
Renaissance: A Self-Stabilizing Distributed
SDN Control Plane

M. Canini1, Iosif Salem2 L. Schiff3, E. M. Schiller2, S. Schmid4

In a nutshell

• Software-Defined Network control plane

• Distributed and in-band

• Tolerating:
• Node/link failures

• Arbitrary failures

Software-defined networks

Separation of
control and data

plane

3Image: Abstractions for Software-Defined Networks. M. Casado, N. Foster, A. Guha. Comm. of the ACM

Software-defined network control plane

• Logically centralized, physically distributed:
• Reliability

• Availability

• Scalability

• Low latency

• Out-of-band SDN control:
Physically/logically separate
network acts as
the controller entity

Image: packetlife.net
4

In-band SDN control

5

• Control traffic
• through dedicated

management port
(Controller A)

• multiplexed with
data-plane traffic
(Controller B)

• Benefits: less cost, higher
redundancy, increased
partition tolerance

failures

Problem: Distributed & In-band Software-defined network control
in the presence of failures

• Establish bounded communication delays from every controller to
every other node, assuming
• no out-of-band control

• fail-stop node/link failures

• at most K concurrent temporary link failures

• transient faults

• Only controllers can compute!
• Switches can only store rules

6
Stale forwarding rules

Roadmap

• Algorithm

• Proof highlights

• Evaluation

Roadmap

• Algorithm

• Proof highlights

• Evaluation

Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: discover the network topology

Solution: repeatedly query discovered nodes
about their local topology (BFS discovery)

9

1

3

2

is my
neighbor

4

Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: clean up switch memory from stale information

Solution: repeatedly use query responses,
compute updates locally, push to switches

Updates include alternative paths,
tolerating up to K concurrent link failures

10

Renaissance: Self-Stabilizing, distributed, in-band
control plane

Challenge: avoid two controllers removing each other’s updates

Solution:
• use synchronization rounds

• round ends when topology is re-discovered

• when round ends,
remove failing controller info from switches

11

illegitimate deletion

Roadmap

• Algorithm

• Proof highlights

• Evaluation

Self-stabilizing systems

Bounded recovery after the occurrence of an arbitrary combination of failures

• benign failures (crash failures/recoveries, communication failures, etc.)

• transient faults (arbitrary violation of the system’s assumptions)

as long as the algorithm’s code stays intact

Recovery Legal execution (tasks are fulfilled)

System execution

13

Arbitrary starting
configuration

Proving bounded recovery period

We show:

• Bounded memory requirements
• Switch: O(#controllers(#controllers + #switches))

• Controller: O(#controllers + #switches)

• Bounded number of illegitimate deletions: (c’•maxDiameter + 1)

• If no illegitimate deletions,
transient fault recovery within (c”+2)•maxDiameter comm rounds

Recovery within:
((c”+2)• maxDiameter + 1) • [#illegitimateDeletions • #switches + #controllers + 1] =
O(maxDiameter2 • #nodes) rounds

#nodes = #controllers + #switches

Can also tolerate topological
changes after recovery in

O(maxDiameter)

Roadmap

• Algorithm

• Proof highlights

• Evaluation
oDone on a PC, using Mininet,

and testing standard SDN topologies
such as Clos, B4, and Rocketfuel
networks (Exodus, Telstra, Ebone)

source code: renaissance-sdn.net

http://renaissance-sdn.net/

How efficiently can Renaissance bootstrap an SDN?

Bootstrap time: Empty switch
configuration to legitimate state

• bootstrap time reduces when
reducing query and network update
interval, until saturation

• bootstrap time is proportional
to network diameter

• 4-5 seconds for all tested topologies

Bootstrap time for Rocketfuel networks using
7 controllers, as a function of query intervalsQuery and network update interval (seconds)

Ti
m

e
(s

ec
o

n
d

s)

How efficiently does Renaissance recover in the
presence of link and node failures?

Legitimate state link/node failure Legitimate state

Recovery after failure (seconds)

#controllers (topology) 1 controller
failure

1-6 controller
failures

2-6 permanent link
failures

3 controllers (B4, Clos)

~ 3.5 to 5 seconds

-

~ 3.5 to 5 seconds7 controllers
(Rocketfuel networks)

~ 4 to 5
seconds

Recovery time roughly linear in the number of nodes

Diameter affects time to recover to a small extent

Throughput and message loss upon link failure

Link failure in primary path:
• Throughput drop roughly from 900 Mbits/s to 750 Mbits/s for 2 seconds
• Avoid further drop by packet tagging and forcing traffic through alternative paths

Time (seconds)

M
b

it
s/

s

Wrap-up

Self-stabilizing, distributed, in-band, control of software-defined
networks in the presence of failures

• Deal with concurrent updates of switches

• Bounded recovery from topological/comm failures, transient faults

Future directions:

• Combination of in-band and out-of-band control

• Consider data traffic dynamics when constructing backup paths

Thank you for
your attention!

