Revolutionizing Datacenter Networks via Reconfigurable Topologies

Stefan Schmid (TU Berlin)

"We cannot direct the wind, but we can adjust the sails."

(Folklore)

Acknowledgements:

Distributed Computation

Datacenters ("hyper-scale")

Interconnecting networks: a critical infrastructure of our digital society.

Technological Trends

Increasing Gap Between Compute and Network

Credits: Nicola Calabretta

The Problem

Huge Infrastructure, Inefficient Use

- Hence: more equipment,
 larger networks
- Resource intensive and:
 inefficient

Annoying for companies, opportunity for researchers!

Fixed and Demand-Oblivious Topology

How to interconnect? Focus on this talk: scale-out network.

- Example: fat-tree topology (bi-regular)
 - → 2 types of switches: top-of-rack (ToR) connect to hosts, additional switches connecting switches to increase throughput

- Example: expander topology (uni-regular)
 - → Only 1 type of switches: lower installation and management overheads

- Example: expander topology (uni-regular)
 - → Only 1 type of switches: lower installation and management overheads

- ---> Example: expander topology (uni-regular)
 - → Only 1 type of switches: lower installation and management overheads

Highway which ignores actual traffic: frustrating!

Flexible and Demand-Aware Topologies

2 matrix: 4 Matches demand 5 e.g., mirrors new flexible interconnect **□**◎° **□**◎%

demand

1

1 2 3 4 5 6 7 8

Analogy

Golden Gate Zipper

Much Structure in the Demand: Complexity Map

Empirical studies:

traffic matrices sparse and skewed

traffic bursty over time

The hypothesis: can be exploited.

Traffic is also clustered: bi-clustering results

Small Stable Clusters

reordering based on bicluster structure

Opportunity: exploit with little reconfigurations!

Sounds Crazy? Emerging Enabling Technology.

H2020:

"Photonics one of only five key enabling technologies for future prosperity."

US National Research Council: "Photons are the new Electrons."

Enabler

Novel Reconfigurable Optical Switches

- → Spectrum of prototypes
 - → Different sizes, different reconfiguration times
 - → From our ACM **SIGCOMM** workshop OptSys

Prototype 1

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

Example

Optical Circuit Switch

Optical Circuit Switch rapid adaption of physical layer
→ Based on rotating mirrors

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010

Another Example

Tunable Lasers

- ---> Depending on wavelength, forwarded differently
- → Optical switch is passive

Electrical switch with tunable laser

Optical switch **Passive**

Another Example

Tunable Lasers

- ---> Depending on wavelength, forwarded differently
- → Optical switch is passive

Electrical switch with tunable laser Optical switch **Passive**

Another Example

Tunable Lasers

- ---> Depending on wavelength, forwarded differently
- → Optical switch is passive

Electrical switch with tunable laser

Optical switch **Passive**

First Deployments

E.g., Google's Datacenter Jupiter

The Big Picture

The Big Picture

demand-aware, selfadjusting networks.

Potential Gain

Potential Gain

Unique Position

Demand-Aware, Self-Adjusting Systems

The Natural Question:

Given This Structure, What Can Be Achieved? Metrics and Algorithms?

A first insight: entropy of the demand.

Connection to Datastructures

Traditional BST

Demand-aware BST

Self-adjusting BST

More structure: improved access cost

Connection to Datastructures & Coding

Traditional BST (Worst-case coding)

Demand-aware BST (Huffman coding)

Self-adjusting BST (Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Connection to Datastructures & Coding

Traditional BST (Worst-case coding)

Demand-aware BST (Huffman coding)

Self-adjusting BST (Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Similar benefits?

Connection to Datastructures & Coding

Traditional BST (Worst-case coding)

Demand-aware BST (Huffman coding)

Self-adjusting BST (Dynamic Huffman coding)

More than an analogy!

More structure: improved access cost / shorter codes

Similar benefits?

Connection to Datastructures & Coding

More than an analogy!

Generalize methodology:

... and transfer
entropy bounds and
algorithms of datastructures to networks.

First results:

Demand-aware networks of asymptotically optimal route lengths.

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

→ However, requires optimization and adaption, which takes time

→ Self-adjusting networks may be really useful to serve large flows (elephant flows): avoiding multi-hop routing

→ However, requires optimization and adaption, which takes time

Challenge: Traffic Diversity

Diverse patterns:

- → Shuffling/Hadoop:
 - all-to-all
- → All-reduce/ML: ring or tree traffic patterns
 - → Elephant flows
- → Query traffic: skewed
 - → Mice flows
- → Control traffic: does not evolve but has non-temporal structure

Diverse requirements:

→ ML is bandwidth hungry, small flows are latencysensitive

Diverse topology components:

→ demand-oblivious and demand-aware

> Demandoblivious Demandaware

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

Demandoblivious Demandaware

Dynamic

Static

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

Demandoblivious e.g., RotorNet
(SIGCOMM'17),
Sirius(SIGCOMM'20),
Mars
(SIGMETRICS'23),
Shale
(SIGMETRICS'24)

e.g., Helios (SIGCOMM'10), ProjecToR (SIGCOMM'16), SplayNet (ToN'16), Duo (SIGMETRICS'23)

> Demandaware

```
e.g., Clos
(SIGCOMM'08), Slim
Fly (SC'14),
Xpander
(SIGCOMM'17)
```

Static

Dynamic

Dynamic Diverse topology components: → demand-oblivious and demand-aware Demand-→ static vs dynamic Rotor Aware Demand-Demandoblivious aware Static

Static

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

Demandoblivious

Rotor Demand-Aware

Dynamic

Static

Static

Demand-

aware

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

latency tax! Demand-Rotor Aware Demand-Demandoblivious aware Static Static

Dynamic

even more

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

Which approach is best?

Demand-

oblivious

Demand-Aware

> Demandaware

Static

Rotor

Static

Dynamic

Diverse topology components:

- → demand-oblivious and demand-aware
- → static vs dynamic

Which approach is best?

Demand-

Rotor

Demand-Aware

> Demandaware

Static

As always in CS: It depends...

Static

Dynamic

Conceptual Solution

Conceptually ideal solution:

Cerberus* serves traffic on the "best topology"!

On what should topology type depend? We argue: flow size.

On what should topology type depend? We argue: flow size.

---> Observation 1: Different apps have different flow size distributions.

- ---> Observation 1: Different apps have different flow size distributions.
- ---> **Observation 2:** The transmission time of a flow depends on its size.

- ---> Observation 1: Different apps have different flow size distributions.
- ---> Observation 2: The transmission time of a flow depends on its size.
- ---> **Observation 3:** For small flows, flow completion time suffers if network needs to be reconfigured first.
- ---> Observation 4: For large flows, reconfiguration time may amortize.

Scheduling: Small flows go via static switches...

Scheduling: ... medium flows via rotor switches...

Scheduling: ... and large flows via demand-aware switches (if one available, otherwise via rotor).

How good is it? Open problem. But there are bounds.

How good is it? Open problem. But there are bounds.

How to realize such an architecture?! Scalable control plane?

Demand Matrix

Metric: throughput of a demand matrix...

Demand Matrix

Metric: throughput
of a demand matrix...

... is the maximal scale down factor by which traffic is feasible $0 \le \theta(T) \le 1$.

Demand Matrix

Metric: throughput
of a demand matrix...

... is the maximal scale down factor by which traffic is feasible $0 \le \theta(T) \le 1$.

Throughput of network θ^* :
worst case T

Demand Matrix

Metric: throughput of a demand matrix...

... is the maximal scale down factor by which traffic is feasible $0 \le \theta(T) \le 1$.

Throughput of network θ^* :
worst case T

Worst T for different networks?

Throughput: Expander

Demand Matrix

T

Permutation matrix is the worst demand

Throughput: Expander

Demand Matrix

T

Permutation matrix is the worst demand

$$\theta^* \le \frac{1}{\operatorname{epl}(G(k))}$$

Bandwidth tax

Expected path length

Namyar et al., SIGCOMM 2021

Throughput: Demand-Aware

Demand Matrix

 \overline{T}

Permutation matrix is the best demand ☺

Throughput: Demand-Aware

Demand Matrix

T

Permutation matrix is the best demand ☺

Demand-aware performs poorly for unstructured demand.

Throughput formula is a function of Latency tax.

Throughput: Cerberus

Cerberus balances optimally across switch types.

Throughput depends on both: Each Bandwidth tax + Latency tax

Throughput: Cerberus

Cerberus balances optimally across switch types.

Throughput depends on both: Each Bandwidth tax + Latency tax

But theoretical problem open: no exact formula known yet.

Throughput:

Many More Open Questions

→ Throughput bounds for many designs not fully understood yet

Addanki et al., arXiv 2025: https://arxiv.org/pdf/2405.20869

Addanki et al., Vermillion: https://arxiv.org/pdf/2504.09892

How to support such dynamic networks on other layers?

More Challenges:

Network Layer?

- → ECMP reconvergence?! Benefits of Valiant routing?
- ---> How to avoid packet reorderings? RDMA network cards don't like them!
- Routing in hybrid networks: segregated vs non-segregated?
- ---> First ideas: *Local* routing! Techniques from dynamic P2P systems?

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control

JOHANNES ZERWAS, TUM School of Computation, Information and Technology, Technical University of Munich, Germany

CSABA GYÖRGYI, University of Vienna and ELTE Eötvös Loránd University, Austria and Hungary ANDREAS BLENK, Siemens AG, Germany

STEFAN SCHMID, TU Berlin & Fraunhofer SIT, Germany

CHEN AVIN, Ben-Gurion University, Israel

The performance of many cloud-based applications critically depends on the capacity of the underlying datacenter network. A particularly innovative approach to improve the throughput in datacenters is enabled by emerging optical technologies, which allow to dynamically adjust the physical network topology, both in an oblivious or demand-aware manner. However, such topology engineering, i.e., the operation and control of dynamic datacenter networks, is considered complex and currently comes with restrictions and overheads.

We present Duo, a novel demand-aware reconfigurable rack-to-rack datacenter network design realized with a simple and efficient control plane. Duo is based on the well-known de Bruijn topology (implemented using a small number of optical circuit switches) and the key observation that this topology can be enhanced using dynamic ("opportunistic") links between its nodes.

In contract to previous systems. Duo has several desired features: i) It makes effective use of the network

More Challenges:

Congestion Control?

- ---> First ideas for quickly reacting TCP: ReTCP, PowerTCP, ...
- → Or better completely different approach? Even centralized?!

More Challenges:

Buffering?

Vermilion: A Traffic-Aware Reconfigurable Optical Interconnect with Formal Throughput Guarantees

Chen Avin TU Berlin Ben-Gurion University of the Negev Goran Dario Knabe Giannis Patronas TU Berlin Dimitris Syrivelis NVIDIA Nikos Terzenidis Paraskevas Bakopoulos NVIDÍA NVIDIA Ilias Marinos NVIDIA Stefan Schmid ABSTRACT NVIDIA The increasing gap between datacenter traffic volume TU Berlin and the capacity of electrical switches has driven the Throughput* development of reconfigurable network designs utilizing optical circuit switching. Recent advancements, particularly those featuring periodic fixed-duration reconfigurations, have achieved practical end-to-end delays of just a few microseconds. However, current designs rely on multi-hop

PowerTCP

Existing congestion control algorithms based on either

```
→ State ("voltage") like BDP, queue length,
    loss, e.g.:

→ DCTCP: uses ECN/loss

→ Swift: RTT

→ HPCC: inflight packets

→ Gradient ("current") like reaction to queue
    length change

→ Timely: RTT-gradient based
```

PowerTCP

Timely: RTT-gradient based

Existing congestion control algorithms based on either

```
State ("voltage") like BDP, queue length,
    loss, e.g.:

DCTCP: uses ECN/loss

Swift: RTT

HPCC: inflight packets

Gradient ("current") like reaction to queue
length change

Can achieve near-
zero queue equilibrium

Slow reaction

Gradient ("current") like reaction to queue

length change

State ("voltage") like BDP, queue length,
    zero queue equilibrium

Slow reaction

HPCC: inflight packets

Slow reaction

Slow reaction

The property of the pro
```

PowerTCP

Existing congestion control algorithms based on either

```
→ State ("voltage") like BDP, queue length,
    loss, e.g.:
    → DCTCP: uses ECN/loss
    → Swift: RTT
    → HPCC: inflight packets

→ Gradient ("current") like reaction to queue
    length change
    → Timely: RTT-gradient based

⑤ No equilibrium
```

PowerTCP

Existing congestion control algorithms based on either → State ("voltage") like BDP, queue length, loss, e.g.: ---> DCTCP: uses ECN/loss ---> Swift: RTT → HPCC: inflight packets ---> Gradient ("current") like reaction to queue length change Timely: RTT-gradient based Limitation: using only one of the two may miss useful information for fine-grained adaptions!

---> Consider a queue which may be in three different states:

---> Consider a queue which may be in three different states:

2 and 3: impossible to distinguish for voltage-based CCA

---> Consider a queue which may be in three different states:

1 and 3: impossible to
distinguish for current-based CC

---> Consider a queue which may be in three different states:

We need both: Power (Voltage x Current)

---> Consider a queue which may be in three different states:

We need both: Power (Voltage x Current)

Inspired:

More benefits of optical & reconfigurable switching

So far: focus on throughput performance.

Benefit 1:

Evolving Datacenters

- Reconfigurable datacenter networks naturally support
 heterogeneous network elements
- ---> And therefore also *incremental* hardware upgrades

See interview with Amin Vahdat, Google in CACM: https://www.youtube.com/watch?v=IxcV1gu8ETA

Benefit 2:

Energy and Latency

- No need to convert photons in fiber to electrons in switch (and back)
- --- Can safe *energy* and reduce *latency* (in addition to enabling almost unlimited throughput)

Benefit 2:

Energy and Latency

- No need to convert photons in fiber to electrons in switch (and back)
- ---> Can safe *energy* and reduce *latency* (in addition to enabling almost unlimited throughput)

Benefit 2:

Energy and Latency

- No need to convert photons in fiber to electrons in switch (and back)
- ---> Can safe *energy* and reduce *latency* (in addition to enabling almost unlimited throughput)

---> Interesting for emerging *distributed datacenters*!

Benefit 3:

Resilience

Floodings in South Germany destroyed
much electrical network infrastructure

Solution: deploy optical infrastructure (in valleys) and electrical *on hills* where safe?

Conclusion

- Opportunity: structure in demand and
 reconfigurable networks
- → So far: tip of the iceberg
- → Many challenges
 - → Optimal design depends on traffic pattern
 - → How to measure/predict traffic?
 - → Impact on other *layers*?
 - → Scalable control plane
 - → Application-specific self-adjusting networks?
- → Many more opportunities for optical networks

Thank you! Questions?

Slides available here:

Online Video Course

erc https://self-adjusting.net/course

YouTube Interview & CACM

Check out our **YouTube interviews** on Reconfigurable Datacenter Networks:

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

Websites

http://self-adjusting.net/ Project website

https://trace-collection.net/ Trace collection website

June'25 CACM Article

Revolutionizing Datacenter Networks via Reconfigurable Topologies

CHEN AVIN, is a Professor at Ben-Gurion University of the Negev, Beersheva, Israel STEFAN SCHMID, is a Professor at TU Berlin, Berlin, Germany

With the popularity of cloud computing and data-intensive applications such as machine learning, datacenter networks have become a critical infrastructure for our digital society. Given the explosive growth of datacenter traffic and the slowdown of Moore's law, significant efforts have been made to improve datacenter network performance over the last decade. A particularly innovative solution is reconfigurable datacenter networks (RDCNs): datacenter networks whose topologies dynamically change over time, in either a demand-oblivious or a demand-aware manner. Such dynamic topologies are enabled by recent optical switching technologies and stand in stark contrast to state-of-the-art datacenter network topologies, which are fixed and oblivious to the actual traffic demand. In particular, reconfigurable demand-aware and "self-adjusting" datacenter networks are motivated empirically by the significant spatial and temporal structures observed in datacenter communication traffic. This paper presents an overview of reconfigurable datacenter networks. In particular, we discuss the motivation for such reconfigurable architectures, review the technological enablers, and present a taxonomy that classifies the design space into two dimensions: static vs. dynamic and demand-oblivious vs. demand-aware. We further present a formal model and discuss related research challenges. Our article comes with complementary video interviews in which three leading experts, Manya Ghobadi, Amin Vahdat, and George Papen, share with us their perspectives on reconfigurable datacenter networks.

KEY INSIGHTS

- Datacenter networks have become a critical infrastructure for our digital society, serving explosively growing communication traffic.
- Reconfigurable datacenter networks (RDCNs) which can adapt their topology dynamically, based on innovative
 optical switching technologies, bear the potential to improve datacenter network performance, and to simplify
 datacenter planning and operations.
- Demand-aware dynamic topologies are particularly interesting because of the significant spatial and temporal structures observed in real-world traffic, e.g., related to distributed machine learning.
- The study of RDCNs and self-adjusting networks raises many novel technological and research challenges related to their design, control, and performance.

References (1)

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)

Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin. ACM **SIGMETRICS** and ACM Performance Evaluation Review (**PER**), Mumbai, India, June 2022.

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks

Vamsi Addanki, Chen Avin, and Stefan Schmid.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control

Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

On the Complexity of Traffic Traces and Implications

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)

Chen Avin and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA, April 2024.

PowerTCP: Pushing the Performance Limits of Datacenter Networks

Vamsi Addanki, Oliver Michel, and Stefan Schmid.

19th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Renton, Washington, USA, April 2022.

TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control

Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan Schmid.

SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), Columbia University, New York City, New York, USA, September 2023.

References (2)

ABM: Active Buffer Management in Datacenters

Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and Laurent Vanbever. ACM **SIGCOMM**, Amsterdam, Netherlands, August 2022.

ExRec: Experimental Framework for Reconfigurable Networks Based on Off-the-Shelf Hardware

Johannes Zerwas, Chen Avin, Stefan Schmid, and Andreas Blenk.

16th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Virtual Conference, December 2021.

Demand-Aware Network Design with Minimal Congestion and Route Lengths

Chen Avin, Kaushik Mondal, and Stefan Schmid. IEEE/ACM Transactions on Networking (TON), 2022.

A Survey of Reconfigurable Optical Networks

Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan. Optical Switching and Networking (OSN), Elsevier, 2021.

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker. IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

٠

Bonus Material

Hogwarts Stair

Question:

How to Quantify such "Structure" in the Demand?

Which demand has more structure?

Which demand has more structure?

Spatial vs temporal structure

- ---> Two different ways to generate same traffic matrix:
 - → Same non-temporal structure
- Which one has more structure?

Spatial vs temporal structure

- ---> Two different ways to generate same traffic matrix:
 - → Same non-temporal structure
- → Which one has more structure?

Systematically?

Information-Theoretic Approach
"Shuffle&Compress"

Increasing complexity (systematically randomized)

More structure (compresses better)

Our Methodology

Complexity Map

No structure

Our approach: iterative randomization and compression of trace to identify dimensions of structure.

temporal complexity

Our Methodology

Complexity Map

No structure

Our approach: iterative randomization and compression of trace to identify dimensions of structure.

Different structures!

temporal complexity

Our Methodology

Complexity Map

Our approach: iterative randomization and compression of trace to identify dimensions of structure.

Different structures!

Further Reading

ACM SIGMETRICS 2020

On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet traces in communication networks. Our approach leverages an information-theoretic methodology, based on iterative randomization and compression of the packet trace, which allows us to systematically remove and measure dimensions of structure in the trace. In particular, we introduce the notion of *trace complexity* which approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace complexity can provide unique insights into the characteristics of various applications. Based on our approach, we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies that are optimized for specific traffic patterns.

CCS Concepts: • Networks → Network performance evaluation; Network algorithms; Data center networks; • Mathematics of computing → Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, complexity map, data centers

ACM Reference Format:

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and Implications. *Proc. ACM Meas. Anal. Comput. Syst.* 4, 1, Article 20 (March 2020), 29 pages. https://doi.org/10.1145/3379486

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown to feature much *structure*: datacenter traffic matrices are sparse and skewed [16, 39], exhibit

20

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear
Arrangement (MLA) Problem

→ Minimizes sum of virtual
edges

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear
Arrangement (MLA) Problem

→ Minimizes sum of virtual
edges

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear
Arrangement (MLA) Problem

→ Minimizes sum of virtual
edges

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear Arrangement (MLA) Problem

→ Minimizes sum of virtual edges

MLA is NP-hard

→ ... and so is our problem!

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear Arrangement (MLA) Problem

→ Minimizes sum of virtual edges

MLA is NP-hard

→ … and so is our problem!

But what about $\triangle > 2$?

- → Embedding problem still hard
- → But we have a new degree of freedom!

Virtual Network Embedding Problem (VNEP)

Example △=2: A Minium Linear Arrangement (MLA) Problem

→ Minimizes sum of virtual edges

MLA is NP-hard

→ … and so is our problem!

But what about $\triangle > 2$?

- → Embedding problem still hard
- → But we have a new degree of freedom!

Simplifies problem?!

Another Related Problem

Low Distortion Spanners

```
Classic problem: find sparse, distance-preserving
(low-distortion) spanner of a graph
```

---> But:

- Spanners aim at low distortion among all pairs;
 in our case, we are only interested in the
 local distortion, 1-hop communication neighbors
- → We allow auxiliary edges (not a subgraph): similar to geometric spanners
- → We require constant degree

From Spanners to DANs

An Algorithm

→ Yet, can leverage the connection to spanners sometimes!

<u>Theorem:</u> If demand matrix is regular and uniform, and if we can find a constant distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can design a constant degree DAN providing an optimal expected route length (i.e., O(H(X|Y)+H(Y|X))).

From Spanners to DANs

An Algorithm

→ Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we can find a constant distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can design a constant degree DAN providing an optimal Our degree reduction expected route length (i.e., O(H(X|Y)+H(Y|X))).

trick again!

Disaggregated Laser

Example Design

Sirius also implemented other designs (details in the paper)