Competitive Strategies for Online Cloud Resource Allocation with Discounts

The 2-Dimensional Parking Permit Problem

Xinhui Hu, Arne Ludwig, Andrea Richa, Stefan Schmid

Motivation

30% CAGR cloud 2013-2018

Google Cloud Platform

Microsoft

Azure

Motivation

- Virtualization enables new business models
 - Dynamic leasing (startups)
 - Cloud bursting

Motivation

- Virtualization enables new business models
 - Dynamic leasing (startups)
 - Cloud bursting
 - Resource broker!

Related work

- Ski rental (classical problem):
 - Buy or rent skis?

- Parking Permit Problem (Meyerson 2005):
 - Unpredictable car usage.
 - Discount on longer permits.
 - Which duration to buy?

What is a clever way to buy (discounted) resources?

Overview

- Model
- Online Algorithm
- Upper / Lower Bound
- Offline Algorithm
- Conclusion

Model - assumptions

1. *Monotonic Prices*, i.e. larger contracts -> more expensive

Model - assumptions

- 1. Monotonic Prices
- 2. *Multiplicity*, i.e., the next larger contract has a multiple of duration and rate

- Single resource (generalizable to multiple)
- Complete demand needs to be covered
- One lookahead model

- Objective: minimize overall price
 - Minimize competitive ratio

Competitive Strategy for Resource Allocation with Discounts?

Online algorithm – Do's and Don'ts

Try to maximize the discount

Do not overestimate the demand

Online algorithm – Do's and Don'ts

Try to maximize the discount

Do not overestimate the demand

→ Let's stick to someone who should know better.

Online algorithm - ON2D

- ON2D mimics the offline algorithm OFF2D:
 - 1. Check for uncovered demand
 - 2. Buy the exact same contract OFF2D would buy

How good is ON2D?

• Is it competitive?

• Is it close to best?

Generally applicable?

How good is ON2D?

• Is it competitive?

k-competitive!
(k = numbers of
 contracts)

• Is it close to best?

Generally applicable?

• Generally applicable?

Upper bound

- 1. Contract independence
- 2. Worst case classification
- 3. Maximum cumulative price

 \rightarrow *k*-competitive (*k* = number of contracts)

Upper bound contract independence

- *p*₁
- p_2

Upper bound contract independence

- p_1 covered by \mathcal{C}_i , at time t
- p_2 covered by \mathcal{C}_j , at time t

Upper bound contract independence

- p_1 covered by \mathcal{C}_i , at time t
- p_2 covered by \mathcal{C}_j , at time t
 - \rightarrow No contract ${\mathcal C}$ at time $\,t' < t\,$ such that, $\,{\mathcal C}\,$ covers both $p_1\,$ and $p_2\,$

Upper bound maximum cumulative price

• $\sum price_{ON}(\mathcal{C}_i) \leq i \cdot price(\mathcal{C}_i)$

\rightarrow ON2D is *k*-competitive, where *k* is the total number of contracts

Upper bound relaxing intervals assumption

• ON2D is 2k-competitive for the general PPP^2 without *intervals*

Upper bound relaxing intervals assumption

• ON2D is 2k-competitive for the general PPP^2 without *intervals*

Upper bound relaxing intervals assumption

• ON2D is 2*k*-competitive for the general PPP^2 without *intervals*

Lower Bound

- Scenario: each contract is 2k times longer and has 2k times more rate; contracts double in cost
- Demand scheduled when ON has no contract
- Minimal cost per interval that starts with demand
 - \rightarrow Lower bound: *k*/3

Offline Algorithm

Algorithm 2 Pre-computation of matrix M for d_k -length Input: Demand sequence $\sigma_t, \ldots, \sigma_{t+d_k}$ (over interval $[t, t + d_k]$). Output: Matrix M. 1: for i = 1 to d_k do 2: $M[i, i] \leftarrow \sigma_{t+i}$ 3: for i = 1 to $d_k - 1$ do 4: for j = i + 1 to d_k do 5: $M[i, j] \leftarrow \max\{M[i, j - 1], \sigma_{t+j}\}$ 6: return M Algorithm 3 Offline Algorithm for d_k -length interval **Input:** Precomputed matrix M over interval $[t, t + d_k]$. **Output:** Optimal total costs $OPT[i, j, \cdot]$ for all intervals within $[t, t + d_k]$. 1: Initialize all entries in OPT to be 0. 2: Let $\hat{\sigma} = M[i, j]$. 3: for i = 1 to d_k do 4: for $\lambda = M[i, i] - 1$ to 0 do $OPT[i, i, \lambda]$ 5: $\min_{C(r,d)\in\mathcal{C}} \{ \texttt{OPT}[i,i,\min\{\widehat{\sigma},\lambda+r\}] + \pi(r,d) \}$ 6: for $\ell = 2$ to d_k do for i = 1 to $d_k - \ell + 1$ do 7: $i = i + \ell - 1$ 8: for $\lambda = M[i, j] - 1$ to 0 do 9: $OPT[i, j, \lambda]$ 10: $\min_{i \le z < j} \{ \operatorname{OPT}[i, z, \min\{M[i, z], \lambda\}]$ + $OPT[z + 1, j, min\{M[z + 1, j], \lambda\}]\}$ $\mathcal{C}' \leftarrow \{C^{(x)}(t^{(x)}, r, d) \in \mathcal{C} : t^{(x)} = b \cdot d \text{ for } d$ 11: some positive integer b and $t^{(x)} < i < j < i$ $t^{(x)} + d\}$ if C' is not empty then 12: $OPT[i, j, \lambda] \leftarrow min\{OPT[i, j, \lambda];$ 13: $\min_{C(r,d)\in\mathcal{C}'} \operatorname{OPT}[i, j, \min\{\hat{\sigma}, \lambda + r\}] +$ $\pi(r,d)$ 14: return OPT $[1, d_k, 0]$

Offline Algorithm

Simulation verification

Conclusion

- Introduction of PPP²
- Deterministic online algorithm O(k)
- Almost optimal (lower bound k/3)
- Polynomial offline algorithm
- Algorithms and results generalize to higher dimensions