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“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)
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Datacenters (“hyper-scale”)

Data intensive applications requiring significant processing.



We live 1in

The Age of Computation

BNVDA US

Amazon buys nuclear-powered data center from Talen

Thu, Mar 7,2024, 2:01PM  Nuclear News 126.5.

2019 2020 2021 2022 2023 2024

Training even across multiple
datacenters (and powerplants)!

Nvidia: fastest growing
company ever

THE
KARDASHEM SECHLE
B e e e e Energy consumption and probably also
; computation trends will likely stay.
@ ‘ P Kardashev Scale even classifies
civilizations by their energy use!
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Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook



Interconnecting networks:
a critical infrastructure
of our digital society.

?

Credits: Marco Chiesa
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>

>

Network equipment reaching
capacity limits

— Transistor density rates stalling
— “End of Moorefs Law in networking”

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019




How to interconnect?
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Root Cause

Fixed and Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause

Fixed and Demand-Oblivious Topology

-------------
............
-------------

Many flavors,
but in common:
fixed and

oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!




©
oo

oo
©
oo

00
©
ooo
(o] o]

oo

©
oo

©
000

©
ooo




e

mirrors

® © & @& © & @& @

new flexible
interconnect

O

o
n_nn

0

o
nnn

0

o
nnn

(o] o]

00

O

o
nnn

O

o
n_______

0

o
nnn




123456 78

demand
matrix:

00 N OV R W N

e.g.,

© © © & © &€ € @ oo

new flexible
interconnect




123 456 78

demand
matrix:

® © &€ @& © © & @

0 N VbR W R

e.g.,
mirrors

new flexible
interconnect




1234567 8

new
demand:

0 N OV A W N

mirrors

e.g.,

new flexible
interconnect




123 45678

e.g.,

new flexible
interconnect

mirrors

o0

©

oo
©
oo

©
ooo

(o] o]

00

©
000

00

©

©
ooo




A Vision

Flexible and Demand-Aware Topologies

1 23 456 78

new
demand:

Self-Adjusting
Networks

0 ~N OV R WN R

e.g.,
mirrors

new flexible
interconnect




Golden Gate Zipper



Golden Gate Zipper



Empirical studies:

traffic matrices sparse and skewed
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non-temporal complexity

uniform

“Entropy of
Demand Matrix”

“Entropy Rate”
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non-temporal complexity

bursty uniform
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Griner et al., SIGMETRICS 2020 10



Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023



Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”

Photonics



~> Spectrum of prototypes

— Different sizes, different reconfiguration times

— From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

13



-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/
L X

Rotate Mirror =N

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010

14



-> Depending on wavelength, forwarded differently
-> Optical switch is passive

M
A

Wavelength
selector

Electrical switch
with tunable laser

Optical switch
Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. |



Another Example

Tunable Lasers

-» Depending on wavelength, forwarded differently
-> Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Another Example

Tunable Lasers

-> Depending on wavelength, forwarded differently
-> Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Systems

Jupiter evolving: Reflecting on Google’s data
center network transformation

August 24, 2022

Amin Vahdat
VP & GM, Systems and Services Infrastructure

16



Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency

17
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Structure
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Now is the time!

Efficiency
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Our focus in this talk:
in hardware

Everywhere, but mainly
in software

Algorithmic trading

Recommender systems
NETFLIX

Neural networks

oo
©
00
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A first insight: entropy of the demand.

20



Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >

21



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST,
Q)

BST; 1
&)

More structure: improved access cost / shorter codes >

21



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

Reduced expected route lengths! >

21



— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

22



— Self-adjusting networks may be really useful to serve large
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing
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— However,

requires optimization and adaption, which takes time
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

— However, requires optimization and adaption, which takes time

22



Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows
— Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

L
i
2

Shuffling
All-to-All

L’.,_,."L Jf-},)

ML

Large flows

Delay
sensitive

2]
Telemetry

/ control

23



Diverse topology components:
— demand-oblivious and
demand-aware

Demand - Demand -
oblivious aware

24



Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand - Demand -
oblivious aware

Static

24



Opportunity: Tech Diversity

Dynamic
Diverse topology components:
— demand-oblivious and
demand-aware (" e.g., RotorNet ) (eg Helios R
. . (STGCOMME1Z)), (STGCOMM*10)
— static vs dynamic Sirius ProjecToR ’
(¢
éziSCOMM 20), (SIGCOMM¢16),
SplayNet (ToN‘16)

\_ (SIGMETRICS23) J

Demand- Demand -
oblivious aware

)

e.g., Clos

(SIGCOMM‘08),

Slim Fly

(SC14), Xpander

(SIGCOMM‘17)
J

Static



Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Demand-
Aware

Dynamic
N\
Rotor
N\
\
Static
_J

Static

Demand -
aware
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Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

Demand-
oblivious

Dynamic

Demand -
Aware

N\
Rotor
O\
\
Static
J
Static

24

Demand -
aware



Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « N « h
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
Demand- Demand-
oblivious aware
~ R
Static
\_ _J
As always in CS: Static

It depends..

24



Design Tradeoffs (1)

The “Awareness-Dimension”

a4 ) @ )
Demand-
Rotor
Aware
\ ) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead



Design Tradeoffs (1)

The “Awareness-Dimension”

a4 ) @ )
Demand-
Rotor
Aware
\ ) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

Compared to static networks: latency tax!




N O

Demand-
Rotor
Aware
) \—

Demand- Demand-
oblivious aware

Good for all-to-all traffic! Good for elephant flows!

— oblivious: very fast — optimizable toward traffic

periodic direct connectivity — slower: requires

— no control plane overhead optimization, collecting data, ..

Compared to static networks: latency tax!




Design Tradeoffs (2)

The “Flexibility-Dimension”

Dynamic
. 4
Good for high throughput!
: L Rotor /
— direct connectivity saves
. . Demand-
bandwidth along links
Aware
\
Good for low latency! a4
— no need to wait for
reconfigurable links Clos
— compared to dynamic: _

bandwidth tax (multi-hop)

Static



Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynami

C

(

Rotor
Demand-
Aware

Static

Clos

26



-»> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

~> Observation 3: A mismatch of demand and topology
can increase flow completion times.

27
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Shuffling
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Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology 28
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Shuffling

L

Delay Telemetry
sensitive / control

Demand -
oblivious

Demand

Serving elephant flows on static?
Bad idea! Bandwidth tax.

Dynamic

Demand-
aware

Static

Topology 28



Dynamic

ey

Shuffling

Demand-
oblivious

Demand -
aware

]

Delay Telemetry
sensitive / control

Static

We have a first approach:
Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022
28



On what should topology type depend? We argue: flow size.

29



On what should topology type depend? We argue: flow size.

1 /y o A O
? -0- Wetseacie 2016 | g / /
£ (./5f !
o =/ Datamining- 2011
ks]
L 05/ == Hadoop- 2015
8 == Pareto distribution

0.257 / /
' -CI:I‘&

0 MALNLLDL
108 10% 10° 106 107 108 109 10%C
Flow size (bytes)

-> Observation 1: Different apps have different flow size distributions.
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Flow transmission time (40Gbps)
100ns 1us  10us 100us 1ms 10ms 100ms 1s

+ A
=0= \Websearch- 2010
0.751
=/ Datamining- 2011
05 == Hadoop- 2015
== Pareto distribution

00 ot 105 108 107 108 109 10
Flow size (bytes)

CDF of bytes

-> Observation 1: Different apps have different flow size distributions.
-> Observation 2: The transmission time of a flow depends on its size.
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Flow Size Matters

Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s

T T T
= A
] —O— Websearch- 2010
£ 0.75
o =/ Datamining- 2011
©
LDL 05 Hadoop- 2915 |
O == Pareto distribution A
L m]
0.25 //{://
A \,’D
COTARS A Mo\ L D’ |

O AA == A AALONOLNLLDE

103 104 10° 10° 107 108 100 10
Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if
network needs to be reconfigured first.

Observation 4: For large flows, reconfiguration time may amortize.
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Flow Size Matters

Flow transmission time (40Gbps)
100ns  lus 10us  100us Ims 10ms 100ms Is

T T T

Static Rotor Demand—aware

z o

B 0.75 1 =O= Websearch-2010 |[|€ :;
= Y . ~ e
o) == Datamining-2011 || & 8
5 . |8 5
L 05 Hadoop-2015 =8 i
. |oe -

0 ={J= Pareto distribution ||~ B
O 5 5

0.25F =

O AALAMNMANNATL YOI .I'I'I-_-_ﬁ'i | I
103 104 10° 106 107 108 107 1010

Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.



Cerberus

Optical Switches
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Cerberus
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Cerberus

K K. Kq
static rotor demand-aware
switches switches switches

_

Scheduling: Small flows go via static switches..



Cerberus

S K r |

static roton\!/

switches switcheas
N

Kq
demand-aware
switches

_

Scheduling: ..

medium flows via rotor

switches...




Cerberus

/ \ﬁ
K K. Kq
static rotor demand-awaré
\

switches switches Jk switches J J

\ \

2@3 |23 [E@8 |E@3 [E©3| |2©@3| |2@3| |2E©3
a a [ [ | 0 [ [ | a
1 2 3 4 5 6 7 8

Scheduling: .. and large flows via demand-aware switches
(if one available, otherwise via rotor).



So far: focus on throughput performance.

31



Benefit. 1.

Energy and Latency

-> No need to convert photons in fiber to electrons in
switch (and back)

-» Can safe energy and reduce Latency (in addition to
enabling almost unlimited throughput)

Optical fiber ‘& Electric switch ‘K Optical fiber



Benefit. 1.

Energy and Latency

-> No need to convert photons in fiber to electrons in
switch (and back)

-» Can safe energy and reduce Latency (in addition to
enabling almost unlimited throughput)

Optical fiber —— Optical switch —— Optical fiber



Floodings in South Germany destroyed
much electrical network infrastructure

L

Solution: deploy optical
infrastructure (in valleys) and
electrical on hills where safe?

33



-» Reconfigurable datacenter networks naturally support
heterogeneous network elements

-» And therefore also incremental hardware upgrades

Systems

Jupiter evolving: Reflecting on Google’s data
center network transformation

Amin Vahdat \
Google \\

Google Cloud

34



-> Opportunity: structure in demand and
reconfigurable networks

-» So far: tip of the iceberg

-» Many challenges
— Optimal design depends on traffic pattern
— How to measure/predict traffic?
— Impact on other Llayers?
— Routing and congestion control?
— Scalable control plane
— Application-specific self-adjusting networks?

-» Many more opportunities for optical networks

J {,V/’

- 2o .. .
"

I8t
&,
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We recently interviewed three experts

Amin Vahdat Manya Ghobadi George Papen
Google MIT ucsb

“Think about a machine learning training job, say, training a ChatGPT
model. It takes months to train this model, but the traffic matrix is
beautifully predictable and periodic, which makes it very suitable to
think about whether or not we could adjust the topology according to the
traffic.” -Manya Gobhadi (MIT)

Watch here:
https://www.youtube.com/



https://www.youtube.com/@self-adjusting-networks-course
https://www.youtube.com/@self-adjusting-networks-course

Online Video Course

I i
Inv1tat10ﬁ to

self-adjusting datacenter selF adjusting bridge

We cannot direct the wind,
but we can adjust the sails.

(Folklore)

@ ﬂﬁ ,%?": https://self-adjusting.net/course ¥ »




Websites

SELF-ADJUSTING NETWORKS

AdjustNet

Breaking new ground with

Our Vision:
Flexible and Demand-Aware Topologies

TRACE COLLECTION Publica . ST
ublication Team Download Traces
O h—o0 LA
the publication: On the Complexity of Traffic Traces and Implications
ey

http://self-adjusting.net/

Project website

https://trace-collection.net/
Trace collection website




Revolutionizing Datacenter Networks via Reconfigurable Topologies

CHEN AVIN, is a Professor at Ben-Gurion University of the Negev, Beersheva, Israel
STEFAN SCHMID, is a Professor at TU Berlin, Berlin, Germany

With the popularity of cloud computing and data-intensive applications such as machine learning, datacenter networks have become a
critical infrastructure for our digital society. Given the explosive growth of datacenter traffic and the slowdown of Moore’s law, significant
efforts have been made to improve datacenter network performance over the last decade. A particularly innovative solution is reconfigurable
datacenter networks (RDCNs): datacenter networks whose topologies dynamically change over time, in either a demand-oblivious or
a demand-aware manner. Such dynamic topologies are enabled by recent optical switching technologies and stand in stark contrast to
state-of-the-art datacenter network topologies, which are fixed and oblivious to the actual traffic demand. In particular, reconfigurable
demand-aware and “self-adjusting” datacenter networks are motivated empirically by the significant spatial and temporal structures
observed in datacenter communication traffic. This paper presents an overview of reconfigurable datacenter networks. In particular, we
discuss the motivation for such reconfigurable architectures, review the technological enablers, and present a taxonomy that classifies
the design space into two dimensions: static vs. dynamic and demand-oblivious vs. demand-aware. We further present a formal model
and discuss related research challenges. Our article comes with complementary video interviews in which three leading experts, Manya
Ghobadi, Amin Vahdat, and George Papen, share with us their perspectives on reconfigurable datacenter networks.

KEY INSIGHTS

+ Datacenter networks have become a critical infrastructure for our digital society, serving explosively growing
communication traffic.

+ Reconfigurable datacenter networks (RDCNs) which can adapt their topology dynamically, based on innovative
optical switching technologies, bear the potential to improve datacenter network performance, and to simplify
datacenter planning and operations.

+ Demand-aware dynamic topologies are particularly interesting because of the significant spatial and temporal
structures observed in real-world traffic, e.g., related to distributed machine learning.

« The study of RDCNs and self-adjusting networks raises many novel technological and research challenges related

to their design, control, and performance.
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More References

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
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- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU




- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU

More uniform More structure



-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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Time




-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”
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Increasing complexity (systematically randomized) >

< More structure (compresses better)
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On the Complexity of Traffic Traces and Implications
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This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.
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1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

OO0 00




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 5

et kel ket

_A———"'

6‘6660



Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1

666666



Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

I
|
1
1
1 I
1 I
1 1 [}
1 1 1
1 1 1
I 1 t 1
1 I } 1
1 1 \ } 1 “
1 I 1 } 1 \
1 1 1 ] I \
1 1 \ | I \
I 1 | | | \
1 1 1 1 I \
1 1 1 | I \
1 1 1 | 1 \

OO0 00b




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

But what about A>2?

— Embedding problem still hard
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~» Classic problem: find sparse, distance-preserving
(low-distortion) spanner of a graph

-> But:

- Spanners aim at low distortion among all pairs;
in our case, we are only interested in the
local distortion, 1-hop communication neighbors

~> We allow auxiliary edges (not a subgraph): similar to
geometric spanners

-» We require constant degree



-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

. Constant degree
r-regular and Sparse, 1irregular g

K optimal DAN (ERL
. tant N
uniform demand: (constant) spanner at most log r):

» »

auxiliiary edges




-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

r-regular and
uniform demand:

»

Sparse, irregular
(constant) spanner:

isubgraph!

Our degree reduction
trick again!

ZL////’

Constant degree
optimal DAN (ERL

at most log r): —=——

LN

auxiliiary edges

Why optimal:
in r-regular graphs,
conditional entropy
is log r.




Wavelength
Selector

Steady State

Switching Control Signal

Ballani et al., Sirius, ACM SIGCOMM 2020.



Semiconductor optical amplifier (SOA)

Wavelength
Selector

X

Switching Control
Signal

Ballani et al., Sirius, ACM SIGCOMM 2020.




