Self-Adjusting Datacenter Networks for the AI/ML Era

Stefan Schmid (TU Berlin)

"We cannot direct the wind, but we can adjust the sails."

Acknowledgements:

The Age of Computation

We live in

Data intensive applications requiring significant processing.

1

We live in

The Age of Computation

Amazon buys nuclear-powered data center from Talen

Susquehanna nuclear plant in Salem Township, Penn., along with the data center in foreground. (Photo: Talen Energy

Training even across multiple datacenters (and powerplants)!

Nvidia: fastest growing company ever

Energy consumption and probably also computation trends will likely stay. *Kardashev Scale* even classifies civilizations by their energy use!

We live in

The Age of Computation

We live in

The Age of Computation

Networks Matter!

Distributed Applications Require Networks

Networks Matter!

Distributed Applications Require Networks

Interconnecting networks:
a critical infrastructure
of our digital society.

Credits: Marco Chiesa

The Problem

Huge Infrastructure, Inefficient Use

- Network equipment reaching capacity limits
 - → Transistor density rates stalling
 - \rightharpoonup "End of Moore's Law in networking"
- Hence: more equipment, larger networks
- Resource intensive and:
 inefficient

Annoying for companies, opportunity for researchers!

Root Cause

Fixed and Demand-Oblivious Topology

How to interconnect?

Root Cause

Fixed and Demand-Oblivious Topology

Root Cause

Fixed and Demand-Oblivious Topology

				······			······
© %	∎©°	∎©°	∎©°	∎©°	∎©°	∎©°	∎

Analogy

Golden Gate Zipper

Analogy

Golden Gate Zipper

The Motivation

Much Structure in the Demand

Empirical studies:

traffic matrices sparse and skewed

destinations

destinations

traffic bursty over time

The hypothesis: can be exploited.

Griner et al., SIGMETRICS 2020

Traffic is also clustered: Small Stable Clusters

Opportunity: *exploit* with little reconfigurations!

Sounds Crazy? Emerging Enabling Technology.

H2020:

"Photonics one of only five key enabling technologies for future prosperity."

US National Research Council: "Photons are the new Electrons."

Enabler

Novel Reconfigurable Optical Switches

---> **Spectrum** of prototypes

- \rightarrow Different sizes, different reconfiguration times
- \rightarrow From our ACM **SIGCOMM** workshop OptSys

Example

Optical Circuit Switch

 \rightarrow Based on rotating mirrors

---> Optical Circuit Switch rapid adaption of physical layer

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010

Another Example

Tunable Lasers

---> Depending on wavelength, forwarded differently

---> Optical switch is passive

Electrical switch with tunable laser

Optical switch Passive

Another Example

Tunable Lasers

---> Depending on wavelength, forwarded differently

---> Optical switch is passive

Electrical switch with tunable laser

Optical switch Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 15

Another Example

Tunable Lasers

---> Depending on wavelength, forwarded differently

---> Optical switch is passive

Electrical switch with tunable laser

Optical switch Passive

First Deployments

E.g., Google's Datacenter Jupiter

The Big Picture

Now is the time!

The Big Picture

Now is the time!

Missing: Theoretical foundations of demandaware, self-adjusting networks.

Potential Gain

Potential Gain

Unique Position

Demand-Aware, Self-Adjusting Systems

The Natural Question:

Given This Structure, What Can Be Achieved? Metrics and Algorithms?

A first insight: entropy of the demand.

Connection to Datastructures

Connection to Datastructures & Coding

Connection to Datastructures & Coding

Connection to Datastructures & Coding

More than an analogy!

Connection to Datastructures & Coding

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

6 hops

1 hop

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

 \rightarrow However, requires optimization and adaption, which takes time

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

 \rightarrow However, requires optimization and adaption, which takes time

Indeed, it is more complicated than that... Challenge: Traffic Diversity

Diverse patterns:

- → Shuffling/Hadoop: all-to-all
- → All-reduce/ML: ring or tree traffic patterns → Elephant flows
- → Query traffic: skewed → Mice flows
- → Control traffic: does not evolve but has non-temporal structure

Diverse requirements:

→ ML is bandwidth hungry, small flows are latencysensitive

Diverse topology components:

→ demand-oblivious and demand-aware

> Demandoblivious Demandaware

Design Tradeoffs (1)

The "Awareness-Dimension"

Good for all-to-all traffic!

- → oblivious: very fast
 - periodic <mark>direct</mark> connectivity
- \rightarrow no control plane overhead

Good for elephant flows!

- → optimizable toward traffic
- \rightarrow but slower

Design Tradeoffs (1)

The "Awareness-Dimension"

Good for all-to-all traffic!

- → oblivious: very fast
 - periodic <mark>direct</mark> connectivity
- \rightarrow no control plane overhead

Good for elephant flows!

- → optimizable toward traffic
- \rightarrow but slower

Compared to static networks: latency tax!

Design Tradeoffs (1)

The "Awareness-Dimension"

Good for all-to-all traffic!

- → oblivious: very fast
 - periodic direct connectivity \rightarrow slower: requires
- ightarrow no control plane overhead

Good for elephant flows!

- → optimizable toward traffic
- → slower: requires optimization, collecting data, ...

Compared to static networks: latency tax!

Design Tradeoffs (2)

The "Flexibility-Dimension"

Static

Design Tradeoffs (2)

The "Flexibility-Dimension"

Static

First Observations

- ••• Observation 1: Different topologies provide different tradeoffs.
- ---> **Observation 2:** Different traffic requires different topology types.
- ---> Observation 3: A mismatch of demand and topology can increase flow completion times.

Topology

A Solution: Cerberus

We have a first approach:

Cerberus* serves traffic on the "best topology"! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022

Flow Size Matters

On what should topology type depend? We argue: flow size.

Flow Size Matters

On what should topology type depend? We argue: flow size.

---- **Observation 1:** Different apps have different flow size distributions.
Flow Size Matters

---> Observation 1: Different apps have different flow size distributions.

---- Observation 2: The transmission time of a flow depends on its size.

Flow Size Matters

- ---> Observation 1: Different apps have different flow size distributions.
- ---> Observation 2: The transmission time of a flow depends on its size.
- ••• Observation 3: For small flows, flow completion time suffers if network needs to be reconfigured first.
- ---> Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

- ---> Observation 1: Different apps have different flow size distributions.
- ---> Observation 2: The transmission time of a flow depends on its size.
- ••• Observation 3: For small flows, flow completion time suffers if network needs to be reconfigured first.
- ---> Observation 4: For large flows, reconfiguration time may amortize.

Scheduling: Small flows go via static switches...

Scheduling: ... medium flows via rotor switches...

Scheduling: ... and large flows via demand-aware switches (if one available, otherwise via rotor).

Excursion

More benefits of optical & reconfigurable switching

So far: focus on throughput performance.

Benefit 1: Energy and Latency

- Mo need to convert photons in fiber to electrons in switch (and back)
- ---> Can safe *energy* and reduce *latency* (in addition to enabling almost unlimited throughput)

Benefit 1: Energy and Latency

- Mo need to convert photons in fiber to electrons in switch (and back)
- ---> Can safe energy and reduce latency (in addition to enabling almost unlimited throughput)

Optical fiber —— Optical switch —— Optical fiber

Benefit 2: Resilience

Floodings in South Germany destroyed much electrical network infrastructure

Solution: deploy optical infrastructure (in valleys) and electrical *on hills* where safe?

Benefit 3: Evolving Datacenters

- Reconfigurable datacenter networks naturally support heterogeneous network elements
- ---> And therefore also *incremental* hardware upgrades

Amin Vahdat Google

August 24, 2022

Conclusion

- ••• Opportunity: structure in demand and reconfigurable networks
- ---> So far: tip of the iceberg
- ---> Many challenges
 - ightarrow Optimal design depends on traffic pattern
 - → How to *measure/predict* traffic?
 - → Impact on other *Layers*?
 - \rightarrow Routing and congestion control?
 - → *Scalable control* plane
 - → Application-specific self-adjusting networks?
- Many more opportunities for optical networks

More Details: Interivews

We recently interviewed three experts

Amin Vahdat Google

Manya Ghobadi MIT

George Papen UCSD

"Think about a machine learning training job, say, training a *ChatGPT* model. It takes months to train this model, but the traffic matrix is beautifully *predictable and periodic*, which makes it very suitable to think about whether or not we could *adjust the topology* according to the traffic." -Manya Gobhadi (MIT)

Watch here: <u>https://www.youtube.com/</u> @self-adjusting-networks-course

Online Video Course

Websites

http://self-adjusting.net/ Project website

https://trace-collection.net/ Trace collection website

Upcoming CACM Article

Revolutionizing Datacenter Networks via Reconfigurable Topologies

CHEN AVIN, is a Professor at Ben-Gurion University of the Negev, Beersheva, Israel STEFAN SCHMID, is a Professor at TU Berlin, Berlin, Germany

With the popularity of cloud computing and data-intensive applications such as machine learning, datacenter networks have become a critical infrastructure for our digital society. Given the explosive growth of datacenter traffic and the slowdown of Moore's law, significant efforts have been made to improve datacenter network performance over the last decade. A particularly innovative solution is reconfigurable datacenter networks (RDCNs): datacenter networks whose topologies dynamically change over time, in either a demand-oblivious or a demand-aware manner. Such dynamic topologies are enabled by recent optical switching technologies and stand in stark contrast to state-of-the-art datacenter network topologies, which are fixed and oblivious to the actual traffic demand. In particular, reconfigurable demand-aware and "self-adjusting" datacenter networks are motivated empirically by the significant spatial and temporal structures observed in datacenter communication traffic. This paper presents an overview of reconfigurable datacenter networks. In particular, we discuss the motivation for such reconfigurable architectures, review the technological enablers, and present a taxonomy that classifies the design space into two dimensions: static vs. dynamic and demand-oblivious vs. demand-aware. We further present a formal model and discuss related research challenges. Our article comes with complementary video interviews in which three leading experts, Manya Ghobadi, Amin Vahdat, and George Papen, share with us their perspectives on reconfigurable datacenter networks.

KEY INSIGHTS

- Datacenter networks have become a critical infrastructure for our digital society, serving explosively growing communication traffic.
- Reconfigurable datacenter networks (RDCNs) which can adapt their topology dynamically, based on innovative
 optical switching technologies, bear the potential to improve datacenter network performance, and to simplify
 datacenter planning and operations.
- Demand-aware dynamic topologies are particularly interesting because of the significant spatial and temporal structures observed in real-world traffic, e.g., related to distributed machine learning.
- The study of RDCNs and self-adjusting networks raises many novel technological and research challenges related to their design, control, and performance.

More References

<u>Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks</u> Vamsi Addanki, Chen Avin, and Stefan Schmid.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control

Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)

Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin. ACM **SIGMETRICS** and ACM Performance Evaluation Review (**PER**), Mumbai, India, June 2022.

Demand-Aware Network Design with Minimal Congestion and Route Lengths

Chen Avin, Kaushik Mondal, and Stefan Schmid.

IEEE/ACM Transactions on Networking (TON), 2022.

On the Complexity of Traffic Traces and Implications

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020

A Survey of Reconfigurable Optical Networks

Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan. Optical Switching and Networking (**OSN**), Elsevier, 2021.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)

Chen Avin and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), October 2018.

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker. IEEE/ACM Transactions on Networking (**TON**), Volume 24, Issue 3, 2016.

Slides available here:

Bonus Material

Hogwarts Stair

Question:

How to Quantify such "Structure" in the Demand?

Which demand has more structure?

Which demand has more structure?

More uniform

More structure

Spatial vs temporal structure

- ---> Two different ways to generate same traffic matrix:
 - \rightarrow Same non-temporal structure
- ---> Which one has more structure?

Spatial vs temporal structure

- ---> Two different ways to generate same traffic matrix:
 - \rightarrow Same non-temporal structure
- ---> Which one has more structure?

Systematically?

Information-Theoretic Approach
"Shuffle&Compress"

Increasing complexity (systematically randomized)

More structure (compresses better)

Our Methodology

Complexity Map

temporal complexity

1

Our Methodology

Complexity Map

Our Methodology

Complexity Map

Further Reading

ACM SIGMETRICS 2020

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown to feature much *structure*: datacenter traffic matrices are sparse and skewed [16, 39], exhibit

20

Related Problem: Remember Bernardetta's Talk Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

MLA is NP-hard → ... and so is our problem!

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

MLA is NP-hard

 \rightarrow ... and so is our problem!

But what about $\triangle > 2$?

- \rightarrow Embedding problem still hard
- → But we have a new degree of freedom!

Example △=2: A Minium Linear Arrangement (MLA) Problem → Minimizes sum of virtual edges

MLA is **NP-hard**

 \rightarrow ... and so is our problem!

But what about $\triangle > 2$?

- \rightarrow Embedding problem still hard
- → But we have a new degree of freedom!

Simplifies problem?!

Another Related Problem

Low Distortion Spanners

Classic problem: find sparse, distance-preserving
 (low-distortion) spanner of a graph

--→ But:

- Spanners aim at low distortion among all pairs; in our case, we are only interested in the local distortion, 1-hop communication neighbors
- We allow *auxiliary edges* (not a subgraph): similar to geometric spanners
- ---> We require constant degree

From Spanners to DANs An Algorithm

---> Yet, can leverage the connection to spanners sometimes!

<u>Theorem</u>: If demand matrix is regular and uniform, and if we can find a constant distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can design a constant degree DAN providing an optimal expected route length (*i.e.*, O(H(X|Y)+H(Y|X)).

From Spanners to DANs An Algorithm

---> Yet, can leverage the connection to spanners sometimes!

<u>Theorem</u>: If demand matrix is regular and uniform, and if we can find a constant distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can design a constant degree DAN providing an optimal expected route length (i.e., O(H(X|Y)+H(Y|X)).

Disaggregated Laser

Ballani et al., Sirius, ACM SIGCOMM 2020.

Example Design

Sirius also implemented other designs (details in the paper)

Ballani et al., Sirius, ACM SIGCOMM 2020.