
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Revolutionizing Datacenter

Networks via Reconfigurable

Topologies

Stefan Schmid (TU Berlin)

Acknowledgements:

Datacenters (“hyper-scale”)

Traffic
Growth

S
o
u
r
c
e
:

F
a
c
e
b
o
o
k

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

We live in the age of

Distributed Computation

1

2

Technological Trends
Increasing Gap Between Compute and Network

Credits: Nicola Calabretta

The Problem
Huge Infrastructure, Inefficient Use

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!

C
r
e
d
i
t
s
:

P
a
o
l
o

C
o
s
t
a
,

2
0
1
9

G
b
p
s
/
€

Time

An Inefficiency
Fixed and Demand-Oblivious Topology

How to interconnect? Focus on this talk: scale-out network.

4

⇢ Example: fat-tree topology (bi-regular)

⇀ 2 types of switches: top-of-rack (ToR) connect to hosts,

additional switches connecting switches to increase throughput

4

An Inefficiency
Fixed and Demand-Oblivious Topology

4

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads

An Inefficiency
Fixed and Demand-Oblivious Topology

Many flavors, but in

common: fixed and oblivious

(“ignorant”) to actual demand.

4

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads

An Inefficiency
Fixed and Demand-Oblivious Topology

Highway which ignores

actual traffic: frustrating!

4

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads

An Inefficiency
Fixed and Demand-Oblivious Topology

Many flavors, but in

common: fixed and oblivious

(“ignorant”) to actual demand.

A Vision
Flexible and Demand-Aware Topologies

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

5

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

5

Analogy

Golden Gate Zipper

The hypothesis: can

be exploited.

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook
s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

The Motivation
Much Structure in the Demand: Complexity Map

6

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

uniform

bursty & skewed
skewed

NN

19

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

Griner et al., SIGMETRICS 2020 7

The Motivation
Much Structure in the Demand: Complexity Map

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

uniform

bursty & skewed
skewed

NN

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

“
E
n
t
r
o
p
y

o
f

D
e
m
a
n
d

M
a
t
r
i
x
”

“Entropy Rate”

Griner et al., SIGMETRICS 2020 7

The Motivation
Much Structure in the Demand: Complexity Map

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

bursty uniform

bursty & skewed
skewed

NN

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

Different

structures!

Griner et al., SIGMETRICS 2020 7

The Motivation
Much Structure in the Demand: Complexity Map

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

bursty uniform

bursty & skewed
skewed

NN

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

Different

structures!

Griner et al., SIGMETRICS 2020 7

Hypothesis:

can be

exploited.

The Motivation
Much Structure in the Demand: Complexity Map

Traffic is also clustered: bi-clustering results

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!

8

Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council:

“Photons are the new

Electrons.”
Photonics

9

Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

10

Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

11

Another Example
Tunable Lasers

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive

12

Another Example
Tunable Lasers

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Electrical switch

with tunable laser
Optical switch

Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 12

Another Example
Tunable Lasers

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Electrical switch

with tunable laser
Optical switch

Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 12

First Deployments
E.g., Google’s Datacenter Jupiter

13

The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

14

The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time! Missing: Foundations of

demand-aware, self-

adjusting networks.

14

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

bursty uniform

bursty & skewed
skewed

NN

Potential Gain

33

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

15

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

bursty uniform

bursty & skewed
skewed

NN

Potential Gain

34

pF

CNS

ML

DB

Web

Had

Multi
Grid

NN

15

Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly
in software

Our focus in this talk:
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

16

The Natural Question:

Given This Structure,
What Can Be Achieved?
Metrics and Algorithms?

A first insight: entropy of the demand.

17

Insight:

Connection to
Datastructures

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost

17

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

17

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Similar benefits?

17

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than

an analogy!

Similar benefits?

17

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

First results:

Demand-aware networks

of asymptotically

optimal route lengths.

17

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

Reality: A Tradeoff

6 hops 1 hop

vs

42
18

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

Reality: A Tradeoff

6 hops 1 hop

vs

bandwidth

tax!

43
18

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality: A Tradeoff

6 hops 1 hop

vs

bandwidth

tax!

44
18

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality: A Tradeoff

vs

6 hops 1 hop

bandwidth

tax!

latency

tax!

45
18

Diverse patterns:

⇀ Shuffling/Hadoop:

all-to-all

⇀ All-reduce/ML: ring or

tree traffic patterns
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

⇀ ML is bandwidth hungry,

small flows are latency-

sensitive

Shuffling

All-to-All

ML

Large flows

Delay
sensitive

Telemetry
/ control

46
19

Challenge: Traffic Diversity

Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

20

Static

Demand-
oblivious

Demand-
aware

Dynamic

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

48
20

Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius(SIGCOMM‘20),
Mars
(SIGMETRICS‘23),
Shale
(SIGMETRICS‘24)

e.g., Helios
(SIGCOMM‘10),
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16),
Duo (SIGMETRICS‘23)

e.g., Clos
(SIGCOMM‘08), Slim
Fly (SC‘14),
Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

49
20

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

50
20

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

51
20

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

52
20

even more

latency

tax!

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

53
20

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

As always in CS:

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

54
20

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology 55
21

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

?

56
21

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

Bad idea! Latency tax.

?

57
21

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

?

58
21

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

Bad idea! Bandwidth tax.

?

59
21

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Topology

Serving elephant flows on static?

Bad idea! Bandwidth tax.
60

21

Conceptual Solution

Shuffling ML

Delay
sensitive

Telemetry
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

Conceptually ideal solution:

Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022
61

Flow Size Matters

62

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

22

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

63
22

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

64
22

Similar tradeoff for

800Gbps or 1.6 Tpbs

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

65
22

Cerberus

1 2 3 4 5 6 7 8

Optical Switches

66 23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

67
23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: Small flows go via static switches…

68
23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … medium flows via rotor switches…

69
23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 70
23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

How good is it? Open problem. But there are bounds.

71
23

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

72
23

How good is it? Open problem. But there are bounds.

How to realize such an architecture?! Scalable control plane?

Throughput of RDCNs?

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…

73

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

24

Throughput of RDCNs?

𝑇 𝜃(𝑇)×

Demand Matrix

Metric: throughput

of a demand matrix…

74

… is the maximal scale

down factor by which

traffic is feasible

0 ≤ 𝜃 𝑇 ≤ 1.

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

24

Throughput of RDCNs?

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible

0 ≤ 𝜃 𝑇 ≤ 1.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

⇒

Throughput of network 𝜽∗:
worst case 𝑇

75

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

24

Throughput of RDCNs?

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible

0 ≤ 𝜃 𝑇 ≤ 1.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

⇒

Throughput of network 𝜽∗:
worst case 𝑇

76

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

24

Worst T for

different

networks?

Throughput: Expander

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

static-net

77

Permutation matrix

is the worst demand

25

Throughput: Expander

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

static-net

78

Permutation matrix

is the worst demand

Bandwidth tax
Expected path length

Namyar et al., SIGCOMM 2021

25

Throughput: Demand-Aware

𝑇

Demand Matrix

79

Permutation matrix

is the best demand ☺

26

Throughput: Demand-Aware

𝑇

Demand Matrix

80

Permutation matrix

is the best demand ☺

Demand-aware performs poorly for unstructured demand.

Throughput formula is a function of Latency tax.

26

Throughput: Cerberus

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches
= =
𝜃 𝜃

81

Bandwidth tax + Latency tax

27

Cerberus balances optimally across switch types.

Throughput depends on both:

Throughput: Cerberus

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches
= =
𝜃 𝜃

82

Bandwidth tax + Latency tax

27

Cerberus balances optimally across switch types.

Throughput depends on both:

But theoretical problem open: no exact formula known yet.

⇀ Throughput bounds for many designs not fully understood yet

Addanki et al., arXiv 2025:
https://arxiv.org/pdf/2405.20869

Addanki et al., Vermillion:
https://arxiv.org/pdf/2504.09892

28

Throughput:

Many More Open Questions

https://arxiv.org/pdf/2405.20869
https://arxiv.org/pdf/2504.09892

How to support such
dynamic networks on
other layers?

⇢ ECMP reconvergence?! Benefits of Valiant routing?

⇢ How to avoid packet reorderings? RDMA network cards don’t like them!

⇢ Routing in hybrid networks: segregated vs non-segregated?

⇢ First ideas: local routing! Techniques from dynamic P2P systems?

30

More Challenges:

Network Layer?

⇢ First ideas for quickly reacting TCP: ReTCP, PowerTCP, …

⇢ Or better completely different approach? Even centralized?!

31

More Challenges:

Congestion Control?

32

More Challenges:

Buffering?

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

PowerTCP

33

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

PowerTCP

☺ Can achieve near-

zero queue equilibrium

 Slow reaction

33

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

PowerTCP

☺ Fast reaction

 No equilibrium

33

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Limitation: using only one of the two may miss useful information

for fine-grained adaptions!

Case Study:

PowerTCP

33

Limitation of SOTA

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

34

Limitation of SOTA

2 and 3: impossible to

distinguish for voltage-based CCA

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

34

Limitation of SOTA

1 and 3: impossible to

distinguish for current-based CC

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

34

Limitation of SOTA

We need both: Power (Voltage x Current)

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

34

Limitation of SOTA

We need both: Power (Voltage x Current)

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

Inspired:

34

So far: focus on throughput performance.

More benefits of optical &
reconfigurable switching

⇢ Reconfigurable datacenter networks naturally support

heterogeneous network elements

⇢ And therefore also incremental hardware upgrades

Benefit 1:

Evolving Datacenters

36

See interview with Amin
Vahdat, Google in CACM:
https://www.youtube.com/
watch?v=IxcV1gu8ETA

⇢ No need to convert photons in fiber to electrons in

switch (and back)

⇢ Can safe energy and reduce latency (in addition to

enabling almost unlimited throughput)

Benefit 2:

Energy and Latency

Optical fiber Optical fiberElectric switch

37

⇢ No need to convert photons in fiber to electrons in

switch (and back)

⇢ Can safe energy and reduce latency (in addition to

enabling almost unlimited throughput)

Benefit 2:

Energy and Latency

Optical fiber Optical fiberOptical switch

38

⇢ No need to convert photons in fiber to electrons in

switch (and back)

⇢ Can safe energy and reduce latency (in addition to

enabling almost unlimited throughput)

⇢ Interesting for emerging distributed datacenters!

Benefit 2:

Energy and Latency

Optical fiber Optical fiberOptical switch

39

Floodings in South Germany destroyed

much electrical network infrastructure

Benefit 3:

Resilience

Solution: deploy optical

infrastructure (in valleys) and

electrical on hills where safe?

40

⇢ Opportunity: structure in demand and

reconfigurable networks

⇢ So far: tip of the iceberg

⇢ Many challenges
⇀ Optimal design depends on traffic pattern

⇀ How to measure/predict traffic?

⇀ Impact on other layers?

⇀ Scalable control plane

⇀ Application-specific self-adjusting networks?

⇢ Many more opportunities for optical networks

Conclusion

41

Thank you! Questions?

Slides

available

here:

Online Video Course

105
38

YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

June’25 CACM Article

108

References (1)
Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)
Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA,
April 2024.

PowerTCP: Pushing the Performance Limits of Datacenter Networks
Vamsi Addanki, Oliver Michel, and Stefan Schmid.
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Renton, Washington, USA, April
2022.

TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control
Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan Schmid.
SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), Columbia University, New York City, New York, USA,
September 2023.

https://schmiste.github.io/cacm25.pdf
https://schmiste.github.io/sigmetrics22cerberus.pdf
https://schmiste.github.io/sigmetrics23mars.pdf
https://schmiste.github.io/sigmetrics23duo.pdf
https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/ccr18san.pdf
https://schmiste.github.io/nsdi24credence.pdf
https://schmiste.github.io/nsdi22powertcp.pdf
https://schmiste.github.io/ebpf23.pdf

References (2)

ABM: Active Buffer Management in Datacenters
Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and Laurent Vanbever.
ACM SIGCOMM, Amsterdam, Netherlands, August 2022.

ExRec: Experimental Framework for Reconfigurable Networks Based on Off-the-Shelf Hardware
Johannes Zerwas, Chen Avin, Stefan Schmid, and Andreas Blenk.
16th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Virtual Conference,
December 2021.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2022.

A Survey of Reconfigurable Optical Networks
Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
Optical Switching and Networking (OSN), Elsevier, 2021.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

.

https://schmiste.github.io/sigcomm22.pdf
https://schmiste.github.io/ancs21exrec.pdf
https://schmiste.github.io/ton22dan.pdf
https://schmiste.github.io/osn21.pdf
https://schmiste.github.io/ton15splay.pdf

Bonus Material

Hogwarts Stair

1

Question:

How to Quantify
such “Structure”
in the Demand?

E1

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

E2

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

E2

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

E3

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

E3

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

E4

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

E4

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

E4

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

E4

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

E4

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

Our Methodology

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

E5

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

No structure

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

E5

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

Different

structures!

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

E5

Further Reading

ACM SIGMETRICS 2020

E6

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

E7

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

cost 5

Bad!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

E7

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

cost 1

Good!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

E7

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

E7

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

E7

Related Problem: Remember Bernardetta’s Talk

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!

E7

Another Related Problem

Low Distortion Spanners

⇢ Classic problem: find sparse, distance-preserving

(low-distortion) spanner of a graph

⇢ But:

⇢ Spanners aim at low distortion among all pairs;

in our case, we are only interested in the

local distortion, 1-hop communication neighbors

⇢ We allow auxiliary edges (not a subgraph): similar to

geometric spanners

⇢ We require constant degree

E8

From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we

can find a constant distortion, linear sized (i.e.,

constant, sparse) spanner for this request graph: then we

can design a constant degree DAN providing an optimal

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and
uniform demand:

Sparse, irregular
(constant) spanner:

Constant degree
optimal DAN (ERL
at most log r):

subgraph!

auxiliiary edges

E9

From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we

can find a constant distortion, linear sized (i.e.,

constant, sparse) spanner for this request graph: then we

can design a constant degree DAN providing an optimal

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and
uniform demand:

Sparse, irregular
(constant) spanner:

Constant degree
optimal DAN (ERL
at most log r):

subgraph!

auxiliiary edges

Our degree reduction
trick again!

Why optimal:
in r-regular graphs,
conditional entropy

is log r.

E9

Idea: Disaggregated Laser

Gain
Tunin

g

Tunin

g

Multi-wavelength

source
Wavelength

Selector

Switching Control Signal

Steady State

Idea

Disaggregated Laser

Ballani et al., Sirius, ACM SIGCOMM 2020. E10

Wavelength

Selector

Switching Control

Signal

…

SOALaser

Laser

Laser

SOA

SOA

Semiconductor optical amplifier (SOA)

M
U

X

Sirius also implemented other designs

(details in the paper)

Multi-wavelength

source

…

Wavelength

Selector

Example Design

Ballani et al., Sirius, ACM SIGCOMM 2020. E11

