
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Self-Adjusting Trees 

Using Rotor Walks
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Trend
Data-Centric Applications

Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  

a critical infrastructure

of our digital society.
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The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers
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Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Our Vision
Flexible and Demand-Aware Topologies
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Our Motivation
Much Structure in the Demand

Our hypothesis: can 

be exploited.

Empirical studies: 
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traffic matrices sparse and skewed



Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics



The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
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WPL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Static Problem
Demand-Aware Network of Bounded Degree

weighted path length
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Huffman tree:
“ego-tree”

Static Algorithm
Reduction to Ego-Trees



⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

Constant 

Approx

Static Algorithm
Reduction to Ego-Trees
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Maintaining Ego-Trees Dynamically

⇢ Input: sequence of nodes σ = (v1, v2, …)

⇢ Cost: access cost + number of swaps

⇢ Like splay trees, but unordered trees 

⇢ Goal: online algorithm which is competitive to offline 

⇢ Useful property: most recently used (MRU)
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⇢ Input: sequence of nodes σ = (v1, v2, …)
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⇢ Useful property: most recently used (MRU)

This Paper: Dynamic
Maintaining Ego-Trees Dynamically
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How to maintain MRU? 

Idea: pushdown along 

path? Not competitive!
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⇢ Input: sequence of nodes σ = (v1, v2, …)

⇢ Cost: access cost + number of swaps

⇢ Like splay trees, but unordered trees 

⇢ Goal: online algorithm which is competitive to offline 

⇢ Useful property: most recently used (MRU)

This Paper: Dynamic
Maintaining Ego-Trees Dynamically
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Random walk preservers MRU!

Constant competitive. 

Competitive deterministic?



⇢ Rotor-push: select push-down path by rotor walk

⇢ Each node has a toggle switch, left or right

⇢ Upon traversal, flip the switch

⇢ “Deterministic random walk”

Our Contributions
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⇢ Rotor-push: select push-down path by rotor walk

⇢ Each node has a toggle switch, left or right

⇢ Upon traversal, flip the switch

⇢ “Deterministic random walk”

⇢ Theorem: gives 12-competitive tree

⇢ We also improved random push bound

from 60 to 16 

Our Contributions

s
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v

rotor walk 



Empirical Results

Takeaway 1: The larger the network, 

the more beneficial self-adjustments 

compared to static

Takeaway 2: The more locality in the

demand, the more beneficial as well.

Takeaway 3: In practice, Rotor Push and Random Push have almost same cost.



Conclusion

⇢ Self-adjusting tree: building block for self-adjusting   

general graphs (“datacenters”)

⇢ Rotor walk: a constant-competitive online algorithm,  

finds optimal tradeoff between routing and adjustment costs

⇢ Future work
⇀ Non-asymptotic analysis

⇀ Accounting also for load?

Thank you!
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http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites



Static DAN Static OptimalityOverview: Models

Dynamic DAN
Robust DAN

Concurrent DANs

Further Reading
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Bonus Material

Hogwarts Stair



Bonus Material

Golden Gate Zipper



Bonus Material

In HPC


