

SplayNet

12

19

4

15 22

18

1

7

3 8

10

LCA

• Idea: Binary Search Tree (BST) network

• Supports local routing

– Left child, right child, upward?

• Search preserving reconfigurations like splay trees: 
zig, zigzag, zigzag

• But splay only to Least Common Ancestor (LCA)



SplayNet: Properties

I=[1..8]

23

25

21

4

1 7

v 8

10

18

19 22

I‘=[9..25]

WI(v)= 𝑢 ∈ I′𝑤 𝑢, 𝑣 + 𝑤(𝑣, 𝑢)

Cost(TI, WI)=[ 𝑢,𝑣 ∈ I(𝑑 𝑢, 𝑣 + 1)𝑤(𝑢, 𝑣) ] + DI∗WI

(DI distances of nodes in I from root of TI ) 

1. Define: flow out of interval I

2. Cost of a given tree TI on I: 

3. Dynamic program over intervals

Decouple cost
to ouside: 
distance to

root of TI only

Choose optimal 
root and add dist

to root

Property 1: Optimal static network can be computed 
in polynomial-time (dynamic programming)

– Unlike unordered tree?



SplayNet: Properties

Property 2: Provides amortized cost and 
amortized throughput guarantees

Rotations can happen concurrently:

independent clusters

Analysis more challenging: potential 
function sum no longer telescopic. One 

request can “push-down” another.

SplayNet: concurrent

Splay tree: requests one after another



SplayNet: Properties

Property 3: Converges to optimal network under specific demands 

Cluster scenario: SplayNet will 
converge to state where path 
between cluster nodes only 

includes cluster nodes

Non-crossing matching scenario: 
SplayNet will converge to state 
where all communication pairs 

are adjacent



SplayNet: Improved Lower Bounds
Interval Cuts Bound Edge Expansion Bound

• Let cut W(S) be weight of edges in cut (S,S’) 
for a given S 

• Define a distribution wS (u) according to the 
weights to all possible nodes v:

• Define entropy of cut and src(S),dst(S) 
distributions accordingly: :

• Conductance entropy is lower bound:

I𝑗
𝑙𝑗 𝑙

I𝑗
𝑙𝑗 𝑙

cutout(I𝑗
𝑙)

cutin(I𝑗
𝑙)

Cost = Ω(maximinj,l H(cutout(I𝑗
𝑙)))

Cost = Ω(maximinj,l H(cutin(I𝑗
𝑙)))



Demand-Oblivious

Fixed

Unknown

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

AlgorithmOFF ONSTAT GENOBL

Uncharted Space

Toward Demand-Aware Networking: A Theory for 
Self-Adjusting Networks. ArXiv 2018.

Can compare to static
or dynamic baseline!
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Roadmap

• Networks are increasingly complex: a case for 
formal methods?

• Networks are increasingly flexible: a case for self-
adjusting networks?

000

Thank you!



Further Reading

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems (OPODIS), Madrid, Spain, December 2016.

See also references on slides!

https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf

