Renaissance: A Self-Stabilizing Distributed
SDN Control Plane

M. Caninil, losif Salem? L. Schiff3, E. M. Schiller?, S. Schmid*

0,
“w'c,
; <
§ A%
~ I
@ ”'l' Z

E P
Université : M ¢
catholique N4
delouvain = “e®

CHALMERS ‘GuardiCOre 47 "% UNIVERSITY

UNIVERSITY OF TECHNOLOGY J"isf_,_%‘“"' OF VIENNA




In a nutshell
» Software-Defined Network control plane

e Distributed and in-band

* Tolerating:
* Node/link failures
* Arbitrary failures

il



Software-defined networks

Traditional Network Software-Defined Network
Switch
\ Progsr\?vr{r;(r:?‘able Controller

Control Plane

Machine\

g Data Plane

Separation of
control and data
plane

Image: Abstractions for Software-Defined Networks. M. Casado, N. Foster, A. Guha. Comm. of the ACM 3



Software-defined network control plane

* Logically centralized, physically distributed:
* Reliability
* Availability
 Scalability ' ‘
* Low latency Control Plana 2N

Controller

e Qut-of-band SDN control:
Physically/logically separate
network acts as
the controller entity

Forwarding Plane

Image: packetlife.net



In-band SDN control

* Control traffic
* through dedicated
management port
(Controller A)

* multiplexed with
data-plane traffic
(Controller B)

e Benefits: less cost, higher
redundancy, increased
partition tolerance

I Controller

I
(@]
w
—+

R

|
——————————— o
Updates + statsl

Abstract SDN switch

Control module

e T
£ -

Forwarding
rules

i

Switch_fabric

Internal link for
in-band control

Abstract

M| sDN

Switch

Abstract

! son

Switch

Data (plane) links to neighbors

Abstract

Controllerl

SDN |nfim

Switch




Problem: Distributed & In-band Software-defined network control
in the presence of failures

* Establish bounded communication delays from every controller to
every other node, assuming

* no out-of-band control

e fail-stop node/link failures
failures | * at most K concurrent temporary link failures
e transient faults

* Only controllers can compute!
e Switches can only store rules

Stale forwarding rules



Roadmap
* Algorithm
* Proof highlights

e Evaluation




Roadmap

* Algorithm




Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: discover the network topology

v'Solution: repeatedly query discovered nodes
about their local topology (BFS discovery)

=4

) ismy
neighbor




Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: clean up switch memory from stale information

v'Solution: repeatedly use query responses, |
compute updates locally, push to switches d . =

v'Updates include alternative paths,
tolerating up to K concurrent link failures



Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: avoid two controllers removing each other’s updates

v'Solution:
* use synchronization rounds
* round ends when topology is re-discovered

* when round ends,
remove failing controller info from switches




Roadmap

* Proof highlights




Self-stabilizing systems

Bounded recovery after the occurrence of an arbitrary combination of failures

* benign failures (crash failures/recoveries, communication failures, etc.)
 transient faults (arbitrary violation of the system’s assumptions)

as long as the algorithm’s code stays intact

I System execution >
Arbitrary starting : | I
configuration Recovery> Legal execution (tasks are fulfilled) >

1 [
I : 13



Proving bounded recovery period

We show: Can also tolerate topological

* Bounded memory requirements changes after recovery in
* Switch: O(#controllers(#controllers + #switches)) AR B,
e Controller: O(#controllers + #switches)

* Bounded number of illegitimate deletions: (c’*maxDiameter + 1)

* If no illegitimate deletions,
transient fault recovery within (c”+2)emaxDiameter comm rounds

Recovery within:
((c”+2)® maxDiameter + 1) o [#illegitimateDeletions e #switches + #controllers + 1] =
O(maxDiameter? ¢ #fnodes) rounds

#nodes = #controllers + #switches



Roadmap

e Evaluation

o Done on a PC, using Mininet, ’
and testing standard SDN topologies
such as Clos, B4, and Rocketfuel
networks (Exodus, Telstra, Ebone)

source code: renaissance-sdn.net



http://renaissance-sdn.net/

Time (seconds)

How efficiently can Renaissance bootstrap an SDN?

20

16

-
M
|

oo
|

o Network (Dlameter) Boot-strap .time: EmP’Fy switch
| ‘O Exodus 31110)) ° configuration to legitimate state
) —+— Telstra (8) -

* bootstrap time reduces when
. _ reducing query and network update
\ - o interval, until saturation

\ * bootstrap time is proportional
\'-.‘ to network diameter

* 4-5 seconds for all tested topologies

| | | ' '\, Bootstrap time for Rocketfuel networks using

| | | |
1 08 06 04 02 0.09 0.05 0.01 7 I : ] f ] |
Query and network update interval (seconds) controllers, as a tunction ot query intervals



How efficiently does Renaissance recover in the
presence of link and node failures?

Legitimate state =) link/node failure =)

Legitimate state

Recovery after failure (seconds)

#controllers (topology) 1 controller 1-6 controller | 2-6 permanent link
failure failures failures

3 controllers (B4, Clos) -

7 controllers ~ 3.5 to 5 seconds ~41t05 ~ 3.5 to 5 seconds

(Rocketfuel networks) seconds

»Recovery time roughly linear in the number of nodes
» Diameter affects time to recover to a small extent




Throughput and message loss upon link failure

.—-‘-——_‘-‘—‘-—-‘-"'0
L
E Network (Diameter)
= —2-- Exodus (11)
EBONE (10)
Telstra (8)
-0 B4 (52
770~ |—+— Clos (4)

7 8 9 10 11 12 13 14
Time (seconds)

Link failure in primary path:
* Throughput drop roughly from 900 Mbits/s to 750 Mbits/s for 2 seconds

* Avoid further drop by packet tagging and forcing traffic through alternative paths



Thank you for

Wrap-up

your attention!

Self-stabilizing, distributed, in-band, control of software-defined
networks in the presence of failures

* Deal with concurrent updates of switches
* Bounded recovery from topological/comm failures, transient faults

Future directions:
 Combination of in-band and out-of-band control
* Consider data traffic dynamics when constructing backup paths



