
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Revolutionizing Datacenter 

Networks via Reconfigurable 

Topologies

Stefan Schmid (TU Berlin)

Acknowledgements:



Datacenters (“hyper-scale”)

Traffic
Growth

S
o
u
r
c
e
:
 
F
a
c
e
b
o
o
k

Interconnecting networks:  

a critical infrastructure

of our digital society.

+network

We live in the age of

Distributed Computation
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Technological Trends
Increasing Gap Between Compute and Network

Credits: Nicola Calabretta



The Problem
Huge Infrastructure, Inefficient Use

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!
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An Inefficiency
Fixed and Demand-Oblivious Topology

How to interconnect? Focus on this talk: scale-out network.
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⇢ Example: fat-tree topology (bi-regular) 

⇀ 2 types of switches: top-of-rack (ToR) connect to hosts, 

additional switches connecting switches to increase throughput
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An Inefficiency
Fixed and Demand-Oblivious Topology
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⇢ Example: expander topology (uni-regular) 

⇀ Only 1 type of switches: 

lower installation and management overheads

An Inefficiency
Fixed and Demand-Oblivious Topology



Many flavors, but in 

common: fixed and oblivious 

(“ignorant”) to actual demand.
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Highway which ignores 

actual traffic: frustrating!
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A Vision
Flexible and Demand-Aware Topologies
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A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g., 

mirrors

new flexible

interconnect
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Analogy

Golden Gate Zipper



The hypothesis: can 

be exploited.

Empirical studies: 
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destinations
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destinations

Microsoft

traffic bursty over time

M
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Facebook

Time (seconds)

traffic matrices sparse and skewed

The Motivation
Much Structure in the Demand: Complexity Map
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Hypothesis: 

can be 

exploited.

The Motivation
Much Structure in the Demand: Complexity Map



Traffic is also clustered: bi-clustering results

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics
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Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)
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Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror
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Another Example
Tunable Lasers 

Multi-
wavelength 

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive
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Another Example
Tunable Lasers 

Multi-
wavelength 

source
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selector

⇢ Depending on wavelength, forwarded differently
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Electrical switch

with tunable laser
Optical switch
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First Deployments
E.g., Google’s Datacenter Jupiter
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time! Missing: Foundations of 

demand-aware, self-

adjusting networks.
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Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly 
in software

Our focus in this talk: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems
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The Natural Question:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

A first insight: entropy of the demand.
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Insight:

Connection to 
Datastructures

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost
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Insight:

Connection to 
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than 

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First results: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

Reality: A Tradeoff

6 hops 1 hop

vs

42
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality: A Tradeoff

vs

6 hops 1 hop

bandwidth 

tax!

latency 

tax!

45
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Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

46
19

Challenge: Traffic Diversity



Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius(SIGCOMM‘20), 
Mars  
(SIGMETRICS‘23), 
Shale
(SIGMETRICS‘24) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16), 
Duo (SIGMETRICS‘23)

e.g., Clos
(SIGCOMM‘08), Slim 
Fly (SC‘14), 
Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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even more 

latency 

tax!



Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Examples: 
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Conceptual Solution

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

Conceptually ideal solution: 

Cerberus* serves traffic on the “best topology”! 

* Griner et al., ACM SIGMETRICS 2022
61



Flow Size Matters

62

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 

22
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⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 
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Similar tradeoff for 

800Gbps or 1.6 Tpbs



⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 

Flow Size Matters
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Cerberus

1 2 3 4 5 6 7 8

Optical Switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: Small flows go via static switches…

68
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Cerberus
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Scheduling: … medium flows via rotor switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 70
23



Cerberus
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How good is it? Open problem. But there are bounds.
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How good is it? Open problem. But there are bounds.

How to realize such an architecture?! Scalable control plane?



Throughput of RDCNs?

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…

73

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput of RDCNs?

𝑇 𝜃(𝑇)×

Demand Matrix

Metric: throughput 

of a demand matrix…

74

… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput of network 𝜽∗:
worst case 𝑇
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Throughput of RDCNs?

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible 

0 ≤ 𝜃 𝑇 ≤ 1.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8
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⇒

Throughput of network 𝜽∗:
worst case 𝑇
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Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Worst T for 

different 

networks? 



Throughput: Expander
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Demand Matrix
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Throughput: Expander

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

static-net

78

Permutation matrix 

is the worst demand

Bandwidth tax
Expected path length

Namyar et al., SIGCOMM 2021
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Throughput: Demand-Aware

𝑇

Demand Matrix

79

Permutation matrix 

is the best demand ☺
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Throughput: Demand-Aware

𝑇

Demand Matrix

80

Permutation matrix 

is the best demand ☺

Demand-aware performs poorly for unstructured demand. 

Throughput formula is a function of Latency tax. 

26



Throughput: Cerberus
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Bandwidth tax + Latency tax
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Cerberus balances optimally across switch types. 

Throughput depends on both:



Throughput: Cerberus

𝑇

Demand Matrix

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches
= =
𝜃 𝜃

82

Bandwidth tax + Latency tax

27

Cerberus balances optimally across switch types. 

Throughput depends on both:

But theoretical problem open: no exact formula known yet.



⇀ Throughput bounds for many designs not fully understood yet

Addanki et al., arXiv 2025: 
https://arxiv.org/pdf/2405.20869

Addanki et al., Vermillion: 
https://arxiv.org/pdf/2504.09892

28

Throughput:

Many More Open Questions

https://arxiv.org/pdf/2405.20869
https://arxiv.org/pdf/2504.09892


How to support such 
dynamic networks on 
other layers?



⇢ ECMP reconvergence?! Benefits of Valiant routing? 

⇢ How to avoid packet reorderings? RDMA network cards don’t like them!

⇢ Routing in hybrid networks: segregated vs non-segregated?

⇢ First ideas: local routing! Techniques from dynamic P2P systems?

30

More Challenges: 

Network Layer?



⇢ First ideas for quickly reacting TCP: ReTCP, PowerTCP, …

⇢ Or better completely different approach? Even centralized?!

31

More Challenges: 

Congestion Control?



32

More Challenges: 

Buffering?



Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length, 

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue 

length change

⇢ Timely: RTT-gradient based

Case Study:

PowerTCP
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 Slow reaction
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Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length, 

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue 

length change
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Case Study:

PowerTCP

☺ Fast reaction
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Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length, 

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue 

length change

⇢ Timely: RTT-gradient based

Limitation: using only one of the two may miss useful information 

for fine-grained adaptions!

Case Study:

PowerTCP
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Limitation of SOTA

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:
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Limitation of SOTA
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1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:
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Limitation of SOTA

We need both: Power (Voltage x Current)

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

Inspired:

34



So far: focus on throughput performance. 

More benefits of optical & 
reconfigurable switching



⇢ Reconfigurable datacenter networks naturally support 

heterogeneous network elements 

⇢ And therefore also incremental hardware upgrades

Benefit 1:

Evolving Datacenters

36

See interview with Amin 
Vahdat, Google in CACM: 
https://www.youtube.com/
watch?v=IxcV1gu8ETA 



⇢ No need to convert photons in fiber to electrons in 

switch (and back)

⇢ Can safe energy and reduce latency (in addition to 

enabling almost unlimited throughput)

Benefit 2:

Energy and Latency

Optical fiber Optical fiberElectric switch
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switch (and back)
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⇢ No need to convert photons in fiber to electrons in 

switch (and back)

⇢ Can safe energy and reduce latency (in addition to 

enabling almost unlimited throughput)

⇢ Interesting for emerging distributed datacenters!

Benefit 2:

Energy and Latency

Optical fiber Optical fiberOptical switch

39



Floodings in South Germany destroyed 

much electrical network infrastructure

Benefit 3:

Resilience

Solution: deploy optical 

infrastructure (in valleys) and 

electrical on hills where safe?

40



⇢ Opportunity: structure in demand and 

reconfigurable networks

⇢ So far: tip of the iceberg

⇢ Many challenges
⇀ Optimal design depends on traffic pattern

⇀ How to measure/predict traffic?

⇀ Impact on other layers?

⇀ Scalable control plane

⇀ Application-specific self-adjusting networks?

⇢ Many more opportunities for optical networks

Conclusion 

41



Thank you! Questions?

Slides 

available 

here: 



Online Video Course

105
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YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course


http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites



June’25 CACM Article
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Question:

How to Quantify 
such “Structure” 
in the Demand?
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Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

vs
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Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”
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i
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 

E4



bursty uniform
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temporal complexity

Our Methodology

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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pF

CNS ML

DB

Web

HadMulti 
Grid

temporal complexity

Different 

structures!
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No structure

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 
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CNS ML

DB

Web

HadMulti 
Grid

temporal complexity

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Different 

structures!

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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Further Reading

ACM SIGMETRICS 2020
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

E7



Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

cost 5

Bad!

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

cost 1

Good!

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem: Remember Bernardetta’s Talk

Virtual Network 
Embedding Problem (VNEP)

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!

E7



Another Related Problem

Low Distortion Spanners

⇢ Classic problem: find sparse, distance-preserving

(low-distortion) spanner of a graph

⇢ But:

⇢ Spanners aim at low distortion among all pairs;     

in our case, we are only interested in the 

local distortion, 1-hop communication neighbors

⇢ We allow auxiliary edges (not a subgraph): similar to 

geometric spanners

⇢ We require constant degree

E8



From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we 

can find a constant distortion, linear sized (i.e., 

constant, sparse) spanner for this request graph: then we 

can design a constant degree DAN providing an optimal 

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and 
uniform demand:

Sparse, irregular 
(constant) spanner:

Constant degree 
optimal DAN (ERL 
at most log r):

subgraph!

auxiliiary edges
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From Spanners to DANs

An Algorithm

⇢ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we 

can find a constant distortion, linear sized (i.e., 

constant, sparse) spanner for this request graph: then we 

can design a constant degree DAN providing an optimal 

expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and 
uniform demand:

Sparse, irregular 
(constant) spanner:

Constant degree 
optimal DAN (ERL 
at most log r):

subgraph!

auxiliiary edges

Our degree reduction 
trick again!

Why optimal: 
in r-regular graphs, 
conditional entropy 

is log r.
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Idea: Disaggregated Laser

Gain
Tunin

g

Tunin

g

Multi-wavelength 

source
Wavelength

Selector

Switching Control Signal

Steady State

Idea

Disaggregated Laser

Ballani et al., Sirius, ACM SIGCOMM 2020. E10



Wavelength

Selector

Switching Control 

Signal

…

SOALaser

Laser

Laser

SOA

SOA

Semiconductor optical amplifier (SOA)

M
U

X

Sirius also implemented other designs 

(details in the paper)

Multi-wavelength 

source

…

Wavelength

Selector

Example Design

Ballani et al., Sirius, ACM SIGCOMM 2020. E11


