
Congestion-Free Rerouting of Flows on DAGs∗
1

Saeed Akhoondian Amiri2

Max-Planck Institute of Informatics, Germany3

samiri@mpi-inf.mpg.de4

Szymon Dudycz5

University of Wroclaw, Poland6

szymon.dudycz@gmail.com7

Stefan Schmid8

University of Vienna, Austria9

stefan_schmid@univie.ac.at10

Sebastian Wiederrecht11

TU Berlin, Germany12

sebastian.wiederrecht@tu-berlin.de13

Abstract14

Changing a given configuration in a graph into another one is known as a reconfiguration problem.15

Such problems have recently received much interest in the context of algorithmic graph theory.16

We initiate the theoretical study of the following reconfiguration problem: How to reroute k17

unsplittable flows of a certain demand in a capacitated network from their current paths to their18

respective new paths, in a congestion-free manner? This problem finds immediate applications,19

e.g., in traffic engineering in computer networks. We show that the problem is generally NP-hard20

already for k = 2 flows, which motivates us to study rerouting on a most basic class of flow graphs,21

namely DAGs. Interestingly, we find that for general k, deciding whether an unsplittable multi-22

commodity flow rerouting schedule exists, is NP-hard even on DAGs. Our main contribution is23

a polynomial-time (fixed parameter tractable) algorithm to solve the route update problem for a24

bounded number of flows on DAGs. At the heart of our algorithm lies a novel decomposition of25

the flow network that allows us to express and resolve reconfiguration dependencies among flows.26

2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph27

Theory28

Keywords and phrases Unsplittable Flows, Reconfiguration, DAGs, FPT, NP-Hardness29

Digital Object Identifier 10.4230/LIPIcs...11830

1 Introduction31

Reconfiguration problems are combinatorial problems which ask for a transformation of one32

configuration into another one, subject to some (reconfiguration) rules. Reconfiguration33

problems are fundamental and have been studied in many contexts, including puzzles and34

games (such as Rubik’s cube) [24], satisfiability [15], independent sets [16], vertex coloring [9],35

or matroid bases [17], to just name a few.36

Reconfiguration problems also naturally arise in the context of networking applications37

and routing. For example, a fundamental problem in computer networking regards the38

∗ The research of Saeed Amiri and Sebastian Wiederrecht was partly supported by the ERC consolidator
grant DISTRUCT, agreement No 648527. Stefan Schmid was supported by the Danish VILLUM
foundation project ReNet.

© Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid and Sebastian Wiederrecht;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samiri@mpi-inf.mpg.de
mailto:szymon.dudycz@gmail.com
mailto:stefan_schmid@univie.ac.at
mailto:sebastian.wiederrecht@tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs...118
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118:2 Congestion-Free Rerouting of Flows on DAGs

question of how to reroute traffic from the current path p1 to a given new path p2, by39

changing the forwarding rules at routers (the vertices) one-by-one, while maintaining certain40

properties during the reconfiguration (e.g., short path lengths [7]). Route reconfigurations (or41

updates) are frequent in computer networks: paths are changed, e.g., to account for changes42

in the security policies, in response to new route advertisements, during maintenance (e.g.,43

replacing a router), to support the migration of virtual machines, etc. [13].44

This paper initiates the study of a basic multi-commodity flow rerouting problem: how45

to reroute a set of unsplittable flows (with certain bandwidth demands) in a capacitated46

network, from their current paths to their respective new paths in a congestion-free manner.47

The problem finds immediate applications in traffic engineering [4], whose main objective48

is to avoid network congestion. Interestingly, while congestion-aware routing and traffic49

engineering problems have been studied intensively in the past [1, 10, 11, 12, 18, 19, 20, 22],50

surprisingly little is known today about the problem of how to reconfigure resp. update the51

routes of flows. Only recently, due to the advent of Software-Defined Networks (SDNs), the52

problem has received much attention in the networking community [3, 8, 14, 21].53

Figure 1 presents a simple example of the consistent rerouting problem considered in54

this paper, for just a single flow: the flow needs to be rerouted from the solid path to55

the dashed path, by changing the forwarding links at routers one-by-one. The example56

illustrates a problem that might arise from updating the vertices in an invalid order: if57

vertex v2 is updated first, a forwarding loop is introduced: the transient flow from s to58

t becomes invalid. Thus, router updates need to be scheduled intelligently over time: A59

feasible sequence of updates for this example is given in Figure 2. Note that the example60

is kept simple intentionally: when moving from a single flow to multiple flows, additional61

challenges are introduced, as the flows may compete for bandwidth and hence interfere.62

s t

initial network

v2
s t

invalid update: no transient flow (loop!)

Figure 1 Example: We are given an initial network consisting of exactly one active flow F o (solid
edges) and the inactive edges (i.e., inactive forwarding rules) of the new flow Fu to which we want
to reroute (dashed edges). Together we call the two flows an (update) pair P = (F o, Fu). Updating
the outgoing edges of a vertex means activating all previously inactive outgoing edges of Fu, and
deactivating all other edges of the old flow F o. Initially, the blue flow is a valid (transient) (s, t)-flow.
If the update of vertex v2 takes effect first, an invalid (not transient) flow is introduced (in pink):
traffic is forwarded in a loop, hence (temporarily) invalidating the path from s to t.

Contributions. This paper initiates the algorithmic study of a fundamental unsplittable63

multicommodity flow rerouting problem. We present a rigorous formal model and show that64

the problem of rerouting flows in a congestion-free manner is NP-hard already for two flows65

on general graphs. This motivates us to focus on a most fundamental type of flow graphs,66

namely the DAG. The main results presented in this paper are the following:67

1. Deciding whether a consistent network update schedule exists in general graphs is NP-hard,68

already for 2 flows.69

2. For constant k, we present a linear-time (fixed parameter tractable) algorithm which70

finds a feasible update schedule on DAGs in time and space 2O(k log k)O(|G|), whenever71

such a consistent update schedule exists.72

3. For general k, deciding whether a feasible schedule exists is NP-hard even on loop-free73

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:3

s t

initial network

s t

first update

s t

second update

s t

final update

v1

v2

Figure 2 Example: We revisit the network of Figure 1 and reroute from F o to Fu without
interrupting the connection between s and t along a unique (transient) path (in blue). To avoid the
problem seen in Figure 1, we first update the vertex v1 in order to establish a shorter connection
from s to t. Once this update has been performed, the update of v2 can be performed without
creating a loop. Finally, by updating s, we complete the rerouting.

networks (i.e., DAGs).74

Against the backdrop that the problem of routing disjoint paths on DAGs is known to75

be W [1]-hard [23] and computing routes subject to congestion even harder [1], our finding76

that the multicommodity flow rerouting problem is fixed parameter tractable on DAGs is77

intriguing.78

Technical Novelty. Our algorithm is based on a novel decomposition of the flow graph79

into so-called blocks. This block decomposition allows us to express dependencies between80

flows, and we represent dependencies between blocks by a (directed) dependency graph D.81

The structure of D is sophisticated, hence to analyze it, we first construct a helper graph H.82

In our first main technical lemma, we show that if there is an independent set I in H, then83

the dependency graph that corresponds to the vertices of I is a DAG (Theorem 11). So we84

may concentrate on a subgraph of D with a simpler structure, which we use to prove the85

next main technical lemma: there is a congestion-free rerouting if and only if the maximum86

independent set in H is large enough (Lemma 14). We are left with the challenge that finding87

a maximum independent set is a hard problem, even in our very restricted graph classes. We88

hence carefully modify H to obtain a much simpler graph of bounded pathwidth, without89

losing any critical properties. Thanks to these lemmas, the proof of the main theorem will90

follow.91

In addition to our algorithmic contributions, we present NP-hardness proofs. These92

hardness proofs are based on novel and non-trivial insights into the flow rerouting problem,93

which might be helpful for similar problems in the future.94

2 Model and Definitions95

The problem can be described in terms of edge capacitated directed graphs. In what follows,96

we will assume basic familiarity with directed graphs and we refer the reader to [5] for more97

background. We denote a directed edge e with head v and tail u by e = (u, v). For an98

undirected edge e between vertices u, v, we write e = {u, v}; u, v are called endpoints of e.99

A flow network is a directed capacitated graph G = (V,E, s, t, c), where s is the source,100

t the terminal, V is the set of vertices with s, t ∈ V , E ⊆ V × V is a set of ordered pairs101

118:4 Congestion-Free Rerouting of Flows on DAGs

known as edges, and c : E → N a capacity function assigning a capacity c(e) to every edge102

e ∈ E.103

Our problem, as described above is a multi-commodity flow problem and thus may have104

multiple source-terminal pairs. To simplify the notation but without loss of generality, in105

what follows, we define flow networks to have exactly one source and one terminal. In fact,106

we can model any number of different sources and terminals by adding one super source107

with edges of unlimited capacity to all original sources, and one super terminal with edges of108

unlimited capacity leading there from all original terminals.109

An (s, t)-flow F of capacity d ∈ N is a directed path from s to t in a flow network such110

that d ≤ c(e) for all e ∈ E(F). Given a family F of (s, t)-flows F1, . . . , Fk with demands111

d1, . . . , dk respectively, we call F a valid flow set, or simply valid, if c(e) ≥
∑
i : e∈E(Fi) di.112

Recall that we consider the problem of how to reroute a current (old) flow to a new113

(update) flow, and hence we will consider such flows in “update pairs”: An update flow114

pair P = (F o, Fu) consists of two (s, t)-flows F o, the old flow, and Fu, the update flow,115

each of demand d. A graph G = (V,E,P, s, t, c), where (V,E, s, t, c) is a flow network,116

and P = {P1, . . . , Pk} with Pi = (F oi , Fui), a family of update flow pairs of demand di,117

V =
⋃
i∈[k] V (F oi ∪ Fui) and E =

⋃
i∈[k]E(F oi ∪ Fui), is called update flow network if the118

two families Po = {F o1 , . . . , F ok } and Pu = {Fu1 , . . . , Fuk } are valid. For an illustration, recall119

the initial network in Figure 2: The old flow is presented as the directed path made of solid120

edges and the new one is represented by the dashed edges.121

Given an update flow network G = (V,E,P, s, t, c), an update is a pair µ = (v, P) ∈122

V ×P . An update (v, P) with P = (F o, Fu) is resolved by deactivating all outgoing edges of123

F o incident to v and activating all of its outgoing edges of Fu. Note that at all times, there124

is at most one outgoing and at most one incoming edge, for any flow at a given vertex. So125

the deactivated edges of F o can no longer be used by the flow pair P (but now the newly126

activated edges of Fu can).127

For any set of updates U ⊂ V × P and any flow pair P = (F o, Fu) ∈ P, G(P,U) is the128

update flow network consisting exactly of the vertices V (F o) ∪ V (Fu) and the edges of P129

that are active after resolving all updates in U .130

As an illustration, after the second update in Figure 2, one of the original solid edges is131

still not deactivated. However, already two of the new edges have become solid (i.e., active).132

So in the picture of the second update, the set U = {(v1, P), (v2, P)} has been resolved.133

We are now able to determine, for a given set of updates, which edges we can and134

which edges we cannot use for our routing. In the end, we want to describe a process of135

reconfiguration steps, starting from the initial state, in which no update has been resolved,136

and finishing in a state where the only active edges are exactly those of the new flows, of137

every update flow pair.138

The flow pair P is called transient for some set of updates U ⊆ V × P, if G(P,U)139

contains a unique valid (s, t)-flow TP,U . If there is a family P = {P1, . . . Pk} of update flow140

pairs with demands d1, . . . , dk respectively, we call P a transient family for a set of updates141

U ⊆ V ×P , if and only if every P ∈ P is transient for U . The family of transient flows after142

all updates in U are resolved is denoted by TP,U = {TP1,U , . . . , TPk,U}.143

We again refer to Figure 2. In each of the different states, the transient flow is depicted144

as the light blue line connecting s to t and covering only solid (i.e., active) edges.145

An update sequence (σi)i∈[|V×P|] is an ordering of V ×P . We denote the set of updates146

that is resolved after step i by Ui =
⋃i
j=1 σi, for all i ∈ [|V × P|].147

I Definition 1 (Consistency Rule). Let σ be an update sequence. We require that for any148

i ∈ [|V × P|], there is a family of transient flow pairs TP,Ui
.149

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:5

To ease the notation, we will denote an update sequence (σ)i∈[|V×P|] simply by σ and150

for any update (u, P) we write σ(u, P) for the the position i of (u, P) within σ. An update151

sequence is valid, if every set Ui, i ∈ [|V × P|], obeys the consistency rule.152

We note that this consistency rule models and consolidates the fundamental properties153

usually studied in the literature, such as congestion-freedom [8] and loop-freedom [21].154

I Definition 2 (k-Network Flow Update Problem). Given an update flow network G155

with k update flow pairs, is there a feasible update sequence σ?156

3 On Hardness of 2-Flow Update in General Graphs157

It is easy to see that for an update flow network with a single flow pair, feasibility is always158

guaranteed. However, it turns out that for two flows, the problem becomes hard in general.159

I Theorem 3. Deciding whether a feasible network update schedule exists is NP-hard already160

for k = 2 flows.161

The proof, briefly sketched in the following, is by reduction from 3-SAT. Let C be any162

3-SAT formula with n variables and m clauses. Denote the variables by X1, . . . , Xn and the163

clauses by C1, . . . , Cm. The resulting update flow network is denoted by G(C). Assume that164

the variables are ordered by their indices, and their appearance in each clause respects this165

order.166

We create 2 update flow pairs, a blue one B = (Bo, Bu) and a red one R = (Ro, Ru),167

both of demand 1. The pair B contains gadgets corresponding to the variables. The order in168

which the edges of each of those gadgets are updated will correspond to assigning a value to169

the variable. The pair R on the other hand contains gadgets representing the clauses: they170

have edges that are “blocked” by the variable edges of B. Therefore, we will need to update171

B to enable the updates of R.172

4 Rerouting Flows in DAGs173

We now consider the flow rerouting problem when the underlying flow graph is acyclic. In174

particular, we identify an important substructure arising for flow-pairs in acyclic graphs,175

which we call blocks. These blocks will play a major role in both the hardness proof and the176

algorithm presented in this section.177

Let G = (V,E,P, s, t, c) be an acyclic update flow network, i.e., we assume that the178

graph (V,E) is a DAG. Let ≺ be a topological order on the vertices V = {v1, . . . , vn}.179

Let Pi = (F oi , Fui) be an update flow pair of demand d and let vi1, . . . , vi`o
i
be the induced180

topological order on the vertices of F oi ; analogously, let ui1, . . . , vi`u
i
be the order on Fui .181

Furthermore, let V (F oi) ∩ V (Fui) =
{
zi1, . . . , z

i
ki

}
be ordered by ≺ as well.182

The subgraph of F oi ∪ Fui induced by the set
{
v ∈ V (F oi ∪ Fui) | zij ≺ v ≺ zij+1

}
, j ∈183

[ki − 1], is called the jth block of the update flow pair Fi, or simply the jth i-block. We will184

denote this block by bij .185

For a block b, we define S (b) to be the start of the block, i.e., the smallest vertex w.r.t. ≺;186

similarly, E (b) is the end of the block: the largest vertex w.r.t. ≺.187

Let G = (V,E,P, s, t, c) be an update flow network with P = {P1, . . . , Pk} and let B be188

the set of its blocks. We define a binary relation < between two blocks as follows. For two189

blocks b1, b2 ∈ B, where b1 is an i-block and b2 a j-block, i, j ∈ [k], we say b1 < b2 (b1 is190

smaller than b2) if one of the following holds.191

118:6 Congestion-Free Rerouting of Flows on DAGs

i S (b1) ≺ S (b2),192

ii if S (b1) = S (b2) then b1 < b2, if E (b1) ≺ E (b2),193

iii if S (b1) = S (b2) and E (b1) = E (b2) then b1 < b2, if i < j.194

Let b be an i-block and Pi the corresponding update flow pair. For a feasible update sequence195

σ, we will denote the round σ(S (b), Pi) by σ(b). We say that an i-block b is updated, if all196

edges in b ∩ Fui are active and all edges in b ∩ F oi \ Fui are inactive. We will make use of a197

basic, but important observation on the structure of blocks and how they can be updated.198

This structure is the key to our flow reconfiguration algorithm (presented below), as it allows199

us to consider the update of blocks as a whole, rather than vertex-by-vertex.200

I Lemma 4. Let b be a block of the flow pair P = (Fu, F o). Then in a feasible update201

sequence σ, all vertices (resp. their outgoing edges belonging to P) in Fu ∩ b −S (b) are202

updated strictly before S (b). Moreover, all vertices in b− Fu are updated strictly after S (b)203

is updated.204

I Lemma 5. Let G be an update flow network and σ a valid update sequence for G. Then205

there exists a feasible update sequence σ′ which updates every block in consecutive rounds.206

Recall that G is acyclic and every flow pair in G forms a single block. Let σ be a feasible207

update sequence of G. We suppose in σ, every block is updated in consecutive rounds208

(Lemma 5). For a single flow F , we write σ(F) for the round where the last edge of F was209

updated.210

4.1 Updating k-Flows in DAGs is NP-complete211

We first show that if k is part of the input, the congestion-free flow reconfiguration problem212

is even hard on the DAG. Hence the algorithm presented in the following is essentially tight.213

To prove the theorem, we use a polynomial time reduction from the 3-SAT problem.214

I Theorem 6. Finding a feasible update sequence for k-flows is NP-complete, even if the215

update graph G is acyclic.216

4.2 Linear Time Algorithm for Constant Number of Flows on DAGs217

By Theorem 6 we cannot hope to find a polynomial time algorithm that finds a feasible218

update sequence. However, if the problem is parameterized by the number k of flows, a219

rerouting sequence can be computed in FPT-linear time if the update graph is acyclic. In220

this subsection we describe an algorithm to solve the network update problem on DAGs in221

time 2O(k log k)O(|G|), for arbitrary k. In the remainder of this section, we assume that every222

block has at least 3 vertices (otherwise, postponing such block updates will not affect the223

solution).224

We say a block b1 touches a block b2 (denoted by b1 � b2) if there is a vertex v ∈ b1 such225

that S (b2) ≺ v ≺ E (b2), or there is a vertex u ∈ b2 such that S (b1) ≺ u ≺ E (b1). If b1226

does not touch b2, we write b1 6� b2. Clearly, the relation is symmetric, i.e., if b1 � b2 then227

b2 � b1.228

For some intuition, consider a drawing of G which orders vertices w.r.t. ≺ in a line.229

Project every edge on that line as well. Then two blocks touch each other if they have a230

common segment on that projection.231

Proof Sketch: Before delving into details, we provide the main ideas behind our algorithm.232

We can think about the update problem on DAGs as follows. Our goal is to compute a233

feasible update order for the (out-)edges of the graph. There are at most k flows to be234

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:7

updated for each edge, resulting in k! possible orders and hence a brute force complexity of235

O(k!|G|) for the entire problem. We can reduce this complexity by considering blocks instead236

of edges.237

The update of a given i-block bi might depend on the update of a j-block sharing at least238

one edge of bi. These dependencies can be represented as a directed graph. If this graph239

does not have any directed cycles, it is rather easy to find a feasible update sequence, by240

iteratively updating sink vertices.241

There are several issues here: First of all these dependencies are not straight-forward242

to define. As we will see later, they may lead to representation graphs of exponential size.243

In order to control the size we might have to relax our definition of dependency, but this244

might lead to a not necessarily acyclic graph which will then need further refinement. This245

refinement is realized by finding a suitable subgraph, which alone is a hard problem in general.246

To overcome the above problems, we proceed as follows.247

Let TouchSeq(b) contain all feasible update sequences for the blocks that touch b: still a248

(too) large number, but let us consider them for now. For two distinct blocks b, b′, we say249

that two sequences s ∈ TouchSeq(b), s′ ∈ TouchSeq(b′) are consistent, if the order of any250

common pair of blocks is the same in both s, s′. If for some block b, TouchSeq(b) = ∅, there251

is no feasible update sequence for G: b cannot be updated.252

We now consider a graph H whose vertices correspond to elements of TouchSeq(b), for253

all b ∈ B. Connect all pairs of vertices originating from the same TouchSeq(b). Connect254

all pairs of vertices if they correspond to inconsistent elements of different TouchSeq(b). If255

(and only if) we find an independent set of size |B| in the resulting graph, the update orders256

corresponding to those vertices are mutually consistent: we can update the entire network257

according to those orders. In other words, the update problem can be reduced to finding an258

independent set in the graph H.259

However, there are two main issues with this approach. First, H can be very large. A260

single TouchSeq(b) can have exponentially many elements. Accordingly, we observe that we261

can assume a slightly different perspective on our problem: we linearize the lists TouchSeq(b)262

and define them sequentially, bounding their size by a function of k (the number of flows).263

The second issue is that finding a maximum independent set in H is hard. The problem264

is equivalent to finding a clique in the complement of H, a |B|-partite graph where every265

partition has bounded cardinality. We can prove that for an n-partite graph where every266

partition has bounded cardinality, finding an n-clique is NP-complete. So, in order to solve267

the problem, we either should reduce the number of partitions in H (but we cannot) or268

modify H to some other graph, further reducing the complexity of the problem. We do the269

latter by trimming H and removing some extra edges, turning the graph into a very simple270

one: a graph of bounded path width. Then, by standard dynamic programming, we find the271

independent set of size |B| in the trimmed version of H: this independent set matches the272

independent set I of size |B| in H (if it exists). At the end, reconstructing a correct update273

order sequence from I needs some effort. As we have reduced the size of TouchSeq(b) and274

while not all possible update orders of all blocks occur, we show that they suffice to cover all275

possible feasible solutions. We provide a way to construct a valid update order accordingly.276

With these intuitions in mind, we now present a rigorous analysis. Let πS1 = (a1, . . . , a`1)277

and πS2 = (a′1, . . . , a′`2
) be permutations of sets S1 and S2. We define the core of πS1 and278

πS2 as core(πS1 , πS2) := S1 ∩ S2. We say that two permutations π1 and π2 are consistent,279

π1 ≈ π2, if there is a permutation π of symbols of core(π1, π2) such that π is a subsequence280

of both π1 and π2.281

118:8 Congestion-Free Rerouting of Flows on DAGs

The dependency graph is a labelled graph defined recursively as follows. The depend-282

ency graph of a single permutation π = (a1, . . . , a`), denoted by Gπ, is a directed path283

v1, . . . , v`, and the label of the vertex vi ∈ V (Gπ) is the element a with π(a) = i. We denote284

by Labels(Gπ) the set of all labels of Gπ.285

Let GΠ be a dependency graph of the set of permutations Π and GΠ′ the dependency286

graph of the set Π′. Then, their union (by identifying the same vertices) forms the dependency287

graph GΠ∪Π′ of the set Π∪Π′. Note that such a dependency graph is not necessarily acyclic288

(see Figure 3).289

We call a permutation π of blocks of a subset B′ ⊆ B congestion free, if the following290

holds: it is possible to update the blocks in π in the graph GB (the graph on the union of291

blocks in B), in order of their appearance in π, without violating any edge capacities in GB.292

Note that we do not respect all conditions of our Consistency Rule (Definition 1) here.293

πblue = (v7, c, a, v2)
πgreen = (v6, b, c, v1)
πred = (v3, v4, a, b, v5)

G{πblue,πgreen,πred}

ab

c
v1

v2

v4 v3
v5

v6

v7

Figure 3 Example: The dependency graph of three pairwise consistent permutations πblue, πgreen

and πred. Each pair of those permutation has exactly one vertex in common and with this the cycle
(a, b, c) is created. With such cycles being possible, a dependency graph does not necessarily contain
sink vertices. To get rid of them, we certainly need some more refinements.

In the approach we are taking, one of the main advantages we have is the nice properties of294

blocks when it comes to updating. The following algorithm formalizes the procedure already295

described in Lemma 5. The correctness follows directly from said lemma. Let P = (F o, Fu)296

be a given flow pair.297

298

Algorithm 1. Update a Free Block b299

1. Resolve (v, P) for all v ∈ Fu ∩ b−S (b).300

2. Resolve (S (b), P).301

3. Resolve (v, P) for all v ∈ (b− Fu).302

4. For any edge in E(b∩ Fu) check whether dFu together with the other loads currently303

active on e exceed c(e). If so output: Fail.304

I Lemma 7. Let π be a permutation of the set B1 ⊆ B. Whether π is congestion free can be305

determined in time O(k · |G|).306

The smaller relation defines a total order on all blocks in G. Let B = {b1, . . . , b|B|} and307

suppose the order is b1 < . . . < b|B|.308

We define an auxiliary graph H which will help us find a suitable dependency graph for309

our network. We first provide some high-level definitions relevant to the construction of310

the graph H only. Exact definitions will follow in the construction of H, and will be used311

throughout the rest of this section.312

Recall that B is the set of all blocks in G. We define another set of blocks B′ and313

initialize it as B; the construction of H is iterative, and in each iteration, we eliminate a314

block from B′. At the end of the construction of H, B′ is empty. For every block b ∈ B′,315

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:9

we also define the set TouchingBlocks(b) of blocks which touch the block b, note that this316

set is dynamically defined: it depends on B′. Another set which is defined for every block317

b is the set PermutList(b); this set actually corresponds to a set of vertices, each of which318

corresponds to a valid congestion free permutation of blocks in TouchingBlocks(b). Clearly if319

TouchingBlocks(b) does not contain any congestion-free permutation, then PermutList(b) is320

an empty set. As we already mentioned, every vertex v ∈ PermutList(b) comes with a label321

which corresponds to some congestion-free permutation of elements of TouchingBlocks(b).322

We denote that permutation by Label (v).323

Construction of H: We recursively construct a labelled graph H from the blocks of324

G as follows.325

i Set H := ∅, B′ := B, PermutList := ∅.326

ii For i := 1, . . . , |B| do327

328

1 Let b := b|B|−i+1.329

2 Let TouchingBlocks(b) := {b′1, . . . , b′t} be the set of blocks in B′ touched by b.330

3 Let π := {π1, . . . , π`} be the set of congestion free permutations of TouchingBlocks(b).331

4 Set PermutList(b) := ∅.332

5 For i ∈ [`] create a vertex vπi
with Label(vπi

) = πi and set PermutList(b) :=333

PermutList(b) ∪ vπi .334

6 Set H := H ∪ PermutList(b).335

7 Add edges between all pairs of vertices in H[PermutList(b)].336

8 Add an edge between every pair of vertices v ∈ H[PermutList(b)] and u ∈ V (H) −337

PermutList(b) if the labels of v and u are inconsistent.338

9 Set B′ := B′ − b.339

.

PermutList(bi)
PermutList(bi+1)

PermutList(bj)

. c . . . dd . . . cd . . . c a . . . bb . . . a

Figure 4 Example: The graph H consists of vertex sets PermutList(bi), i ∈ [|B|], where each such
partition contains all congestion free sequences of the at most k iteratively chosen touching blocks.
In the whole graph, we then create edges between the vertices of two such partitions if and only if the
corresponding sequences are inconsistent with each other, as seen in the three highlighted sequences.
Later we will distinguish between such edges connecting vertices of neighbouring partitions (w.r.t. the
topological order of their corresponding blocks), PermutList(bi) and PermutList(bi+1), and partitions
that are further away, PermutList(bi) and PermutList(bj). Edges of the latter type, depicted as red
in the figure, are called long edges and will be deleted in the trimming process of H.

We have the following lemmas based on our construction.340

118:10 Congestion-Free Rerouting of Flows on DAGs

I Lemma 8. For Item (ii2) of the construction of H, t ≤ k holds.341

I Lemma 9 (Touching Lemma). Let bj1 , bj2 , bj3 be three blocks (w.r.t. <) where j1 < j2 < j3.342

Let bz be another block such that z /∈ {j1, j2, j3}. If in the process of constructing H, bz is in343

the touch list of both bj1 and bj3 , then it is also in the touch list of bj2 .344

πbblue

πbgreen

πbred

topological order

a
b

...

...

c
a

...

a
b

c
a

Figure 5 Example: Select one of the permutations of length at most k from every PermutList(b).
These permutations obey the Touching Lemma. Taking the three permutations from the example
in Figure 3, we can see that the Touching Lemma forces a to be in the green permutation as well.
Assuming consistency, this would mean a to come before b and after c. Hence a <πgreen b and
b <πgreen a, a contradiction. So if our permutations are derived from H and are consistent, we will
show that cycles cannot occur in their dependency graph.

For an illustration of the property described in the Touching Lemma, see Figure 5: it345

refers to the dependency graph of Figure 3. This example also points out the problem with346

directed cycles in the dependency graph and the property of the Touching Lemma, which is347

crucial for Observation 10 and Theorem 11.348

We prove a series of lemmas in regard to the dependency graph of elements of H, to349

establish the base of the inductive proof for Lemma 13.350

I Observation 10. Let π be a permutation of a set S. Then the dependency graph Gπ does351

not contain a cycle.352

I Lemma 11. Let π1, π2 be permutations of sets S1, S2 such that π1, π2 are consistent. Then353

the dependency graph Gπ1∪π2 is acyclic.354

In the next lemma, we need a closure of the dependency graph of permutations which we355

define as follows.356

I Definition 12 (Permutation Graph Closure). The permutation graph closure, or simply357

closure, of a permutation π is the graph G+
π obtained from taking the transitive closure of358

Gπ, i.e. its vertices and labels are the same as Gπ and there is an edge (u, v) in G+
π if there359

is a path starting at u and ending at v in Gπ. Similarly the permutation graph closure of a360

set of permutations Π = {π1, . . . , πn} is the graph obtained by taking the union of G+
πi
’s (for361

i ∈ [n]) by identifying vertices of the same label.362

In the above definition, note that if Π is a set of permutations, then GΠ ⊆ G+
Π. The363

following lemma generalizes Theorem 11 and Observation 10 and uses them as the base of364

its inductive proof.365

I Lemma 13. Let I = {vπ1 , . . . , vπ`
} be an independent set in H. Then the dependency366

graph GΠ, for Π = {π1, . . . , π`}, is acyclic.367

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:11

Proof. Instead of working on GΠ, we can work on its closure G+
Π as defined above. First368

we observe that every edge in GΠ also appears in G+
Π, so if there is a cycle in GΠ, the same369

cycle exists in G+
Π.370

We prove that there is no cycle in G+
Π. By Theorem 11 and Observation 10 there is no371

cycle of length at most 2 in G+
Π; otherwise there is a cycle in GΠ which consumes at most372

two consistent permutations.373

For the sake of contradiction, suppose G+
Π has a cycle and let C = (a1, . . . , an) ⊆ G+

Π be374

a shortest cycle in G+
Π. By Theorem 11 and Observation 10 we know that n ≥ 3.375

In the following, because we work on a cycle C, whenever we write any index i we consider376

it w.r.t. its cyclic order on C, in fact i mod |C|+ 1. So for example, i = 0 and i = n are377

identified as the same indices; similarly for i = n+ 1, i = 1, etc.378

Recall the construction of the dependency graph where every vertex v ∈ C corresponds379

to some block bv. In the remainder of this proof we do not distinguish between the vertex v380

and the block bv.381

Let πv be the label of a given vertex v ∈ I. For each edge e = (ai, ai+1) ∈ C, there is a382

permutation πvi such that (ai, ai+1) is a subsequence of πvi and additionally the vertex vi is in383

the set I. So there is a block bi such that πvi
is a permutation of the set TouchingBlocks(bi).384

The edge e = (ai, ai+1) is said to represent bi, and we call it the representative of πvi
.385

For each i we fix one block bi which is represented by the edge (ai, ai+1) (note that one edge386

can represent many blocks, but here we fix one of them). We define the set of those blocks387

as BI = {b1, . . . , b`} and state the following claim.388

Claim 1. For every two distinct vertices ai, aj ∈ C, either there is no block b ∈ BI such that389

ai, aj ∈ TouchingBlocks(b) or if ai, aj ∈ TouchingBlocks(b) then (ai, aj) or (aj , ai) is an390

edge in C. Additionally
∣∣BI ∣∣ = |C|.391

By the above claim we have ` = n. W.l.o.g. suppose b1 < b2 < . . . < bn. There is an i ∈ [n]392

such that (ai−1, ai) represents b1, we fix this i.393

Claim 2. If (ai−1, ai) represents b1 then (ai−2, ai−1) represents b2.394

Similarly we can prove the endpoints of the edges, that have ai as their head, are in b2.395

Claim 3. If (ai−1, ai) represents b1 then (ai, ai+1) represents b2.396

By Claims 2 and 3 we have that both (ai−2, ai−1) and (ai, ai+1) represent b2 hence by397

Claim 1 they are the same edge. Thus there is a cycle on the vertices ai−1, ai in G+
Π and this398

gives a cycle in GΠ on at most 2 consistent permutations which is a contradiction according399

to Theorem 11. J400

The following lemma is the key to establish a link between independent sets in H and401

feasible update sequences of the corresponding update flow network G.402

I Lemma 14. There is a feasible sequence of updates for an update network G on k flow pairs,403

if and only if there is an independent set of size |B| in H. Additionally if the independent404

set I ⊆ V (H) of size |B| together with its vertex labels are given, then there is an algorithm405

which can compute a feasible sequence of updates for G in O(k · |G|).406

With Lemma 14, the update problem boils down to finding an independent set of size |B|407

in H.408

118:12 Congestion-Free Rerouting of Flows on DAGs

Finding an independent set of size |B| in H is a hard problem already on very restricted409

class families. Hence, we trim H to avoid the above problem. We will use the special410

properties of the touching relation of blocks. We say that an edge e ∈ E(H) is long, if one411

end of e is in PermutList(bi), and the other in PermutList(bj) where j > i+ 1. The length412

of e is j − i. Delete all long edges from H to obtain the graph RH . We prove the following413

lemmas.414

I Lemma 15. There is an algorithm which computes RH in time O((k · k!)2 |G|).415

I Lemma 16. H has an independent set I of size |B| if, and only if, I is also an independent416

set of size |B| in RH .417

RH is a much simpler graph compared to H, which helps us find a large independent set418

of size |B| (if exists). We have the following lemma.419

I Lemma 17. There is an algorithm that finds an independent set I of size exactly |B| in RH420

if such an independent set exists; otherwise it outputs that there is no such an independent421

set. The running time of this algorithm is O(|RH |).422

Our main theorem is now a corollary of the previous lemmas and algorithms.423

I Theorem 18. There is a linear time FPT algorithm for the network update problem on424

an acyclic update flow network G with k flows (the parameter), which finds a feasible update425

sequence, if it exists; otherwise it outputs that there is no feasible solution for the given426

instance. The algorithm runs in time O(2O(k log k) |G|).427

5 Conclusion428

This paper initiated the study of a natural and fundamental reconfiguration problem: the429

congestion-free rerouting of unsplittable flows. Interestingly, we find that while computing430

disjoint paths on DAGs is W [1]-hard [23] and finding routes under congestion as well [1],431

reconfiguring multicommodity flows is fixed parameter tractable on DAGs. However, we also432

show that the problem is NP-hard for an arbitrary number of flows.433

In future work, it will be interesting to chart a more comprehensive landscape of the434

computational complexity for the network update problem. In particular, it would be435

interesting to know whether the complexity can be reduced further, e.g., to 2O(k)O(|G|).436

More generally, it will be interesting to study other flow graph families, especially more437

sparse graphs or graphs of bounded DAG width [2, 6]. Finally, besides feasibility, it remains438

to study algorithms to efficiently compute short schedules.439

Acknowledgements. We would like to thank Stephan Kreutzer, Arne Ludwig and Roman440

Rabinovich for discussions on this problem.441

References442

1 Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Rout-443

ing with congestion in acyclic digraphs. In 41st International Symposium on Mathematical444

Foundations of Computer Science, MFCS, pages 7:1–7:11, 2016.445

2 Saeed Akhoondian Amiri, Stephan Kreutzer, and Roman Rabinovich. Dag-width is pspace-446

complete. Theor. Comput. Sci., 655:78–89, 2016.447

3 Saeed Akhoondian Amiri, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Transi-448

ently consistent sdn updates: Being greedy is hard. In 23rd International Colloquium on449

Structural Information and Communication Complexity, SIROCCO, 2016.450

S. Akhoondian Amiri, S. Dudycz, S. Schmid, S. Wiederrecht 118:13

4 D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. Rsvp-te: Extensions451

to rsvp for lsp tunnels. In RFC 3209, 2001.452

5 Jørgen Bang-Jensen and Gregory Gutin. Digraphs - theory, algorithms and applications.453

Springer, 2002.454

6 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdrzálek. The455

dag-width of directed graphs. J. Comb. Theory, Ser. B, 102(4):900–923, 2012.456

7 Paul Bonsma. The complexity of rerouting shortest paths. Theoretical computer science,457

510:1–12, 2013.458

8 Sebastian Brandt, Klaus-Tycho Förster, and Roger Wattenhofer. On Consistent Migration459

of Flows in SDNs. In Proc. 36th IEEE International Conference on Computer Communic-460

ations (INFOCOM), 2016.461

9 Luis Cereceda, Jan Van Den Heuvel, and Matthew Johnson. Finding paths between 3-462

colorings. Journal of graph theory, 67(1):69–82, 2011.463

10 Chandra Chekuri, Alina Ene, and Marcin Pilipczuk. Constant congestion routing of sym-464

metric demands in planar directed graphs. In 43rd International Colloquium on Automata,465

Languages, and Programming, ICALP, 2016.466

11 Chandra Chekuri, Sreeram Kannan, Adnan Raja, and Pramod Viswanath. Multicommod-467

ity flows and cuts in polymatroidal networks. SIAM J. Comput., 44(4):912–943, 2015.468

12 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicom-469

modity flow problems. SIAM J. Comput., 5(4):691–703, 1976.470

13 Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of consistent network471

updates. In ArXiv Technical Report, 2016.472

14 Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer. Consistent Updates in473

Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes. In Proc.474

15th IFIP Networking, 2016.475

15 Parikshit Gopalan, Phokion G Kolaitis, Elitza Maneva, and Christos H Papadimitriou. The476

connectivity of boolean satisfiability: computational and structural dichotomies. SIAM477

Journal on Computing, 38(6):2330–2355, 2009.478

16 Robert A Hearn and Erik D Demaine. Pspace-completeness of sliding-block puzzles and479

other problems through the nondeterministic constraint logic model of computation. The-480

oretical Computer Science, 343(1-2):72–96, 2005.481

17 Takehiro Ito, Erik Demaine, Nicholas Harvey, Christos Papadimitriou, Martha Sideri, Ry-482

uhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Algorithms483

and Computation, pages 28–39, 2008.484

18 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-485

integral grid theorem for digraphs and the directed disjoint paths problem. In Proc. Sym-486

posium on Theory of Computing (STOC), pages 70–78, 2014.487

19 Jon M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths488

problem. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages489

530–539, 1998.490

20 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems491

and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.492

21 Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-free network updates:493

It’s good to relax! In Proc. ACM PODC, 2015.494

22 Martin Skutella. Approximating the single source unsplittable min-cost flow problem. In495

Proc. IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, 2000.496

23 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic497

graphs. SIAM Journal on Discrete Mathematics, 24(1):146–157, 2010.498

24 Jan van den Heuvel. The complexity of change. Surveys in combinatorics, 409(2013):127–499

160, 2013.500

	Introduction
	Model and Definitions
	On Hardness of 2-Flow Update in General Graphs
	Rerouting Flows in DAGs
	Updating k-Flows in DAGs is NP-complete
	Linear Time Algorithm for Constant Number of Flows on DAGs

	Conclusion

