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ABSTRACT

The evacuation of mobile robots is an interesting emerging
application in distributed computing. This paper considers
the fundamental problem of how to evacuate two robots from
a unit disk. The robots, initially located at the center of the
disk, need to exit the disk through two unknown exits, at
known distance d from each other, located at the perimeter of
the disk. The robots can coordinate when exploring the disk,
using wireless communication. The objective is to minimize
the evacuation time, i.e., the time until the last robot exits
the disk. We consider two different model variants, where
exits can either be labeled or unlabeled. We complement our
analysis with simulations.
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1 INTRODUCTION

Searching is an inherent problem in computer science. Being
an intriguing field with a long history, a plethora of research
has been conducted on search problems using a multitude of
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models, including probabilistic search models [11], cops and
robbers models [2], search problems in groups [1], classical
pursuit and evasion [4, 9], to just name a few. In these papers,
the goal is typically to find an object located in a specific
domain.

This paper is situated in the context of emerging robot
evacuation problems in which robots collaboratively search
for exits. In particular, we consider the fundamental problem
of evacuating two robots through two unknown exits located
on the perimeter of a unit disk. Unlike many traditional
search problems, we aim to minimize the time needed for the
last robot to exit the disk. While initially the robots have
no knowledge about the positions of exits, they have some
information about the distribution of exits. In particular, we
assume that the robots know that the exits are at distance d
from each other, for some parameter d. Moreover, the robots
can cooperate with each other to locate the exits, using
wireless communication.

1.1 Related Works

Search problems for robots are an emerging field and have
recently received quite some attention. In particular, search
problems on a disk have been introduced by Czyzowicz et
al. [6]: the authors distinguish between two different com-
munication models, wireless and face-to-face. In the wireless
model, it is assumed that robots can communicate at any
point in time. In particular, once one robot finds an exit, it
can immediately communicate its location to the other robot
who could then use the same exit (which however may not
be the optimal strategy for the second robot at this point).
The paper presents algorithms providing optimal worst-case
evacuation times (namely 1 + 2π

3 +
√
3 ≈ 4.826) for two robots

in the wireless model. In the face-to-face communication
model, robots can only communicate if they are located at
the same point: Czyzowicz et al. [6] provide an upper bound
of 5.740 as well as a lower bound of 5.199, for a single exit
with two robots. Later, Czyzowicz et al. [7] improved the
bounds for two robots with one exit in a disk, by proposing
linear and triangular detours at the worst case positions.
More specifically, they improved the upper bound to 5.628
and the lower bound to 3+ π

6 +
√
3 ≈ 5.255. Recently, Brandt et

al. [3] further improved the upper bound to 5.625 using linear
detours which do not stipulate the robots to meet. In [5], the
robots can travel only on the perimeter of the circle and use
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wireless communication. For this model, the authors provide
upper and lower bounds for different distributions of exits
with multiple exits. In [8], robots with different speeds are
considered, in the wireless communication model.

1.2 Model and Preliminaries

We in this paper consider evacuation problems for two robots
R1 and R2 from a unit disk. The disk contains two doors,
located on the perimeter of the disk, which the robots can
use to exit the disk (both robots can but do not have to
use the same exit). Initially, the robots are situated at the
center of the disk. We assume that the only information the
robots have about the exits is the distance d between them:
the length of the smaller arc between them. Accordingly,
the length of a chord for such an arc is 2 sin(d/2). In the

following, we let NAB denote the smaller arc over the perimeter

joining two points A and B: NAB denotes the arc starting from

A and moving in the clockwise direction until B. So NAB and
NBA together cover the entire perimeter of the disk. We will
denote by AB the line segment joining points A and B. We

use |NAB | and |AB | to denote the length of the arc and line
segment, respectively.

The initial separation between the robots ζ is a known
value. Both robots travel at uniform speed, i.e., 1 unit distance
per unit time and can move anywhere within the disk. The
robots can see the exits only when they reach the correspond-
ing location. However, they can learn about the coordinates
of the location from the other robot using wireless communi-
cation. Communication is reliable and message propagation
delay is ignored. We differentiate between labeled and un-
labeled exits. Labeled exits have identities and are ordered,
either clockwise or counter-clockwise. This means when a
robot encounters an exit, in the labeled model variant, it can
determine the location of the other exit at distance d; in the
unlabeled model, there would still be two options left at this
point. The robots can exit via the same or different exits.

1.3 Our Contribution

We present distributed evacuation algorithms for two robots
to evacuate via the exits situated on the perimeter of a unit
disk, starting from the center. We study unlabeled and labeled
problem variants.

• In Section 2, we propose and analyze generic evacuation
algorithms which are parametrized with a distance
ζ ≤ d at which robots hit the perimeter the first time.
• In Section 3, we study the algorithms using simulations
for both labeled and unlabeled exits, shedding light on
how the worst-case evacuation time varies with d. Our
algorithm achieves a worst case evacuation time 4.826
for the d = 0 scenario presented in [6].

2 ALGORITHM AND ANALYSIS

2.1 Problem Statement and Algorithm

Problem 1. Two robots are placed at the center of a unit
disk containing two exits on the perimeter with d as the minor

arc length between exits. Given d as an input, the objective
is to minimize the worst case exit time for all the robots to
evacuate the disk, where exits are labeled or unlabeled.

Initially, the robots simply start moving from the center O
towards the boundary of the disk, along the radius. The robots
may move in different directions, however. Our algorithm is
evoked once a robot encounters an exit or receives a message.

Assume the robots hit the perimeter at two different points

B and C, and we define |NBC | = ζ as shown in Fig 1. Moreover,

we define
−−→
OA to be the positive x-axis. For simplicity, we

define A as the midpoint of NBC. So |NBA| = |NAC | = ζ /2. If ζ = 0,
then B and C coincide at A. Let robot R1 move in the counter-
clockwise direction and robot R2 in the clockwise direction.
Suppose two exits are located at E1 and E2.

Without loss of generality, let us assume that R1 finds E1 at
X before R2, unless both find the exits simultaneously. Now,
R1 sends a message to R2 that it found the exit. Given the two
robots have the same velocity, R2 can find out the location of

the exit E1 based on the position of R1. Say |NXB | = |NCD | = x .
Since the robots know d, the distance over the arc between the
exits, in the unlabeled setting, R2 can predict two probable
positions for the exit at E ′2 and E ′′2 . Let E

′
2 be the closest exit

in clockwise direction and E ′′2 is the closest exit in counter-

clockwise direction from E1. This implies |PE1E ′2 | = |PE ′′2 E1 | = d.
The algorithm for evacuation follows two simple subrou-

tines when encountering an exit and receiving a message. If
R1 encounters an exit E1 at X , then it sends a message to R2.
Once R2 receives a message, it can determine the location of
R1 according to the time it received the message and desig-
nate that location as a location of exit. Then R2 can compute
possible locations of exits at a distance d from that exit. Then
R2 determines its path by choosing either the definite exit or
two probable exit locations for unlabeled exits. For labeled
exits, R1 can send a one bit message to relay direction of E2
with respect to E1, i.e., it sends 1 for clockwise and 0 for
counter-clockwise. Then R2 can choose the closest exit. Then
it leaves via that exit.

2.2 Labeled Exits

Consider the following functions as per the cases. If R2 evac-
uates via E1, then the time required is

z1 = 1 + x + 2 sin(x + ζ /2) (1)

If R2 evacuates via E ′2, then the time required is

z2 = 1 + x + 2 sin(x + (ζ − d )/2) (2)

If R2 evacuates via E ′′2 , then the time required is

z3 = 1 + x + 2 sin(x + (ζ + d )/2) (3)

The domain of x for each function is different as presented
in the different cases. There can be the following situations if
E1 is located at X (ref. Fig. 1). As we consider E1 is the exit

encountered first by R1, so E2 cannot lie on NXB and NCD.
Case 1: E ′2 is E2

• E ′2 lies on NDX , this leads to |OXE ′2 | > |NXD |,
i.e., d > 2x + ζ .
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Figure 1: R1 encounters E1 at X

• E ′2 lies on NBC, this leads to |NXC | > |OXE ′2 | > |NXB |,
i.e., x + ζ > d > x .

So, the domain of x is [0, (d −ζ )/2]
⋃
[d −ζ ,d]. The time

for evacuation is min(z1, z2).
Case 2: E ′′2 is E2

• E ′′2 lies on NDX , this leads to |PE ′′2 X | < |NDX |,
i.e., d < 2π − (2x + ζ ).
• E ′′2 lies on NBC, this leads to |NXB | > |PXE ′′2 | > |NCX |,
i.e., 2π − x > d > 2π − x + ζ .

So, the domain of x is [0,π − (d + ζ )/2]
⋃
[2π − (d +

ζ ),min(π , 2π−d )]. The time for evacuation is min(z1, z3).
The worst case time for evacuating the disk is

inf
ζ

(
sup
x

(min(z1, z2),min(z1, z3))
)

(4)

2.3 Unlabeled exits

For unlabeled exits, the cases are described as following.

Case 1: Both E ′2 and E ′′2 are unexplored
In this case, R2 can move towards the definite exit at
X or it can go to the two probable exit positions E ′2
and E ′′2 . It chooses the minimum of the two. The linear
distance between the two probable exits, z4, is

z4 = 2 sin(π − d ) (5)

There can be three different situations in this case.
• E ′2 and E ′′2 lies on NDX ,
i.e.,2x + ζ ≤ d.

• E ′2 is on NDX and E ′′2 is on NBC,
i.e.,x ≤ d < x + ζ and d + 2x + ζ < 2π
• E ′2 and E ′′2 are on NBC,
i.e.,x ≤ d < x + ζ and d + x + ζ > 2π

The time for evacuation is min(z1, z2 + z4, z3 + z4).
Case 2: E ′2 is unexplored,

i.e., x < d and x + ζ + d < 2π < 2x + ζ + d
In this case, as E ′′2 is already explored, so there is
definitely an exit at E ′2. So the time for evacuation is
min(z1, z3).

Case 3: E ′′2 is unexplored,
In this case, as E ′2 is already explored, so there is def-
initely an exit at E ′′2 . So the time for evacuation is
min(z1, z2). This case happens in the following two sit-
uations.

• E ′2 is on NCD and E ′′2 lies on NDX ,
i.e.,x + ζ ≤ d < 2x + ζ and d + 2x + ζ < 2π .

• E ′2 is on NXB and E ′′2 lies on NDX ,
i.e.,d < x and d + 2x + ζ < 2π

Theorem 2.1. As soon as one robot finds an exit, the
other robot can determine the best location to exit for itself.

Proof. If both the robots find the exits simultaneously,
then they exchange messages and an agreement is achieved.
Both the robots exit via their respective exits.

If one robot finds the exit, then it sends a message to the
other robot. When the second robots receives the message,
it can determine the location of one exit and two probable
exit locations. Then it determines the path of evacuation
by computing the least amount of travel distance. Hence an
agreement is achieved. □

The cases mentioned above are applicable for 0 ≤ ζ ≤ d. If
d < ζ , then the worst case arises in the situation where both

the exits lie on NBC, the unexplored part of the perimeter as
shown in Fig. 1. So, the robots have to go back the unexplored
part of the perimeter, when they do not find the exits. This
increases the evacuation time compared to the algorithm for
ζ ≤ d. This case can be considered independent of the series
of cases described before this, since the condition for this case
is independent of x . In this special case the time of evacuation

is always greater than NDB + DB, i.e., π − ζ /2 + 2 sin(π − ζ /2).

3 SIMULATION RESULTS

We conducted simulations to study the evacuation times for
different d ∈ [0,π ] and different ζ values, in particular ζ = 0,
ζ = d/2 and ζ = d (for unlabeled exits) and ζ ∈ [0,d] (for
labeled exits). Fig. 2 plots the worst case time for evacuation
versus the distance between two exits, d. For each value of
d and ζ , we considered all possible position of exits with
a 0.001 step size for x and took the maximum over it to
determine the worst case time. Then we varied the d values
with a 0.001 step size with corresponding ζ value. It can be
observed from Fig. 2 that the worst case evacuation time
is less for ζ = d for most of the values of d. Since this is a
search problem, reducing the search space can be an effective
method to reduce the worst case evacuation time. As we have
two exits and we know the distance between them, we can
easily remove an arc length equal to d from the perimeter
because two exits cannot lie within a d distance arc. From
Fig. 2, it is clear that ζ = d performs better compared to
ζ = 0 and ζ = d/2. Even, ζ = 0 performs better than ζ = d/2
for d > 1.21. It can be observed from the figure that, it is not
strictly monotonous for ζ = 0 or ζ = d. The reason for this is
that there is a transition between cases when there is a local
minimum or local maximum.

As per Fig. 2, for ζ = 0, it is monotonic until 2π/3. For
d ≤ 2π/3, it follows Case 2 with z3 as the worst case time. But
for d > 2π/3, it changes to Case 1 and loses monotonicity. As
per Fig. 2, for ζ = d, observe that there is a local minimum
at d = 0.93. The minimum marks the end of Case 2. For
0.93 < d ≤ 2π/3, both the probable exits are unexplored and
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Figure 2: Comparision of Algorithms for different ζ values for
wireless communication with unlabeled exit locations

so the evacuation time increases and then decreases. In the
range, where the evacuation time increases until it reaches
the local maximum at d = 1.385, the unexplored exit E ′1 lies on
NBC very close to B. For 2π/3 < d ≤ 2.69, the evacuation time
monotonically decreases according to Case 3. For d > 2.69,
Case 1 becomes the worst case.

ζ = 0 Unlabeled ζ = 0 Labeled

ζ = d Unlabeled ζ = d Labeled
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d

3.5
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4.5
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Figure 3: Comparision between evacuation time of Unlabeled
and Labeled exit locations for ζ = 0 and ζ = d

In Fig. 3, we plot the evacuation time for a labeled exit
location and unlabeled exit locations for ζ = 0 and ζ = d. It
can be easily observed that the labeled exit time is strictly
monotonic for ζ = 0. For ζ = d, the evacuation time for
labeled exits falls closely with unlabeled exits. In Fig. 4, we
plot minimum evacuation time for labeled exit locations over
values of ζ ∈ [0,d].

4 CONCLUSION

In this paper, we address the evacuation problem for two
robots in a unit disk with two exits located at arbitrary
points on the perimeter. We have considered both unlabeled
and labeled exits in the wireless communication model. More
details and variations of the problem are available at [10].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

3.5

4.0

4.5

Time

Figure 4: The minimum evacuation time over ζ ∈ [0,d] for
labeled exits

The previous papers consider only a single exit with ζ = 0,
and the evacuation time for our algorithm is also 4.826 for
d = 0 in the same model. We believe that our paper opens
interesting directions for future research. For example, it is
still open to find out a function which describes the relation
between ζ and d in the same model. We think that this is very
close to the optimal solution for the wireless communication
model.
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