Dynamic FIB Aggregation without Update Churn

Dynamic FIB Aggregation without Update Churn

Marcin Bienkowski Nadi Sarrar **Stefan Schmid** Steve Uhlig

Key Functionality: Forwarding

Idea to prolong the router lifetime: Compress the FIB!

Good Potential:

00* to

01* to

1* to

Down to 40% (RouteView), depending on # ports.

00* to

01* to

1* to

churn!

An Optimization Problem

An online problem:

- Forwarding must always be correct (equivalent)
- 2. Minimize update cost and memory size

FIB or SDN Switch

An Optimization Problem

An online problem:

- Forwarding must always be correct (equivalent)
- 2. Minimize update cost and memory size

FIB or SDN Switch

An Optimization Problem

What Was Known So Far?

Static Compression

E.g., ORTC (INFOCOM'99): dynamic programming algorithm to compute optimally compressed FIB

Dynamic Compression

No free lunch! (But can also reduce churn!)

Lots of work over the last 15 years (since Lulea) to find better tradeoffs between memory and updates. Often implicitly though. Heuristics: SMALTA (CONEXT'11), FIFA (INFOCOM'13)

Online algorithm BLOCK for «independent prefixes»

a.k.a. without exceptions (SIROCCO 2013)

BLOCK is 3.603-competitive.

Any online algorithm is at least 1.636-competitive. (Even if ON can use exceptions and OFF not.)

Idea of **BLOCK**

BLOCK(A,B) operates on trie:

- 1. balances memory and update costs
- 2. exploits possibility to merge multiple tree nodes simultaneously at lower price (thresholds A and B)
 - Timers/counters for each trie node
 - Wait before aggregating to save update costs
 - Thresholds A and B for amortization (A ≥ B) of update costs
- Definition: internal node v is c-mergeable if subtree T(v) only constains color c leaves
- Trie node v monitors: how long was subtree T(v) cmergeable without interruption? Counter C(v).
- If $C(v) \ge A \alpha$, then aggregate entire tree T(u) where u is furthest ancestor of v with $C(u) \ge B \alpha$.
- Split lazily: only when forced.

Nodes with square inside: mergeable.

Our Contribution:

Competitive Compression for Dependent Prefixes

Our Contribution:

Competitive Compression for Dependent Prefixes

UFIB: Uncompressed trie with exceptions

Always stored in controller!

UFIB: Uncompressed trie with exceptions

Always stored in controller!

UFIB: Uncompressed trie with exceptions

Always stored in controller!

HIMS («Hide Invisible Merge Siblings») is O(w)-competitive, where w is prefix length. HIMS is deterministic.

Theorem 2: Lower Bound

This is optimal for a large class of online and offline algorithms.

Concept of Sticks: (on UFIB!)

Maximal subtrees of UFIB with colored leaves and blank internal nodes.

Idea: if all leaves in stick have same color, they would become mergeable.

Two counters at nodes:

Merge Sibling Counter C(u)

C(u) = time since stick descendants are unicolor

Hide Invisible Counter H(u)

Concept of Sticks: (on UFIB!)

Maximal subtrees of UFIB with colored leaves and blank internal nodes.

Idea: if all leaves in stick have same color, they would become mergeable.

Two counters at nodes:

Merge Sibling Counter C(u)

C(u) = time since stick descendants are unicolor

Hide Invisible Counter H(u)

Concept of Sticks: (on UFIB!)

Maximal subtrees of UFIB with colored leaves and blank internal nodes.

Idea: if all leaves in stick have same color, they would become mergeable.

Monotonic properties: E.g., color change of stick leaf resets all counters to root. So $C(u) \ge C(p(u))$ and $H(u) \ge H(p(u))$, and also $C(u) \ge H(u)$, as I need ancestor. Where p() is parent in trie.

Two counters at nodes:

Merge Sibling Counter C(u)

C(u) = time since stick descendants are unicolor

Hide Invisible Counter H(u)

H(u) = how long do nodes have same color as the least colored ancestor in UFIB?

Concept of Sticks: (on UFIB!)

Maximal subtrees of UFIB with colored leaves and blank internal nodes.

Idea: if all leaves in stick have same color, they would become mergeable.

Monotonic properties: E.g., color change of stick leaf resets all counters to root. So $C(u) \ge C(p(u))$ and $H(u) \ge H(p(u))$, and also $C(u) \ge H(u)$, as I need ancestor. Where p() is parent in trie.

HIMS Algo: Keep rule in FIB if and only if all three conditions hold:

- (1) $H(u) < \alpha$ (remove if hidden for long)
- (2) $C(u) \ge \alpha$ or u is a stick leaf (always true for UFIB rule)
- (3) $C(p(u)) < \alpha$ or u is a stick root (remove if amortized parent)

Example.

Ex 1.

Ex 2

Concept of Sticks: (on UFIB!)

Maximal subtrees of LIEIR with colored leaves and

Trivial stick: node is both root and leaf (Conditions 2+3 fulfilled). So HIMS simply waits until invisible node can be hidden.

Stick without colored ancestors: H(u)=0 all the time (Condition 1 fulfilled). So everything depends on sibling counters inside stick. E.g., if no change for time α and unicolor leaves, only root stays (all three conditions fulfilled).

Ex 3. Inner nodes of the stick are never longer than α in the FIB. (Otherwise second condition violated.)

H(u) = how long do nodes have same color as the least colored ancestor in UFIB? (1) $H(u) < \alpha$ (remove if hidden for long)

(2) $C(u) \ge \alpha$ or u is a stick leaf (always true for UFIB rule)

(3) $C(p(u)) < \alpha$ or u is a stick root (remove if amortized parent)

Upper Bound: Proof Idea

Theorem:

HIMS is O(w) -competitive.

Proof idea:

- In the absence of further BGP updates
 - (1) HIMS does not introduce any changes after time α
 - (2) After time α , the memory cost is at most an factor O(w) off
 - In general: for any snapshot at time t, either HIMS already started aggregating or changes are quite new
 - Lower bound for OFF: Concept of rainbow points and line coloring useful.

- A rainbow point is a "witness" for a FIB rule.
- Many different rainbow points over time give lower bound.

Lower Bound: Proof Idea

Theorem:

Any (online or offline) Stick-based algo is $\Omega(w)$ -competitive.

Proof idea:

 Stick-based: (1) never keep a node outside a stick
(2) inside a stick, for any pair u,v in ancestordescendant relation, only keep one

Consider single stick: prefixes representing lengths 2^{w-1}, 2^{w-2}, ..., 2¹, 2⁰, 2⁰

Simulations: The Simplified Version LFA

LFA: Locality-aware FIB aggregation

Combines stick aggregation with offline optimal ORTC

- Parameter α: depth where aggregation starts
- Parameter β: time until aggregation

For small alpha, Aggregated Table (AT) significantly smaller than Original Table (OT)

Conclusion

- Without exceptions in input and output: BLOCK is constant competitive
- With exceptions in input and output: HIMS is O(w)competitive
- Note on offline variant: fixed parameter tractable, runtime of dynamic program in $f(\alpha) n^{O(1)}$

Thank you! Questions?

Why Aggregation in Worst Case?

With fixed switch size and sum over time?

- Start to make errors late!
- Or offload rest...

Analysis

Theorem: BLOCK(A,B) is 3.603-competitive.

Proof idea (a bit technical):

- Time events when ALG merges k nodes of T(u) at u
- Upper bound ON cost:
 - k+1 counters between B α and A α
 - Merging cost at most (k+3) α: remove k+2 leaves, insert one root
 - Splitting cost at most (k+1) 3α: in worst case, removeinsert-remove individually

Lower bound OFF cost:

- Time period from t- α to t
- If OPT does not merge anything in T(u) or higher: high memory costs
- If OPT merges ancestor of u: counter there must be smaller than B α, memory and update costs
- If OPT merges subtree of T(u): update cost and memory cost for in- and out-subtree
- Optimal choice: A = $\sqrt{13} 1$, B = $(2\sqrt{13})/3 2/3$
- Add event costs (inserts/deletes) later!

QED

Lower Bound

Theorem:

Any online algorithm is at least 1.636-competitive.

Proof idea:

(1) If ALG does never changes to single entry, competitive ratio is at least 2 (size 2 vs 1).

(2) If ALG changes before time α , adversary immediately forces split back! Yields costly inserts...

(3) If ALG changes after time α, the adversary resets color as soon as ALG for the first time has a single node. Waiting costs too high.

Note on Adding Insertions and Deletions

Algorithm can be extended to insertions/deletions

Insert:

