
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)
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Datacenters (“hyper-scale”)

We live in

The Age of Computation

Data intensive applications requiring significant processing.
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We live in

The Age of Computation

Nvidia: fastest growing

company ever

Training even across multiple 

datacenters (and powerplants)!

Energy consumption and probably also 
computation trends will likely stay. 
Kardashev Scale even classifies 
civilizations by their energy use!
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We live in

The Age of Computation
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We live in

The Age of Computation

… soon in economics and literature?
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Traffic
Growth
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The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” 

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!
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Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?
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Root Cause
Fixed and Demand-Oblivious Topology

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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A Vision
Flexible and Demand-Aware Topologies
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A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g., 

mirrors

new flexible

interconnect
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Analogy

Golden Gate Zipper
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Analogy

Golden Gate Zipper
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The Motivation
Much Structure in the Demand

The hypothesis: can 

be exploited.

Empirical studies: 
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destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed
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Recent Representation of Trace Structure:

Complexity Map
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Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics
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Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)
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Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror
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Another Example
Tunable Lasers 

Multi-
wavelength 

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive
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First Deployments
E.g., Google’s Datacenter Jupiter
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
Missing: Theoretical 

foundations of demand-

aware, self-adjusting 

networks.
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Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly 
in software

Our focus in this talk: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems
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The Natural Question:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

A first insight: entropy of the demand.
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Insight:

Connection to 
Datastructures

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost
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Insight:

Connection to 
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than 

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First result: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

Reality more complicated

6 hops 1 hop

vs

47
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality more complicated

vs

6 hops 1 hop

bandwidth 

tax!

latency 

tax!
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Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed

⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Indeed, it is more complicated than that…

Challenge: Traffic Diversity

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

51
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Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Dynamic

Diverse topology components:
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⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius
(SIGCOMM‘20), 
Mars 
(SIGMETRICS‘23) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ but slower

60
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Demand-
oblivious

Demand-
aware

Design Tradeoffs (1)
The “Awareness-Dimension”

Rotor
Demand-
Aware

Good for all-to-all traffic!

⇀ oblivious: very fast

periodic direct connectivity

⇀ no control plane overhead

Good for elephant flows!

⇀ optimizable toward traffic

⇀ slower: requires 

optimization, collecting data, …

Compared to static networks: latency tax!

low tax high tax
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Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves    

bandwidth along links

Good for low latency!

⇀ no need to wait for 

reconfigurable links

⇀ compared to dynamic: 

bandwidth tax (multi-hop)

63
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Design Tradeoffs (2)
The “Flexibility-Dimension”

Static

Dynamic

Rotor /
Demand-
Aware

Clos

Good for high throughput!

⇀ direct connectivity saves    

bandwidth along links

Good for low latency!

⇀ no need to wait for 

reconfigurable links

⇀ compared to dynamic: 

bandwidth tax (multi-hop)

bandwidth 

tax

latency 

tax
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First Observations

⇢ Observation 1: Different topologies provide

different tradeoffs. 

⇢ Observation 2: Different traffic requires different 

topology types. 

⇢ Observation 3: A mismatch of demand and topology 

can increase flow completion times.

⇀ bad idea: serving mice flows on Rotor topology
⇀ bad idea: serving elephant flows on static topology

65
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Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
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Topology 66
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Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Topology

Serving elephant flows on static? 

Bad idea! Bandwidth tax.  
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A Solution: Cerberus

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

We have a first approach: 

Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022
72
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Flow Size Matters

73

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 
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Cerberus

1 2 3 4 5 6 7 8

Optical Switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: Small flows go via static switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … medium flows via rotor switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 82
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So far: focus on throughput performance. 

Excursion

More benefits of optical & 
reconfigurable switching

31



⇢ No need to convert photons in fiber to electrons in 

switch (and back)

⇢ Can safe energy and reduce latency (in addition to 

enabling almost unlimited throughput)

Benefit 1:

Energy and Latency

Optical fiber Optical fiberElectric switch
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Floodings in South Germany destroyed 

much electrical network infrastructure

Benefit 2:

Resilience

Solution: deploy optical 

infrastructure (in valleys) and 

electrical on hills where safe?

33



⇢ Reconfigurable datacenter networks naturally support 

heterogeneous network elements 

⇢ And therefore also incremental hardware upgrades

Benefit 3:

Evolving Datacenters

Amin Vahdat

Google
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⇢ Opportunity: structure in demand and 

reconfigurable networks

⇢ So far: tip of the iceberg

⇢ Many challenges
⇀ Optimal design depends on traffic pattern

⇀ How to measure/predict traffic?

⇀ Impact on other layers?

⇀ Routing and congestion control?

⇀ Scalable control plane

⇀ Application-specific self-adjusting networks?

⇢ Many more opportunities for optical networks

Conclusion 

36



More Details: Interivews

We recently interviewed three experts

“Think about a machine learning training job, say, training a ChatGPT

model. It takes months to train this model, but the traffic matrix is 

beautifully predictable and periodic, which makes it very suitable to 

think about whether or not we could adjust the topology according to the 

traffic.” –Manya Gobhadi (MIT)

Watch here:

https://www.youtube.com/

@self-adjusting-networks-course

Amin Vahdat

Google

Manya Ghobadi

MIT

George Papen

UCSD

37
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Online Video Course
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http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites
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Upcoming CACM Article

92
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Question:

How to Quantify 
such “Structure” 
in the Demand?
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Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

vs
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⇢ Traffic matrices of two different distributed 
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More uniform More structure

vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

T
i
m
e

Original
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 
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No structure

bursty & skewed
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Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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CNS ML

DB

Web

HadMulti 
Grid

temporal complexity

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Different 

structures!

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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Further Reading
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Embedding Problem (VNEP)

cost 5

Bad!

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

cost 1

Good!

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)
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Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!
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⇀ … and so is our problem!
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⇀ But we have a new degree of

freedom!
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!

1



Another Related Problem

Low Distortion Spanners

⇢ Classic problem: find sparse, distance-preserving

(low-distortion) spanner of a graph

⇢ But:

⇢ Spanners aim at low distortion among all pairs;     

in our case, we are only interested in the 

local distortion, 1-hop communication neighbors

⇢ We allow auxiliary edges (not a subgraph): similar to 

geometric spanners

⇢ We require constant degree

1



From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we 

can find a constant distortion, linear sized (i.e., 

constant, sparse) spanner for this request graph: then we 

can design a constant degree DAN providing an optimal 

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and 
uniform demand:

Sparse, irregular 
(constant) spanner:

Constant degree 
optimal DAN (ERL 
at most log r):

subgraph!

auxiliiary edges
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From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we 

can find a constant distortion, linear sized (i.e., 

constant, sparse) spanner for this request graph: then we 

can design a constant degree DAN providing an optimal 

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and 
uniform demand:

Sparse, irregular 
(constant) spanner:

Constant degree 
optimal DAN (ERL 
at most log r):

subgraph!

auxiliiary edges

Our degree reduction 
trick again!

Why optimal: 
in r-regular graphs, 
conditional entropy 

is log r.

1



Idea: Disaggregated Laser

Gain
Tunin

g

Tunin

g

Multi-wavelength 

source
Wavelength

Selector

Switching Control Signal

Steady State

Idea

Disaggregated Laser

Ballani et al., Sirius, ACM SIGCOMM 2020.



Wavelength

Selector

Switching Control 

Signal

…

SOALaser

Laser

Laser

SOA

SOA

Semiconductor optical amplifier (SOA)

M
U

X

Sirius also implemented other designs 

(details in the paper)

Multi-wavelength 

source

…

Wavelength

Selector

Example Design

Ballani et al., Sirius, ACM SIGCOMM 2020.


