
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Self-Driving Networks: Use Cases,

Approaches, and Research Challenges
Stefan Schmid

Acknowledgements:

It`s a Great Time to Be a

Networking Researcher!

Rhone and Avre (Switzerland)

1

It`s a Great Time to Be a

Networking Researcher!

Rhone and Avre (Switzerland)

AI/ML everywhere!

1

It`s a Great Time to Be a

Networking Researcher!

AI/ML everywhere!

Economics and literature?

Rhone and Avre (Switzerland)

1

It`s a Great Time to Be a

Networking Researcher!

Innovation

Credits: George Varghese 1

It`s a Great Time to Be a

Networking Researcher!

Innovation

Enables and motivates

self-driving networks!

Credits: George Varghese 1

Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

Innovations Needed!

Explosive Traffic

2

Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

Credits: Marco Chiesa

Innovations Needed!

Explosive Traffic

2

Fast growing traffic also in…

… wireless and mobile

3

10

1G-4G Sector antenna

Fixed radiation pattern

Fortunate user

Unfortunate user

5G: Adaptive multi-user beamforming
6G: Control objects in the environment?

?

From generation to generation more…

Exciting Flexibilities

credit: Emil Björnson, Christos Liaskos 4

11

Wall penetration:

− 20 dB or more

Reflection

Base station

Traditionally limited by

Line of Sight Only

credit: Emil Björnson 5

12

Reconfigurable

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Reconfigurable Intelligent Surfaces: Extend to

Virtual Line of Sight

credit: Emil Björnson 5

13

Reconfigurable

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Reconfigurable Intelligent Surfaces: Extend to

Virtual Line of Sight

Literature: Software-Defined Reconfigurable Intelligent Surfaces: From Theory to End-to-End
Implementation. Liaskos et al. Proceedings IEEE, 2022. 5

Great opportunities but come with…

Challenges

⇢ With growing demand for networks, also increasing dependability

⇢ Important step toward dependable networks: modelling…

⇢ … and automation (also using formal methods)!

⇢ Contributions from the ICIN community critical

6

15

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Credits: Laurent Vanbever, Nate Foster

It’s high time for computer-aided designs!

Reality vs Requirements

7

16

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Mainly:

human

errors!

It’s high time for computer-aided designs!

Reality vs Requirements

7

17

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Mainly:

human

errors!

It’s high time for computer-aided designs!

Reality vs Requirements

Wireless particularly

challenging to model!
7

An Anecdote

⇢ Report by the National Research Council

about 9/11/2001 attacks

⇢ While the core Internet infrastructure

installed in the WTC was down, the

overall Internet was more stable than

usual

⇢ … because operators stopped touching

network devices?!

8

Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More Use cases for self-driving networks

9

Datacenters Today
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking”

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!

[
1
]

S
o
u
r
c
e
:

M
i
c
r
o
s
o
f
t
,

2
0
1
9

G
b
p
s
/
€

Time

Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?

11

Root Cause
Fixed and Demand-Oblivious Topology

⇢ Example: fat-tree topology (bi-regular)

⇀ 2 types of switches: top-of-rack (ToR) connect to hosts, additional switches

connecting switches to increase throughput

11

Root Cause
Fixed and Demand-Oblivious Topology

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads

11

Root Cause
Fixed and Demand-Oblivious Topology

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads Highway which ignores

actual traffic: frustrating!

11

Root Cause
Fixed and Demand-Oblivious Topology

⇢ Example: expander topology (uni-regular)

⇀ Only 1 type of switches:

lower installation and management overheads Highway which ignores

actual traffic: frustrating!

Many flavors, but in

common: fixed and

oblivious to actual demand.

11

A Vision
Flexible and Demand-Aware Topologies

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

12

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

12

“Yin and Yang”-Networking!

The Motivation
Much Structure in the Demand

The hypothesis: can

be exploited.

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

14

Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Literature: Analyzing the Communication Clusters in Datacenters. Foerster et al. WWW Conference, 2023.

15

Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council:

“Photons are the new

Electrons.”
Photonics

16

Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

17

Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

18

Recall: Our Vision
Using Mirrors and Lasers

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

19

Realization
with Optical Circuit Switches (OCS)

19

First Deployments
E.g., Google

19

The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

20

The Big Picture
Like “Golden Gate Zipper”

for datacenters.

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

20

Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly
in software

Our focus in this talk:
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

21

First basic question:

How to measure and model
structure in workloads?

A first insight: related to entropy.

22

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

23

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

23

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

24

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

24

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

25

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

25

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

25

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

25

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

25

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

Avin et al. (Sigmetrics’2020)

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

26

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

26

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

demand

oblivious

demand

aware

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

bursty & skewed
skewed

bursty uniform

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

How to generate such

synthetic traffic?!

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

⇢ Complexity map is just 2-dimensional: many

ways to synthesize any point on map

⇢ Most simple (“Occam’s razor”):
⇢ Spatial distribution: empirical traffic matrix M

(or synthetic distribution, e.g. Zipf)

⇢ Temporal distribution: repeat with probability p

(can be computed analytically from data)

⇢ Resulting Markov process generates

corresponding disk on complexity map
⇢ Stationary distribution corresponds to M

⇢ Temporary pattern matches entropy rate

From Analysis to

Synthesis

27

⇢ Complexity map is just 2-dimensional: many

ways to synthesize any point on map

⇢ Most simple (“Occam’s razor”):
⇢ Spatial distribution: empirical traffic matrix M

(or synthetic distribution, e.g. Zipf)

⇢ Temporal distribution: repeat with probability p

(can be computed analytically from data)

⇢ Resulting Markov process generates

corresponding disk on complexity map
⇢ Stationary distribution corresponds to M

⇢ Temporary pattern matches entropy rate

From Analysis to

Synthesis

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

Further Reading

On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston,
Massachusetts, USA, June 2020.

Analyzing the Communication Clusters in Datacenters
Klaus-Tycho Foerster, Thibault Marette, Stefan Neumann, Claudia
Plant, Ylli Sadikaj, Stefan Schmid, and Yllka Velaj.
The Web Conference (WWW), Austin, Texas, USA, April 2023.

Network Traffic Characteristics of Machine Learning Frameworks Under
the Microscope
Johannes Zerwas, Kaan Aykurt, Stefan Schmid, and Andreas Blenk. 17th
International Conference on Network and Service Management (CNSM),
Izmir, Turkey, October 2021.

Website: trace-collection.net

28

https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/www23.pdf
https://schmiste.github.io/cnsm21.pdf

The Natural Question:

Given This Structure,
What Can Be Achieved?
Metrics and Algorithms?

Also depends on entropy of the demand!

Insight:

Connection to
Datastructures

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost

30

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

30

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Similar benefits?

30

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than

an analogy!

Similar benefits?

30

Insight:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

First result:

Demand-aware networks

of asymptotically

optimal route lengths.

30

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

Reality more complicated

6 hops 1 hop

vs

68
31

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

Reality more complicated

6 hops 1 hop

vs

bandwidth

tax!

69
31

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality more complicated

6 hops 1 hop

vs

bandwidth

tax!

70
31

⇀ Self-adjusting networks may be really useful to serve large

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality more complicated

vs

6 hops 1 hop

bandwidth

tax!

latency

tax!

71
31

Diverse patterns:

⇀ Shuffling/Hadoop:

all-to-all

⇀ All-reduce/ML: ring or

tree traffic patterns
⇀ Elephant flows

⇀ Query traffic: skewed

⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

⇀ ML is bandwidth hungry,

small flows are latency-

sensitive

Indeed, it is more complicated than that…

Challenge: Traffic Diversity

Shuffling

All-to-All

ML

Large flows

Delay
sensitive

Telemetry
/ control

72
32

Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

73
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

74
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius
(SIGCOMM‘20),
Mars
(SIGMETRICS‘23)

e.g., Helios
(SIGCOMM‘10),
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

75
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

76
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

77
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

78
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

79
33

Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach

is best?

As always in CS:

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

80
33

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology 81
34

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

?

82
34

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

Bad idea! Latency tax.

?

83
34

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

?

84
34

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

Bad idea! Bandwidth tax.

?

85
34

Examples:

Match or Mismatch?

Shuffling ML

Delay
sensitive

Telemetry
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Topology

Serving elephant flows on static?

Bad idea! Bandwidth tax.
86

34

Optimal Solution:

Shuffling ML

Delay
sensitive

Telemetry
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

We have a first approach:

Cerberus* serves traffic on the “best topology”! (Optimality open)

* Cerberus: The Power of Choices in Datacenter Topology Design. Griner et al. ACM SIGMETRICS, 2022.

Flow Size Matters

88

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

35

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

89

On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

35

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

90
35

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

91
35

⇢ Observation 1: Different apps have different flow size distributions.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize.

Flow Size Matters

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s

Flow transmission time (40Gbps)

92
35

Cerberus

1 2 3 4 5 6 7 8

Optical Switches

93
36

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

94
36

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: Small flows go via static switches…

95
36

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … medium flows via rotor switches…

96
36

Cerberus

1 2 3 4 5 6 7 8

Ks
static

switches

Kr
rotor

switches

Kd
demand-aware

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 97
36

Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More Use cases for self-driving networks

37

99

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

38

100

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

38

101

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

38

102

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

38

103

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

38

104

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

38

105

Challenge: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

38

Dependable Networks with

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

Dependable Networks with

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

On request or
regularly.

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

Dependable Networks with

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Interpretation

Many alternatives:
automata theory,
binary decision
diagrams (BDDs),
games (e.g.,

Stackelberg, Petri
nets), SMTs, ILPs …

What if?!

39

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

Even more automation:

Synthesis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Synthesis!

Where configuration
not compliant?

What if?!

39

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

Even more automation:

Synthesis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Synthesis!

Where configuration
not compliant?

All will be fine!

39

⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS

(Jensen et al. CoNEXT’19)

Even more automation:

Synthesis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Synthesis!

Where configuration
not compliant?

All will be fine!

Literature: P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. Jensen et al. ACM CoNEXT, 2018.

P-Rex / AalWiNes Tool

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7_Q0

40

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0

⇢ Formal synthesis slower than verification

⇢ An opportunity for using ML!

⇢ Ideally ML+FM: guarantees from formal

methods, performance from ML

⇢ For example: synthesize with ML then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

AI FM

Efficient Synthesis?

ML+FM!

41

⇢ When and how to keep the human in the loop?

⇢ Critical: can system realize when help is needed?

⇢ But AI tools (e.g. LLM) may also influence the human: can the

operator become too confident with such tools?

⇢ Challenges to be discussed!

On a related note:

Human in the Loop?

42

Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More use cases for self-driving networks

43

Addanki et al. (NSDI 2024)

Smart Switches

44

⇢ What if switches become smart?

Addanki et al. (NSDI 2024)

Smart Switches

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

full!

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

full!

44

Scenario 1

⇢ What if switches become smart? Assume: shared memory size 3.

full!

⇢ Suboptimal: green packets could be transmitted in parallel,

but there is no more space! (Output rate 1 vs 2!)

44

yikes!

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

45

Idea: keep space

for green!

Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

⇢ Suboptimal: drop to leave space but no space needed!

45

yikes!

⇢ Traffic at switch can be predicted fairly well

⇢ AI/ML could significantly improve buffer management…

⇢ … and hence admission control and throughput!

Further reading:

Addanki et al. (NSDI 2024)

Credence

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2024.

46

https://schmiste.github.io/nsdi24credence.pdf

⇢ Opportunity: structure in demand and

reconfigurable networks

⇢ Enables self-driving networks

⇢ Just the tip of the iceberg!
⇀ Optimal collaboration of ML, FM, and “human

in the loop”?

⇀ Impact of self-driving layer on other layers?

⇀ Scalable control plane?

⇀ Application-specific self-adjusting networks,

e.g., for LLMs?

Conclusion

Online Video Course

135
38

YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

Upcoming CACM Article

138

References (1)
On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)
Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri
Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona,
Spain, December 2020.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules
Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE)
and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.

Model-Based Insights on the Performance, Fairness, and Stability of BBR (IRTF Applied Networking Research
Prize)
Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid.
ACM Internet Measurement Conference (IMC), Nice, France, October 2022.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA,
April 2024.

https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/ccr18san.pdf
https://schmiste.github.io/cacm25.pdf
https://schmiste.github.io/sigmetrics22cerberus.pdf
https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/imc22.pdf
https://schmiste.github.io/nsdi24credence.pdf

References (2)

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

SyPer: Synthesis of Perfectly Resilient Local Fast Rerouting Rules for Highly Dependable Networks
Csaba Györgyi, Kim G. Larsen, Stefan Schmid, and Jiri Srba.
IEEE Conference on Computer Communications (INFOCOM), Vancouver, Canada, May 2024.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2022.

A Survey of Reconfigurable Optical Networks
Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
Optical Switching and Networking (OSN), Elsevier, 2021.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

.

https://schmiste.github.io/sigmetrics23mars.pdf
https://schmiste.github.io/sigmetrics23duo.pdf
https://schmiste.github.io/infocom24syper.pdf
https://schmiste.github.io/ton22dan.pdf
https://schmiste.github.io/osn21.pdf
https://schmiste.github.io/ton15splay.pdf

Questions?

Slides

available

here:

