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“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)
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We live in the age of

Distributed Computation
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.
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Processor Flops/s (3x / 2 years)

Ethernet switch capacity (2x / 2 years)

DRAM bandwidth (1.6x / 2 years)

Computer interconnect speed (1.4x / 2 years)
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Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

Credits: Paolo Costa, 2019




scale-out network.

How to interconnect? Focus on this talk:
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An Inefficiency

Fixed and Demand-Oblivious Topology

-> Example: fat-tree topology (bi-regular)

— 2 types of switches: top-of-rack (ToR) connect to hosts,
additional switches connecting switches to increase throughput




Example: expander topology (uni-regular)

— Only 1 type of switches:
lower installation and management overheads




Example: expander topology (uni-regular)

— Only 1 type of switches:
lower installation and management overheads

Many flavors, but in
common: fixed and oblivious
(“ignorant”) to actual demand.




-> Example: expander topology (uni-regular)

— Only 1 type of switches:
lower installation and management overheads Highway which ignores
actual traffic: frustrating!

Many flavors, but in
common: fixed and oblivious
(“ignorant”) to actual demand.
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A Vision

Flexible and Demand-Aware Topologies

123 456 78

new
demand:

Self-Adjusting
Networks
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e.g.,
mirrors

new flexible
\ interconnect




Golden Gate Zipper



sources

Empirical studies:

traffic matrices sparse and skewed

destinations
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non-temporal complexity

uniform

“Entropy of
Demand Matrix”

“Entropy Rate”
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Traffic is also clustered: bi-clustering results

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023



Sounds Crazy?
Emerging Enabling
Technology.

H2020:
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”

Photonics



-> Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

10



-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/

« X

Rotate Mirror 8§

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010
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-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 12



Another Example

Tunable Lasers

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Another Example

Tunable Lasers

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Systems

Jupiter evolving: Reflecting on Google’s data
center network transformation

August 24, 2022

Yy B B8 ©

Amin Vahdat
VP & GM, Systems and Services Infrastructure
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Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency
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Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency
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non-temporal complexity
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Everywhere, but mainly
in software

Our focus in this talk:
in hardware

Algorithmic trading
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Recommender systems
NETFLIX

Neural networks
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A first insight: entropy of the demand.
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Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >

17



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
O

BSTy+1
©)]

More structure: improved access cost / shorter codes >

17



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST). .
Q) @

Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST

(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
O

BSTy+1
©)]

Reduced expected route lengths! >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First results:
Demand-aware networks
of asymptotically
optimal route lengths.

17
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows)

18

1 hop

6 hops
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing
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— However, requires optimization and adaption, which takes time
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

— However, requires optimization and adaption, which takes time

18



Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

L
4
?

Shuffling
All-to-All

L?_,_,.Lf Y

ML

Large flows

Delay
sensitive

]
Telemetry

/ control

19



Diverse topology components:
— demand-oblivious and
demand-aware

Demand- Demand-
oblivious aware

20



Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand- Demand-
oblivious aware

Static

20



Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Static

Dynamic
(’Ve.g., RotorNet <‘\ /’Ve g Helios ﬂ‘\
(SHEES A7), (SIGEOMM‘lG)
Sirius(SIGCOMM‘20), ProjecToR ’
Mars
SIGCOMM*16
(SIGMETRICS‘23), éplayNet (Tg&,16)
Shale o2
\\‘(SIGMETRICS,24) A’/ \\‘Duo (SIGMETRICS “23) A’/
e.g., Clos
(SIGCOMM‘@8), Slim
Fly (SC14),
Xpander
(SIGCOMM€17)

Demand-
aware



Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Demand-
Aware

Dynamic
N\
Rotor
N\
\
Static
_J

Static

Demand-
aware



Opportunity: Tech Diversity

Dynamic
Diverse topology components:
— demand-oblivious and
demand-aware « )
— static vs dynamic Rotor
\_ )
Demand- Demand-
oblivious aware
~ ™
\ J

Static




Opportunity: Tech Diversity

Dynamic

Diverse topology components: even more

— demand-oblivious and latency
demand-aware 4 ) tax!
— static vs dynamic Rotor Demand-
Aware
\ J
Demand- Demand-
oblivious aware
a )
Static
\ J

Static



Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

Demand-
oblivious

Dynamic

Demand-
Aware

N\
Rotor
O\
\
Static
J
Static

20

Demand-
aware



Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « ) 4 )
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
Demand- Demand-
oblivious aware
a2 )
Static
\_ )
As always in CS: Static

It depends..

20
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Topology 21
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Shuffling

Dynamic

Demand-
Aware
Delay Telemetry
sensitive / control
Demand- Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology 21
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Serving elephant flows on static? Static
Bad idea! Bandwidth tax.

Topology 21
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Shuffling

]

Delay Telemetry
sensitive / control

Demand-
oblivious

Demand

Serving elephant flows on static?
Bad idea! Bandwidth tax.

Dynamic

Demand-
aware

Static

Topology 21



Dynamic

iy

Shuffling

Demand-
oblivious

Demand-
aware

)

Delay Telemetry
sensitive / control

Static

Conceptually ideal solution:
Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022



On what should topology type depend? We argue: flow size.

22



On what should topology type depend? We argue: flow size.

Flow transmission time (400Gbps)
100ns  lus 10ps  100ps  Ims  10ms 160ms s

I T T

o A

a
f

[ =0O= Websearch-2010
2 0.75

f. == Datamining-2011
[_2 0.5 ~{~ Hadoop-2015

8 = Pareto distribution

025~

104 103 108 107 108 10° 101 1ol

Flow size (bytes)

-> Observation 1: Different apps have different flow size distributions.
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Similar tradeoff for

«— 800Gbps or 1.6 Tpbs

Flow transmission time (400Gbps)

100ns  1us 10us 100us 1ms 10ms 100ms s

[ =0O= Websearch-2010
2 0.75

f. == Datamining-2011
[2 0.5 ~{~ Hadoop-2015

8 = Pareto distribution

0.25

10* 103 10° 107 108 10° 1010 10U
Flow size (bytes)

-> Observation 1: Different apps have different flow size distributions.
-> Observation 2: The transmission time of a flow depends on its size.
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Flow transmission time (400Gbps)
100ns  lus 10us 100ps Ims  10ms

100ms

Is

=0O= Websearch-2010
0.75 |
=f= Datamining—2011

05 == Hadoop-2015

CDF of bytes

== Pareto distribution

0.25

104 105 10° 107 108
Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.

10°

IOI]O

1011

Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

Observation 4: For large flows, reconfiguration time may amortize.
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Cerberus

Optical Switches
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Cerberus

/ \
K. K. Kq
static rotor demand-aware
switches switches switches
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Cerberus

K. K. Kq
static rotor demand-aware
switches switches switches

_

Scheduling: Small flows go via static switches..




Cerberus

S KI"
static roto
switches switcheas

N

demand-aware
switches

_

Scheduling: ..

medium flows via rotor

switches...




Cerberus

/ \ﬁ
K. K. Kq
static rotor demand-awaré&
\

switches switches Jk switches J J

| \

Scheduling: .. and large flows via demand-aware switches
(if one available, otherwise via rotor).



Cerberus
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How good is it? Open problem. But there are bounds.



Cerberus

/ \ﬁ
K. K. Kq
static rotor demand-awaré&
\

switches switches Jk switches J J

| \

How good is it? Open problem. But there are bounds.
How to realize such an architecture?! Scalable control plane?



Demand Matrix

123 45686 78
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Metric: throughput

of a demand matrix..

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021

24



Demand Matrix

123 45686 78

u
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0 N OV AW N R

Metric: throughput
of a demand matrix..

X 6(T)

. 1s the maximal scale
down factor by which
traffic is feasible
0<6(T) <1.

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Throughput of RDCNs?

Demand Matrix

123 456 7 8 Ke K. Kq
static ||  rotor || demand -aware
switches switches switches

u
f.. X 8 (T) : g/,g/ 'g/' — ,\gw ; L&|
.! g%g TERCE

. h h .. 1s the maximal scale
Mitrlz' throug p9t down factor by which
of a demand matrix.. traffic is feasible

0<6(T) <1.
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Throughput of network 8*:
worst case T

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021



Demand Matrix

123 45686 78
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X 6(T)

0 N OV AW N R

. 1s the maximal scale
down factor by which

traffic is feasible
0<6(T) <1.

Metric: throughput
of a demand matrix..

dl

-llil’e

Throughput of network 6*:
worst case T

Abdu et al., SC 2016
Namyar et al., SIGCOMM 2021
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Demand Matrix

123 45686 78
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Permutation matrix
is the worst demand
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Demand Matrix

12 3 456 7 8
1 static-net
1 n
T 3
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Permutation matrix
is the worst demand

. 1
/QS. epl(G(k))

Q Bandwidth tax
Expected path length

Namyar et al., SIGCOMM 2021
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Demand Matrix
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Throughput: Demand-Aware

Demand Matrix

123456 7 8

“m
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w

u

0 N OV AW N R
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Permutation matrix
is the best demand ©
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Demand-aware performs poorly for unstructured demand.

Throughput formula is a function of Latency tax. in




Throughput: Cerberus

Demand Matrix

Ky K Ky
12 3 456 7 8 static rotor demand-aware
switches switches switches
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Cerberus balances optimally across switch types.

T

Throughput depends on both: &i Bandwidth tax + Latency tax (>




Throughput: Cerberus

Demand Matrix

Ks Kr Kd
12 3 456 7 8 static rotor demand- awar‘e
switches switches switches

1
2
T 3
4
5
6 .. ) S &S IMI |m1 (=
: lf! 208| [go3 [gos| [o3| [gos| [gos| [god| [go
2 3 4 5 7 8
}{
[t
K, 6 K 6 Kq 1 |77
static — rotor — demand-aware
switches switches switches ozs )
0 """’T“"TEF"”T‘Q-*' 10" lz'fj 10¢ 10 10

Cerberus balances optimally across switch types.

£E:iii Bandwidth tax + Latency tax ¢

Throughput depends on both:

But theoretical problem open: no exact formula known yet.



— Throughput bounds for many designs not fully understood yet

Wt G

b | =

2log, N

;rh roughput* Periodic
Demand-aware Y
(New designs)
*Throughput landscape for
uniform-residual Open gquestion
demand matrices. J Open question

Addanki et al., arXiv 2025:

& https://arxiv.org/pdf/2405 . 20869
D d ProjecToR %
Demanc-aware ___________ Helos = Addanki et al., Vermillion:
Demand-oblivious 5 https://arxiv.org/pdf/2504.09892
RotorNet
Sirius
0 Mars
Expander
Self-adjusting
Static Fixed-duration Variable-duration
Reconfiguration Reconfiguration

(Periodic Circuit Switching)
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ECMP reconvergence?! Benefits of Valiant routing?
How to avoid packet reorderings? RDMA network cards don’t like them!
Routing in hybrid networks: segregated vs non-segregated?
First ideas: Llocal routing! Techniques from dynamic P2P systems?

Duo: A High-Throughput Reconfigurable Datacenter
Network Using Local Routing and Control

JOHANNES ZERWAS, TUM School of Computation, Information and Technology, Technical University
of Munich, Germany

CSABA GYORGY], University of Vienna and ELTE Edtvos Lorand University, Austria and Hungary
ANDREAS BLENK, Siemens AG, Germany

STEFAN SCHMID, TU Berlin & Fraunhofer SIT, Germany

CHEN AVIN, Ben-Gurion University, Israel

The performance of many cloud-based applications critically depends on the capacity of the underlying
datacenter network. A particularly innovative approach to improve the throughput in datacenters is enabled
by emerging optical technologies, which allow to dynamically adjust the physical network topology, both in
an oblivious or demand-aware manner. However, such topology engineering, i.e., the operation and control of
dynamic datacenter networks, is considered complex and currently comes with restrictions and overheads.

We present Duo, a novel demand-aware reconfigurable rack-to-rack datacenter network design realized
with a simple and efficient control plane. Duo is based on the well-known de Bruijn topology (implemented
using a small number of optical circuit switches) and the key observation that this topology can be enhanced
using dynamic (“opportunistic”) links between its nodes.

T rantract ta nrswinne cvctame Dittn hae covraral dacivad faatirae: i Tt malrac affactive nes of the netanel
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-»> First ideas for quickly reacting TCP: ReTCP, PowerTCP, ..

-» Or better completely different approach? Even centralized?!

2
O,
g
e,
L.
] : % .
eok v,
. D arch Pt 514 e p,
» Weiyan® 1 Res¢ e e
s T Tgnoet® g pieros? 73, P op, iy o,
1ophet M e w0 3
* ghan s Ne L, P
© Mukerd gén\“ﬁsw S;‘ an Di€ "Ne 1o they lgl% ¢
aihew <rcuit ’ ¢, U
e Universts ion 8555 c“c\\:;\\ Onty,, e'lti? Sz, 2. qlre"‘li
Ccamegi® Mellor pon IV potol PO s A e%"ﬂgl' e, et <6 Pcey ,o'oflfb 4
* rauy h 52 n «
eitches “‘:“ o g gc‘:;ﬁms bf»“"nz’a“a 1o wYac, lpe’;“ e, Sy, g Sy, g
ad)\ﬁﬂhe peuns¥ i B EP‘U“S‘O \zpﬂi"d” "oy, Ut s, <y, 3
y Test g On, e . s, ]
o ops often cirew? e 'w'\“m 2y g, WUep,
AbstraC Lpens) WEC e yydd 88T el L igtes 0T i " g O Kty T
sex nd“‘“f:;mmh T;:‘,\a are B fRIER D hen wmﬂ"‘.’w‘;m pert 4 post aptt '&'Ik::adle%qg ey st
Lo daRCEToh I o pand® it o for @07 L2 g, SCst, 23
RocotfEI s IR L pand WL gt D cp T agher D g 00 1P e iy e e, a0 gy Seny
. < patioR Ns, ! - 3 Gons Aons widih we g %e,t, oF ofF, A"ﬂi,
Bt 5 E e G of RO s 00 I cp con e ol s et BN 'Z::(‘\‘“ro g,
. n S AR A %
o ke ST oty aﬂ““b‘; with Dot W 2 g e W e quetE "'0}.%°ve’b""’re iy T
S pente- T ot P T s 3 T e seioh v T e, iy, il
a eeh A WER T i e
“""""’\;.c\\en\“a‘" ﬁ‘\‘;TC" nde‘a?s.d““‘::gn‘:ﬂ“w show ST
Fi0! © lar ©f e
pave ® econft However: partie o
qudies weale e L AP
\E cork 1 ﬂ‘dmax_— et
L neWE T 20 P?;‘__ e
@C\IC‘“ e 2% 7 o
eponfiE0®® 7
"



Traffic—Aware Reconfj

'8urable Optica|
Interconnect with Formal T, roughput Guarantees
Vamsi Addank; Chen Avin Goran Darig Knabe
TU Berlin Ben-Gurion University of the Negev TU Berlin
Giannis Patronas Dimitrig Syrivelis Nikos Terzenidig
NVIDIA NVIDIA NVIDIA
Paraskevag Bakopoulos Dias Marinos Stefan Schmjq
NVIDia NVIDIA TU Berlin
ABSTRACT
The increasing Bap betweey




Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based
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Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length, — © Can achieve near-

loss, e.g.: zero queue equilibrium
~» DCTCP: uses ECN/loss —

~» Swift: RTT ® Slow reaction

-» HPCC: inflight packets —

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based
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Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based

—_

© Fast reaction

® No equilibrium
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Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets
-» Gradient (“current”) like reaction to queue
length change
~» Timely: RTT-gradient based

Limitation: using only one of the two may miss useful information
for fine-grained adaptions!
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-» Consider a queue which may be in three different states:

growing shrinking growing
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-» Consider a queue which may be in three different states:

growing shrinking growing

2 and 3: impossible to
distinguish for voltage-based CCA
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-» Consider a queue which may be in three different states:

growing shrinking growing

1 and 3: impossible to
distinguish for current-based CC
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-» Consider a queue which may be in three different states:

growing shrinking growing

We need both: Power (Voltage x Current)
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-» Consider a queue which may be in three different states:

shrinking growing

We need both: Power (Voltage x Current)

34



So far: focus on throughput performance.



Benefit 1:
Evolving Datacenters

-»> Reconfigurable datacenter networks naturally support
heterogeneous network elements

-> And therefore also incremental hardware upgrades

3 YouTube

See interview with Amin
Vahdat, Google in CACM:
https://www.youtube.com/
watch?v=IxcV1gu8ETA




Benefit. 2.

Energy and Latency

-> No need to convert photons in fiber to electrons in
switch (and back)

-» Can safe energy and reduce Llatency (in addition to
enabling almost unlimited throughput)

Optical fiber ‘K Electric switch ‘\ Optical fiber
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Benefit. 2.

Energy and Latency

-> No need to convert photons in fiber to electrons in
switch (and back)

-» Can safe energy and reduce Llatency (in addition to
enabling almost unlimited throughput)

Optical fiber —— Optical switch —— Optical fiber

~» Interesting for emerging distributed datacenters!



Floodings in South Germany destroyed
much electrical network infrastructure

L

Solution: deploy optical
infrastructure (in valleys) and
electrical on hills where safe?

40



-» Opportunity: structure in demand and
reconfigurable networks

-» So far: tip of the iceberg

-» Many challenges
— Optimal design depends on traffic pattern
— How to measure/predict traffic?
— Impact on other Layers?
— Scalable control plane
— Application-specific self-adjusting networks?

-» Many more opportunities for optical networks

41



Thank you! Questions?

Slides
available
here:



Online Video Course
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Self=Adjusting NetworKs

A short video course

demand:

= =25

self-adjusting datacenter self-adjusting bridge

We cannot direct the wind,
but we can adjust the sails.
(Folklore)
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https://self-adjusting.net/course jrj




Check out our YouTube interviews
on Reconfigurable Datacenter Networks:

N

Prof. Chen Avin - Prof. Stefan Schmid
(BGU, Israel) W (TU Berlin, Germany

=
| ISRAEL

( l SCIENCE

AP/ Founpation

Revolutionizing Datacenter Networks via Reconfigurable Topologies
Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course



https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course

Websites

SELF-ADJUSTING NETWORKS

AdjustNet

t

Our Vision:
Flexible and Demand-Aware Topologies

\ s LT
A self-adjusting -
Networks -~
-

TRACE COLLECTION
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Publication ~ Team  Download Traces

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website




Revolutionizing Datacenter Networks via Reconfigurable Topologies

CHEN AVIN, is a Professor at Ben-Gurion University of the Negev, Beersheva, Israel
STEFAN SCHMID, is a Professor at TU Berlin, Berlin, Germany

With the popularity of cloud computing and data-intensive applications such as machine learning, datacenter networks have become a
critical infrastructure for our digital society. Given the explosive growth of datacenter traffic and the slowdown of Moore’s law, significant
efforts have been made to improve datacenter network performance over the last decade. A particularly innovative solution is reconfigurable
datacenter networks (RDCNs): datacenter networks whose topologies dynamically change over time, in either a demand-oblivious or
a demand-aware manner. Such dynamic topologies are enabled by recent optical switching technologies and stand in stark contrast to
state-of-the-art datacenter network topologies, which are fixed and oblivious to the actual traffic demand. In particular, reconfigurable
demand-aware and “self-adjusting” datacenter networks are motivated empirically by the significant spatial and temporal structures
observed in datacenter communication traffic. This paper presents an overview of reconfigurable datacenter networks. In particular, we
discuss the motivation for such reconfigurable architectures, review the technological enablers, and present a taxonomy that classifies
the design space into two dimensions: static vs. dynamic and demand-oblivious vs. demand-aware. We further present a formal model
and discuss related research challenges. Our article comes with complementary video interviews in which three leading experts, Manya
Ghobadi, Amin Vahdat, and George Papen, share with us their perspectives on reconfigurable datacenter networks.

KEY INSIGHTS

» Datacenter networks have become a critical infrastructure for our digital society, serving explosively growing
communication traffic.

» Reconfigurable datacenter networks (RDCNs) which can adapt their topology dynamically, based on innovative
optical switching technologies, bear the potential to improve datacenter network performance, and to simplify
datacenter planning and operations.

» Demand-aware dynamic topologies are particularly interesting because of the significant spatial and temporal
structures observed in real-world traffic, e.g., related to distributed machine learning.

# The study of RDCNs and self-adjusting networks raises many novel technological and research challenges related

to their design, control, and performance.
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU

More uniform More structure
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-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

-» Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”
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On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel
MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.

CCS Concepts: « Networks — Network performance evaluation; Network algorithms; Data center
networks; - Mathematics of computing — Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, com-
plexity map, data centers

ACM Reference Format:

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and
Implications. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 20 (March 2020), 29 pages. https://doi.org/10.
1145/3379486

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 5
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1
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Example A=2: A Minium Linear
Arrangement (MLA) Problem

— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

-
-
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Ot

But what about A>2?

— Embedding problem still hard

— But we have a new degree of
freedom!
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-» Classic problem: find sparse, distance-preserving
(low-distortion) spanner of a graph

-> But:

-> Spanners aim at low distortion among all pairs;
in our case, we are only interested in the
local distortion, 1-hop communication neighbors

~> We allow auxiliary edges (not a subgraph): similar to
geometric spanners

-> We require constant degree

E8



-> Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y|X)).

. Constant degree
r-regular and Sparse, 1irregular g

. optimal DAN (ERL
. constant) spanner:
uniform demand: ( ) sp at most Log r):

» »

auxiliiary edges

EOS



-> Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and
uniform demand:

»

Sparse, irregular
(constant) spanner:

subgraph!

Our degree reduction
trick again!

Z;///'

Constant degree
optimal DAN (ERL

at most log r): ————

™S

auxiliiary edges

Why optimal:
in r-regular graphs,
conditional entropy
is log r.
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Wavelength
Selector

Steady State

Switching Control Signal

Ballani et al., Sirius, ACM SIGCOMM 2020. E10



Semiconductor optical amplifier (SOA)

Wavelength
Selector

|

Switching Control
Signal

Ballani et al., Sirius, ACM SIGCOMM 2020. El1l




