
Dynamic FIB Aggregation 
without Update Churn 



Dynamic FIB Aggregation 
without Update Churn 

 

 

Marcin Bienkowski 
Nadi Sarrar 
Stefan Schmid 
Steve Uhlig 

 
 



                          3 

Ports 

Poor Routers! 
Key Functionality: Forwarding 



                          4 

Ports 

Forwarding 
Information Base  (FIB) 

00* to     

01* to     

1* to     

Poor Routers! 
Key Functionality: Forwarding 



                          5 

Ports 

Forwarding 
Information Base  (FIB) 

00* to     

01* to     

1* to     

TCAM memory expensive 
and power-hungry… 

Poor Routers! 
Key Functionality: Forwarding 

most specific prefix fast? 



Poor Routers! 

                          6 

Ports 

Forwarding 
Information Base  (FIB) 

00* to     

01* to     

1* to     

TCAM memory expensive 
and power-hungry… 

… and requirements grow 
quickly (e.g., virtualization). 

IPv6 does not help. 

Key Functionality: Forwarding 

most specific prefix fast? 



Poor Routers! 

                          7 

Ports 

Forwarding 
Information Base  (FIB) 

00* to     

01* to     

1* to     

TCAM memory expensive 
and power-hungry… 

… and requirements grow 
quickly (e.g., virtualization). 

IPv6 does not help. 

Idea to prolong the router lifetime: 
Compress the FIB! 

Key Functionality: Forwarding 

most specific prefix fast? 



Idea: Compress the FIB 

                          8 

00* to     

01* to     

1* to     

0 

0 1 

1 
represent as trie…  



Idea: Compress the FIB 

                          9 

represent as trie…  

00* to     

01* to     

1* to     

0 

0 1 

1 

... and compress it! 

0 1 



Idea: Compress the FIB 

                          10 

00* to     

01* to     

1* to     

0 

0 1 

1 

0 1 

Good  
Potential: 

Down to 40% 
(RouteView), depending 

on # ports. 

represent as trie…  

... and compress it! 



Idea: Compress the FIB 

                          11 

00* to     

01* to     

1* to     

0 

0 1 

1 

0 1 

represent as trie…  

... and compress it! 

But: May introduce 
churn! 

Deaggregate upon 
route change. 

BGP event! 



Idea: Compress the FIB 

                          12 

00* to     

01* to     

1* to     

0 

0 1 

1 

0 1 

But: May introduce 
churn! 

Deaggregate upon 
route change. 

represent as trie…  

... and compress it! 

BGP event! 

update cost 2: 
remove + add 

update cost 3: 
remove + add 

subtree 



Idea: Compress the FIB 

                          13 

00* to     

01* to     

1* to     

0 

0 1 

1 

0 1 

But: May introduce 
churn! 

Deaggregate upon 
route change. 

Already without 
churn: 1000s/sec 
updates in BGP! 

represent as trie…  

... and compress it! 

BGP event! 



                          14 

An Optimization Problem 

0 

0 1 

1 

Route Processor 
or SDN Controller  

FIB or SDN Switch 

update! 

An online problem: 
1. Forwarding must always be correct 

(equivalent) 
2. Minimize update cost and memory size 

BGP  
Events 



                          15 

An Optimization Problem 

0 

0 1 

1 

Route Processor 
or SDN Controller  

FIB or SDN Switch 

update! 

An online problem: 
1. Forwarding must always be correct 

(equivalent) 
2. Minimize update cost and memory size 

BGP  
Events Online  

Input 



An Optimization Problem 

Route Processor 
or SDN Controller  

FIB or SDN Switch 

                          16 

0 

0 1 

1 

update! 

An online problem: 
1. Forwarding must always be correct 

(equivalent) 
2. Minimize update cost and memory size 

BGP  
Events 

Memory 

Cost  Update 

Cost 

Online  

Input 



An Optimization Problem 

Route Processor 
or SDN Controller  

FIB or SDN Switch 

                          17 

0 

0 1 

1 

update! 

An online problem: 
1. Forwarding must always be correct 

(equivalent) 
2. Minimize update cost and memory size 

BGP  
Events 

Memory 

Cost  Update 

Cost 

Online  

Input 

Joint Optimization: 

Cost =  α  (# updates) + ∫t FIB size 



An Optimization Problem 

Route Processor 
or SDN Controller  

FIB or SDN Switch 

                          18 

0 

0 1 

1 

update! 

An online problem: 
1. Forwarding must always be correct 

(equivalent) 
2. Minimize update cost and memory size 

BGP  
Events 

Memory 

Cost  Update 

Cost 

Online  

Input 

Joint Optimization: 

Cost =  α  (# updates) + ∫t FIB size 

Realm of Online Algorithms and Competitive Analysis! 

Competitive Ratio = max Cost(ON)/Cost(OFF) 



                          19 

What Was Known So Far? 

Static Compression 
 
E.g., ORTC (INFOCOM’99): dynamic 
programming algorithm to compute 
optimally compressed FIB 
 

 

Dynamic Compression 
No free lunch! (But can also reduce churn!) 
Lots of work over the last 15 years (since Lulea) to find 
better tradeoffs between memory and updates. Often 
implicitly though. Heuristics: SMALTA (CoNEXT’11), 

FIFA  (INFOCOM’13) 
 

Online algorithm BLOCK for «independent prefixes» 
a.k.a. without exceptions (SIROCCO 2013) 

size 5 size 3 

 
 
BLOCK is 3.603-competitive.  

 
Any online algorithm is at 
least 1.636-competitive. 
(Even if ON can use 
exceptions and OFF not.) 

 



Idea of BLOCK BLOCK(A,B) operates on trie:  

1. balances memory and update costs  

2. exploits possibility to merge multiple tree nodes  

    simultaneously at lower price (thresholds A and B) 

 
 Timers/counters for each trie node 

 Wait before aggregating to save update costs 

 Thresholds A and B for amortization (A ≥ B) of update costs 

 Definition: internal node v is c-mergeable if subtree T(v) only 
constains color c leaves 

 Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v). 

 If C(v) ≥ A α, then aggregate entire tree T(u) where u is 
furthest ancestor of v with C(u) ≥ B α. 

 Split lazily: only when forced. 

Nodes with square inside: mergeable.  



                          21 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 



                          22 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 

UFIB: Uncompressed trie 
with exceptions 

 

Always stored in controller!  

FIB: Compressed equivalent trie 



                          23 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 

Invisible Node 

FIB: Compressed equivalent trie UFIB: Uncompressed trie 
with exceptions 

 

Always stored in controller!  



                          24 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 

Invisible Node 

Sibling Nodes 

FIB: Compressed equivalent trie UFIB: Uncompressed trie 
with exceptions 

 

Always stored in controller!  



                          25 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 

Trie with exceptions Compressed equivalent trie 

Invisible Node 

Sibling Nodes 

Theorem 1: HIMS  

HIMS («Hide Invisible Merge Siblings») is O(w)-competitive, where 
w is prefix length. HIMS is deterministic. 



                          26 

Our Contribution:  
Competitive Compression for Dependent Prefixes  

size 5 size 2 

Trie with exceptions Compressed equivalent trie 

Invisible Node 

Sibling Nodes 

Theorem 1: HIMS  

HIMS («Hide Invisible Merge Siblings») is O(w)-competitive, where 
w is prefix length. HIMS is deterministic. 

size 5 

Trie with exceptions Compressed equivalent trie 

Theorem 2: Lower Bound  

This is optimal for a large class of online and offline algorithms.  



                          27 

Ideas of HIMS. Concept of Sticks: (on UFIB!)  
Maximal subtrees of UFIB with colored leaves and  
blank internal nodes.  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 



                          28 

Ideas of HIMS. Concept of Sticks: (on UFIB!)  
Maximal subtrees of UFIB with colored leaves and  
blank internal nodes.  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 

Two counters at nodes:  

Merge Sibling Counter C(u) 

u 

C(u) = time since stick descendants are unicolor 

Hide Invisible Counter H(u) 

u 

H(u) = how long do nodes have same color as 
the least colored ancestor in UFIB? 



                          29 

Ideas of HIMS. Concept of Sticks: (on UFIB!)  
Maximal subtrees of UFIB with colored leaves and  
blank internal nodes.  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 

Two counters at nodes:  

Merge Sibling Counter C(u) 

u 

C(u) = time since stick descendants are unicolor 

Hide Invisible Counter H(u) 

u 

H(u) = how long do nodes have same color as 
the least colored ancestor in UFIB? 

Monotonic properties: E.g., color change of stick leaf resets 
all counters to root. So C(u) ≥ C(p(u)) and H(u) ≥  H(p(u)), and 
also C(u) ≥ H(u), as I need ancestor. Where p() is parent in trie. 



                          30 

Ideas of HIMS. Concept of Sticks: (on UFIB!)  
Maximal subtrees of UFIB with colored leaves and  
blank internal nodes.  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 

Two counters at nodes:  

Merge Sibling Counter C(u) 

u 

C(u) = time since stick descendants are unicolor 

Hide Invisible Counter H(u) 

u 

H(u) = how long do nodes have same color as 
the least colored ancestor in UFIB? 

HIMS Algo: Keep rule in FIB if and only if all 
three conditions hold: 
(1)  H(u) < α (remove if hidden for long)  

(2)  C(u) ≥ α or u is a stick leaf (always true for UFIB rule) 

(3)  C(p(u)) < α or u is a stick root (remove if amortized parent) 

Monotonic properties: E.g., color change of stick leaf resets 
all counters to root. So C(u) ≥ C(p(u)) and H(u) ≥  H(p(u)), and 
also C(u) ≥ H(u), as I need ancestor. Where p() is parent in trie. 



                          31 

Ideas of HIMS. Concept of Sticks: (on UFIB!)  
Maximal subtrees of UFIB with colored leaves and  
blank internal nodes.  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 

Two counters at nodes:  

Merge Sibling Counter C(u) 

u 

C(u) = time since stick descendants are unicolor 

Hide Invisible Counter H(u) 

u 

H(u) = how long do nodes have same color as 
the least colored ancestor in UFIB? 

Properties: Note: C(u) ≥ H(u), C(u) ≥ C(p(u)), 
H(u) ≥  H(p(u)), where p() is parent in trie. 

  
HIMS Algo: Keep rule in FIB if and only if all 
three conditions hold: 
(1)  H(u) < α (remove if hidden for long)  

(2)  C(u) ≥ α or u is a stick leaf (always true for UFIB rule) 

(3)  C(p(u)) < α or u is a stick root (remove if amortized parent) 

  

Idea: if all leaves in stick have same color, they  
would become mergeable. 
 

Two counters at nodes:  

Merge Sibling Counter C(u) 

u 

C(u) = time since stick descendants are unicolor 

Hide Invisible Counter H(u) 

u 

Properties: Note: C(u) ≥ H(u), C(u) ≥ C(p(u)), 
H(u) ≥  H(p(u)), where p() is parent in trie. 

  

Trivial stick: node is both root and leaf (Conditions 2+3 
fulfilled). So HIMS simply waits until invisible node can be 
hidden.  

Ex 1. 

Ex 2. Stick without colored ancestors: H(u)=0 all 
the time (Condition 1 fulfilled). So 
everything depends on sibling counters 
inside stick. E.g., if no change for  time α 
and unicolor leaves, only root stays (all 
three conditions fulfilled). 

Example. 

Ex 3. Inner nodes of the stick are never longer than α in the FIB. 
(Otherwise second condition violated.) 



                          32 

Upper Bound: Proof Idea 
Theorem:  

HIMS is O(w) -competitive. 
Proof idea:  

 In the absence of further BGP updates 

(1) HIMS does not introduce any changes after time α 

(2) After time α, the memory cost is at most an factor O(w) off 

 

 In general: for any snapshot at time t, either HIMS already started aggregating 
or changes are quite new 

 Lower bound for OFF: Concept of rainbow points and line coloring useful. 

 

 

 

 

 A rainbow point is a “witness” for a FIB rule. 

 Many different rainbow points over time give lower bound. 

    

addresses 

rainbow point rainbow point 

0 2w-1 



                          33 

Lower Bound: Proof Idea 
Theorem:  

Any (online or offline) Stick-based algo is Ω(w) -competitive. 

Proof idea:  
Stick-based:  (1) never keep a node outside a stick 

  (2) inside a stick, for any pair u,v in ancestor-  
            descendant relation, only keep one 

Consider single stick: prefixes representing lengths 2w-1, 2w-2, ..., 21, 20, 20 

Cannot aggregate stick! 

But OPT could do that:   

QED 



                          34 

Simulations: The Simplified Version LFA 

 LFA: Locality-aware FIB aggregation 

 

 Combines stick aggregation with offline 
optimal ORTC 
 Parameter α: depth where aggregation starts 

 Parameter β: time until aggregation 

 

For small alpha, Aggregated Table (AT) 
significantly smaller than Original Table (OT) 



                          35 

Conclusion 

 Without exceptions in input and output: BLOCK is constant 
competitive 

 

 With exceptions in input and output: HIMS is O(w)-
competitive 

 

 Note on offline variant: fixed parameter tractable, runtime of 
dynamic program in f(α) nO(1) 

Thank you! Questions? 



Why Aggregation in Worst Case? 

With fixed switch size and sum over time?  

 

 Start to make errors late! 

 

 Or offload rest... 

  36 



Analysis 
Theorem:  

Proof idea (a bit technical):  

 Time events when ALG merges k nodes of T(u) at u 

 Upper bound ON cost: 

 k+1 counters between B α  and  A α 

 Merging cost at most (k+3) α: remove k+2 leaves, insert 
one root 

 Splitting cost at most (k+1) 3α: in worst case, remove-
insert-remove individually 

 Lower bound OFF cost: 

 Time period from t- α to t 

 If OPT does not merge anything in T(u) or higher: high 
memory costs 

 If OPT merges ancestor of u: counter there must be 
smaller than B α, memory and update costs 

 If OPT merges subtree of T(u): update cost and memory 
cost for in- and out-subtree 

 Optimal choice: A = √13 - 1  , B = (2√13)/3 – 2/3 

  Add event costs (inserts/deletes) later! 

BLOCK(A,B) is 3.603-competitive. 

QED 

u 

T(u): 

  37 



Lower Bound 
Theorem:  

Proof idea:  

 Simple example: 

Any online algorithm is at least 1.636-competitive. 

00 

1 

01 

1 1 00 

1 

01 0 

Adversary 
Adversary 

00 01 

Ɛ 
ALG 

do nothing! 

(1) If ALG does never changes to single entry, competitive ratio is at least 2 (size 2 vs 1).  

(2) If ALG changes before time α, adversary immediately forces split back! Yields costly inserts... 

(3) If ALG changes after time α, the adversary resets color as soon as ALG for the first time has a  

     single node. Waiting costs too high. 

  38 



Note on Adding Insertions and Deletions 

39 

 Algorithm can be extended to insertions/deletions 

 
Insert: 

u u u becomes 
mergeable! 

Delete: 

u u u no longer 
mergeable! 

  39 


