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In a nutshell

• Software-Defined Network control plane 

• Distributed and in-band

• Tolerating:
• Node/link failures

• Arbitrary failures



Software-defined networks

Separation of 
control and data 

plane

3Image: Abstractions for Software-Defined Networks. M. Casado, N. Foster, A. Guha. Comm. of the ACM



Software-defined network control plane

• Logically centralized, physically distributed:
• Reliability

• Availability

• Scalability

• Low latency

• Out-of-band SDN control: 
Physically/logically separate 
network acts as 
the controller entity

Image: packetlife.net
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In-band SDN control
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• Control traffic
• through dedicated 

management port
(Controller A)

• multiplexed with
data-plane traffic
(Controller B)

• Benefits: less cost, higher 
redundancy, increased 
partition tolerance



failures

Problem: Distributed & In-band Software-defined network control 
in the presence of failures

• Establish bounded communication delays from every controller to 
every other node, assuming
• no out-of-band control

• fail-stop node/link failures

• at most K concurrent temporary link failures

• transient faults

• Only controllers can compute!
• Switches can only store rules
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Stale forwarding rules
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Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: discover the network topology

Solution: repeatedly query discovered nodes 
about their local topology (BFS discovery)
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Renaissance: Self-Stabilizing, distributed, in-band 
control plane

Challenge: clean up switch memory from stale information

Solution: repeatedly use query responses, 
compute updates locally, push to switches

Updates include alternative paths,
tolerating up to K concurrent link failures
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Renaissance: Self-Stabilizing, distributed, in-band 
control plane

Challenge: avoid two controllers removing each other’s updates

Solution: 
• use synchronization rounds

• round ends when topology is re-discovered

• when round ends, 
remove failing controller info from switches
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illegitimate deletion
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Self-stabilizing systems

Bounded recovery after the occurrence of an arbitrary combination of failures

• benign failures (crash failures/recoveries, communication failures, etc.)

• transient faults (arbitrary violation of the system’s assumptions)

as long as the algorithm’s code stays intact

Recovery Legal execution (tasks are fulfilled)

System execution
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Arbitrary starting 
configuration



Proving bounded recovery period

We show:

• Bounded memory requirements
• Switch: O(#controllers(#controllers + #switches))

• Controller: O(#controllers + #switches)

• Bounded number of illegitimate deletions: (c’•maxDiameter + 1) 

• If no illegitimate deletions, 
transient fault recovery within (c”+2)•maxDiameter comm rounds

Recovery within: 
((c”+2)• maxDiameter + 1) • [#illegitimateDeletions • #switches + #controllers + 1] = 
O(maxDiameter2 • #nodes) rounds

#nodes = #controllers + #switches

Can also tolerate topological 
changes after recovery in 

O(maxDiameter)



Roadmap

• Algorithm

• Proof highlights

• Evaluation
oDone on a PC, using Mininet, 

and testing standard SDN topologies 
such as Clos, B4, and Rocketfuel
networks (Exodus, Telstra, Ebone)

source code: renaissance-sdn.net

http://renaissance-sdn.net/


How efficiently can Renaissance bootstrap an SDN?

Bootstrap time: Empty switch 
configuration to legitimate state

• bootstrap time reduces when 
reducing query and network update 
interval, until saturation

• bootstrap time is proportional 
to network diameter

• 4-5 seconds for all tested topologies

Bootstrap time for Rocketfuel networks using 
7 controllers, as a function of query intervalsQuery and network update interval (seconds)
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How efficiently does Renaissance recover in the 
presence of link and node failures?

Legitimate state               link/node failure                   Legitimate state

Recovery after failure (seconds)

#controllers (topology) 1 controller 
failure

1-6 controller 
failures

2-6 permanent link 
failures

3 controllers (B4, Clos)

~ 3.5 to 5 seconds

-

~ 3.5 to 5 seconds7 controllers 
(Rocketfuel networks)

~ 4 to 5 
seconds

Recovery time roughly linear in the number of nodes

Diameter affects time to recover to a small extent



Throughput and message loss upon link failure

Link failure in primary path:
• Throughput  drop roughly from 900 Mbits/s to 750 Mbits/s for 2 seconds
• Avoid further drop by packet tagging and forcing traffic through alternative paths

Time (seconds)
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Wrap-up

Self-stabilizing, distributed, in-band, control of software-defined 
networks in the presence of failures

• Deal with concurrent updates of switches

• Bounded recovery from topological/comm failures, transient faults

Future directions:

• Combination of in-band and out-of-band control

• Consider data traffic dynamics when constructing backup paths

Thank you for 
your attention!


