
Algorithm-Data Driven Optimization of
Adaptive Communication Networks

Mu He, Patrick Kalmbach,
Andreas Blenk, Wolfgang Kellerer
Technical University of Munich, Germany

Stefan Schmid
Aalborg University, Denmark

ABSTRACT
This paper is motivated by the emerging vision of an au-
tomated and data-driven optimization of communication
networks, making it possible to fully exploit the flexibilities
offered by modern network technologies and heralding an
era of fast and self-adjusting networks. We build upon our
recent study of machine-learning approaches to (statically)
optimize resource allocations based on the data produced
by network algorithms in the past. We take our study a
crucial step further by considering dynamic scenarios: sce-
narios where communication patterns can change over time.
In particular, we investigate network algorithms which learn
from the traffic distribution (the feature vector), in order to
predict global network allocations (a multi-label problem).

As a case study, we consider a well-studied k-median prob-
lem arising in Software-Defined Networks, and aim to imi-
tate and speedup existing heuristics as well as to predict good
initial solutions for local search algorithms. We compare dif-
ferent machine learning algorithms by simulation and find
that neural network can provide the best abstraction, saving
up to two-thirds of the algorithm runtime.

1. INTRODUCTION
Communication networks are in constant flux: traf-

fic patterns, resource demands, applications, and user
locations change continuously. Such dynamic demands
stand in stark contrast to the usually static resource
supply in traditional communication networks, forcing
operators to either over-provision their network or risk
an unacceptable performance under peak demands.

The advent of Software-Defined Networks (SDNs) and
Network Virtualization (NV) introduces great flexibili-
ties: such technologies, in principle, enable a more adap-
tive, automated, and programmatic resource allocation
scheme, according to the current demands. For exam-
ple, a logically centralized SDN controller may lever-
age collected traffic statistics to adjust, reactively and
in a fine-grained manner, traffic engineering decisions
or even bandwidth reservations. Moreover, by decou-
pling applications from the constraints of the underlying

978-1-5090-6501-1/17/$31.00 c© 2017 IEEE

physical infrastructure, virtualization enables a flexible
allocation of resources and network functions.

While increasingly flexible technologies to realize and
manage adaptive communication networks are emerg-
ing, today, only little is known about how to algorith-
mically exploit them. In fact, most communication net-
works are either not adapted to the workload at all,
or reconfigured infrequently and manually, e.g., when
long-term shifts in the traffic matrix are observed. In
other words, most existing communication networks are
to a substantial extent oblivious to the current network
demands.

Data-driven communication networks promise to over-
come these limitations. According to this vision, com-
munication networks leverage existing network data to
self-optimize, in an automated fashion and at runtime,
towards the demands. Thus, data-driven communica-
tion networks have the potential to fully exploit the
flexibilities offered by recent networking technologies,
and herald a new networking era of truly “intelligent”
networks.

This paper is motivated by the vision of data-driven
communication networks, and in particular by the pos-
sibility to learn from past executions of network algo-
rithms. We observe that network algorithms such as
traffic engineering algorithms, admission control algo-
rithms, etc. naturally generate a wealth of data which is
potentially very useful for future executions of the algo-
rithms but which remained largely untapped so far. In-
deed, one of the key challenges of data-driven communi-
cation networks is to obtain useful data for implement-
ing the self-adjusting resource allocation and commu-
nication algorithms: the input-output pairs computed
by algorithms in the past are likely to be one accessible
information source.

We have recently conducted a first study of how to ex-
tend network algorithms by machine learning [1], show-
ing the potential of such an approach for optimizing
static allocations. Our results indicate that the “big
data” produced by an algorithm during past executions
can be leveraged effectively to improve and speed up
future, similar solutions, by reducing the algorithm’s

1

Figure 1: Traffic patterns change over time.
The heuristic algorithm module first generates
a number of solutions, which will be used to
train the machine learning module. For differ-
ent available machine learning algorithms, the
one which best fits the current setup will be
selected. After training, the machine learning
module processes new traffic patterns and cre-
ates initial solutions, which could be further im-
proved by the heuristic algorithm module.

search space.
With this paper, we take our endeavour a critical step

further: we study the feasibility to learn from dynamic
algorithms, subject to changing traffic, a relevant exten-
sion in practice [2, 3]. In machine learning terminology,
this means that we investigate whether it is possible
to learn from feature vectors describing traffic distribu-
tions over time. Besides moving from static to dynamic
scenarios, we, for the first time, study the possibility of
making predictions of global, network-wide allocations;
prior work was limited to optimizing resources on a per
node-by-node basis [1]. In other words, we consider a
multi-label learning problem.

As a case study, we consider an archetypical k-median
problem, which we henceforth regard as a Weighted
Controller Placement Problem (WCPP): the k-median
resp. controller locations need to be adapted over time
to account for changing and different traffic distribu-
tions.

In summary, this paper initiates the study of data-
driven network optimizations in dynamic networks (based
on algorithm data) subject to time-varying traffic pat-
terns and demands. In particular, we demonstrate that
machine learning can indeed be used to learn from past
solutions, in a case study revolving around k-median
resp. controller placement. Our approach is to phrase
the problem as a multi-label classification problem, where
the input is traffic intensity at each node in the sub-
strate, and the output is a set of node labels repre-
senting the controller locations. We consider different
real-world networks with varying traffic distributions.
The predicted placement can be used for different pur-
poses: we can use the prediction either (1) directly as
a solution, or (2) as an initial solution for a heuristic
algorithm like local search. Our proposed system archi-

tecture is illustrated in Fig. 1.

2. A CASE STUDY
We consider a k-median problem in SDN, namely the

weighted controller placement problem (WCPP). This
problem has been studied intensively by the networking
community in the past. We first introduce the repre-
sentation of both network topology and placement re-
quest, i.e. traffic distribution. Then the mathematical
formulation of WCPP is outlined, followed by the in-
troduction of greedy and heuristic algorithm.
WCPP: Problem Formulation. The underlying net-
work topology is an undirected graph G := (N , E),
where N describes the set of nodes in the topology and
E describes the set of edges that inter-connect the nodes,
i.e. E ⊆ N × N . C denotes the set of all possible con-
troller locations. We assume that each node can serve
either one or no controller, therefore set C and set N
are identical. The total number of controllers that need
to be placed is k. The forwarding shortest-path latency
between two nodes n1 and n2 is represented as a map-
ping L(n1, n2)→ R+, n1, n2 ∈ N 1.

Traffic intensities of all switches constitute a traf-
fic distribution/pattern, which is defined as a mapping
R(n) → R+, n ∈ N . Because of the dynamics in the
network, e.g. changes of user locations, traffic distri-
bution alters over time. Given a distribution R(·), the
controllers should be placed in order to minimize the
weighted average control latency of all switches. We
formulate WCPP as an integer programming problem:

min
∑

n∈N ,c∈C
R(n) · L(n, c) · an,c (1)

subject to: ∑
c∈C

pc = k (2a)∑
c∈C

an,c = 1,∀n ∈ N (2b)∑
n∈N

an,c ≤ |N | · pc,∀c ∈ C (2c)

pc, an,c ∈ {0, 1},∀c ∈ C, n ∈ N (2d)

Binary variable pc indicates whether a controller is
placed on node c ∈ C and binary variable an,c indicates
whether node n ∈ N is assigned to controller which lo-
cates on node c ∈ C. Constraint (2a) forces k controllers
to be placed. Constraint (2b) assigns a switch to only
one controller and (2c) ensures that a switch is assigned
to a controller, only if the controller has been placed on
a certain node.
Greedy and Heuristic Algorithm. Existing solvers
can solve the WCPP optimally, however, they will suffer

1In this paper, we use R+ to denote all positive real numbers
and zero, i.e. R+ := [0,+∞).

2

Algorithm 1 Objective function Calculation F()

Require: Latencies between nodes L, traffic load R,
set of switches N , controller set C

1: Get switch to controller mapping A
2: obj← 0
3: for n ∈ N do
4: obj← obj +R(n) · L(n,A(n))
5: end for
6: obj← obj/|N |
7: return obj

Algorithm 2 Greedy Algorithm

Require: Number of controllers k
1: Controller Set C ← ∅
2: while |C| < k do
3: n← argminn(F(C ∪ {n}))
4: C ← C ∪ {n}
5: end while
6: return C

from exponentially growing runtime in the worst case.
Greedy algorithm provides a simple alternative to tackle
the optimization problem. Alg. 2 incrementally puts
controllers into a set until the number k is reached.
Each added controller always gives rise to a minimized
objective function. Alg. 1 describes the process of cal-
culating the objective function, i.e. weighted average
control latency in (1), which serves as a subroutine for
other algorithms.

The local search algorithm has been proved to be a
promising heuristic for k-median [4], which outperforms
the greedy algorithm. We introduce Alg. 3 based on
local search as a heuristic for WCPP. During initial-
ization, it randomly generates a controller set and cal-
culates the corresponding objective. Line 5 to Line 18
is repeated until no further dominant solutions can be
found. Each time we perform |C| · (|N | − |C|) local
searches, from which the best one will be compared with
the incumbent. A local search move represents swap-
ping a node in set C with a node in set N \ C.

3. OUR APPROACH
We use multi-label classification to predict controller

locations. In multi-label classification, one observation
represented by the feature vector x(i) is associated with
a set Ĩ(i) ⊆ I of labels. Different observations can be
associated with different sets of labels. See Tbl. 1 for an
interpretation of the symbols used in this paper. Multi-
label classification differs from multi-class classification,
as in multi-class classification, exactly one label l(i) ∈ I
is associated with one observation x(i). Multi-label clas-
sification is used, for example, in computer vision for
sentiment analysis, where different images are associ-
ated with possibly different sentiments [5].

Algorithm 3 Local Search Algorithm

Require: Number of controllers k
1: Random generate controller set C, s.t. |C| = k
2: Non-controller node set C ← N \ C
3: obj∗ ← F(C), stopflag← False
4: repeat
5: obj∗∗ ←∞, C∗∗ ← ∅
6: for c ∈ C do
7: for c ∈ C do
8: C ← (C − {c}) ∪ {c}
9: if F(C) < obj∗∗ then

10: obj∗∗ ← F(C), C∗∗ ← C
11: end if
12: end for
13: end for
14: if obj∗ > obj∗∗ then
15: C ← C∗∗
16: else
17: stopflag← True
18: end if
19: until stopflag
20: return C

Table 1: Mathematical Notations

Symbol Meaning

x(i) x(i) ∈ Rn, ith feature vector, in our work
n =| N |.

I I := {l1, l2, . . . , l|N |}, set of possible la-
bels.

Ĩ Ĩ ⊆ I, one specific labeling.

Ĩ(i) Ĩ(i) ⊆ I, set of labels associated with vec-
tor x(i).

z(i) z(i) ∈ {0, 1}|I|, binary indicator vector as-

sociated with x(i). Component z
(i)
j is one,

if and only if label lj ∈ Ĩ(i). Vector z(i)

represents the ”true” placement.
h h : Rn → {0, 1}|I|, hypothesis of a classi-

fier.
y(i) y(i) ∈ {0, 1}|I|, prediction of a classifier,

i.e., y(i) = h
(
x(i)
)
.

WCPP as Multi-label classification task. We use
each traffic distributionR(i) as a feature vector x(i), i.e.,

x
(i)
j = R(i) (nj). Similarly, we use the substrate node

identifiers as labels; the ith label li ∈ I identifies the
ith substrate node ni ∈ N . The controller placement
for the traffic distribution R(i) is represented by the
labeling Ĩ(i), identifying the substrate nodes on which
controllers are placed. Labels for different traffic dis-
tributions might change, yet classifiers generally do not
have the capabilities to output varying sets. There-
fore, we represent the labeling by a binary vector z(i),

3

where the jth-component z
(i)
j is set to one, if and only

if lj ∈ Ĩ(i), i.e., a controller is placed on node nj . Sim-
ilarly, the prediction of a classifier is represented by a
binary vector y(i), which is calculated based on x(i),
i.e., y(i) = h

(
x(i)
)
, where h (·) represents a classifier.

Multi-label Classifiers. Algorithms for multi-label
classification can be grouped into two categories: prob-
lem transformation methods and algorithm adaptation
methods [6, 7]. Problem transformation methods con-
vert multi-label classification tasks into other well-studied
learning tasks such as multi-class classification. Algo-
rithm adaptation methods are directly applicable to
multi-label classification tasks [7]. We consider three
different classifiers: decision tree (DT) CART, neural
network (NN) and logistic regression (LR).
Decision Tree. DT can be used for multi-label classi-
fication by employing the binary relevance approach [7].
DT in conjunction with binary relevance belong to the
class of problem transformation methods. One tree for
each possible label l ∈ I is built and trained indepen-
dently from all others. A prediction y is then a binary
vector, where the ith component is one if the respec-
tive tree detects the corresponding label. In theory, it
is possible that more than k components in y are set to
one. In this case, we randomly select k of the entries.
Logistic Regression. Similar to DT, LR predicts
whether a controller is placed on each node. Contrary
to DT, LR outputs for each node a value between zero
and one, which can be interpreted as the probability of a
controller to be located on that node. We then take the
k labels with highest probability as controller locations.
To achieve this, the weighted sum of all input values is
passed through a sigmoid function. For each label, a
distinct set of weights for the weighted sum is used.
The weights are jointly updated using the gradient of
a loss function, which is in our case the Bernoulli cross
entropy loss. Since the weights are jointly updated, this
approach does not amount to binary relevance, and is
able to exploit correlations between single labels in la-
belings [7].
Neural Network. NN and LR are similar in perform-
ing multi-label classification, and they both belong to
the class of algorithm adaptation methods. NN can be
viewed as LR, where the input undergoes a sequence of
nonlinear transformations, as the input is propagated
through the network. The output of the last hidden
layer is then used as input to LR. NN is thus also able
to exploit label correlations, and additionally nonlinear
dependencies in the inputs [7].

4. EVALUATION
We evaluate all algorithms with Python on Ubuntu

Server 14.04.1 LTS with 16 CPUs and 32 GB mem-
ory. Trainings are performed only with CPU and not
with GPU support. We assess 6 topologies with dif-

Table 2: settings for machine learning alg.

Model Parameter Values

DT All Default Parameters

NN Loss function Bernoulli Cross Entropy
hidden layers 1
hidden layer size | N |
output layer size | N |
Activation fct.
(hidden layer)

Sigmoid

Activation fct.
(output layer)

Sigmoid

Optimizer ADAM [8] with step rate of
0.01 and regularization fac-
tor of 10−5

LR Loss function Bernoulli Cross Entropy

ferent sizes from Topology Zoo [9]: AttMpls (25), Bics
(33), Cernet (40), Uninett2010 (74), Deltacom (99) and
Cogentco (180). For each topology, we test different
ks ranging from 5 to 20, with an interval of 5. The
traffic load on each node follows a uniform distribution
U(1, 100). NN-LS represents the local search algorithm
(Alg. 3) with neural network prediction and GDY de-
notes the greedy algorithm (Alg. 2).

4.1 Algorithms Comparison
We first evaluate the performance of three machine

learning algorithms, with local search as a baseline.
Tbl. 2 gives a summary of the settings for different ma-
chine learning algorithms. Local search generates data
samples by solving 7 000 problem instances for each sub-
strate. 6 500 samples are used for training the algo-
rithms and 500 samples are used for evaluation.

Parameter tuning for the neural network was per-
formed on a separate dataset, with 6 500 samples for
training and 500 samples for validation. Samples were
obtained on the Bics substrate with k fixed to 3. We
use hamming loss between ground truth and classifier
prediction to measure predictive accuracy [7]:

dH(z,y) :=
1

N

|I|∑
j=1

xor (zj ,yi) , (3)

where N is the number of samples. Hamming loss de-
scribes how many controllers are inaccurately predicted.

How much data is needed? Fig. 2 shows the ham-
ming loss on the test set, as well as the weighted aver-
age control latency as a function of the training set size
for the Bics substrate. For the weighted average con-
trol latency in Fig. 2b, the means with 95 % confidence
intervals are shown. Fig. 2 clearly shows that the ham-
ming loss and the objective function both decrease, as
the number of training samples increases. In contrast
to the hamming loss, the decrease of the objective func-

4

0.1 0.5 2.5 4.5 6.5

Number of Samples [×1000]

0.5

1.5

2.5

3.5
H

a
m

m
in

g
L

o
ss

DT

LR

NN

(a) Prediction accuracy

0.1 0.5 2.5 4.5 6.5

Number of Samples [×1000]

66

68

70

W
ei

g
h
te

d
C

tr
l.

L
a
t. DT

LR

NN

(b) Objective function

Figure 2: The prediction evaluation with differ-
ent training set sizes for topology Bics (k = 5).

tion levels off starting at a training set size of 2 500.
Interestingly, LR outperforms NN in terms of the ham-
ming loss in Fig. 2a, but NN outperforms LR in terms
of the objective function, visible in Fig. 2b. Also, the
difference in the prediction accuracy in Fig. 2a between
DT and LR does not translate to the objective function
in Fig. 2b. DT and LR yield nearly the same objec-
tive starting from 4 500 samples. These observations
indicate that hamming loss cannot fully represent our
optimization objective.

Impact of Topologies. Fig. 3 provides the perfor-
mance comparison of the three machine learning algo-
rithms for Bics and Cogentco and all ks, where LS serves
as a baseline. Intuitively, larger k leads to smaller ob-
jective for all setups. For Bics as well as Cogentco, NN
and LS give competitive results. DT is outperformed
by NN and LS on Bics, however, DT outperforms NN
and LS on Cogentco in Fig. 3b. Especially the vari-
ability of the weighted average control latency obtained
with the solutions of DT on Cogentco is small, in fact
almost as small as the variability of LS. The respective
differences of DT compared to LS and NN become more
pronounced as k increases.

As a conclusion, an exact prediction of controller place-
ment is still hard to achieve. Besides, an algorithm that
wins in all different scenarios does not exist. Due to
space constraints, we report only on the performance of
NN in the remainder of this section. We decide for NN,
as it shows comparable performance to DT and LS, but
outperforms DT in terms of the hamming loss and is
slightly better than LS in terms of objective.

4.2 Enhancing Heuristic Algorithms
We now evaluate the benefit of heuristic algorithms

from machine learning on the example of local search.
Since the performance of LS depends on the initial solu-
tion, we run LS for 10 times, each with a unique random
initial solution, take the one that performs best. The
straw-man case (B-LS) should provide us with insights
on the problem complexity of our use case: whether we
can already achieve, with a small initial solution sub-
sampling, a significant benefit.

5 10 15 20

Number of controllers k

0

25

50

75

100

W
ei

g
h
te

d
C

tr
l.

L
a
t. LS

DT

LR

NN

(a) Bics

5 10 15 20

Number of controllers k

0

50

100

150

200

W
ei

g
h
te

d
C

tr
l.

L
a
t. LS

DT

LR

NN

(b) Cogentco

Figure 3: The comparison of different machine
learning algorithms for different topologies.

1.0 1.2 1.4

Weighted Ctrl. Lat. Ratio

0.00

0.25

0.50

0.75

1.00

C
D

F

GDY

NN

B-LS

NN-LS

(a) Uninett2010, k = 5

1.00 1.25 1.50 1.75

Weighted Ctrl. Lat. Ratio

0.00

0.25

0.50

0.75

1.00

C
D

F

GDY

NN

B-LS

NN-LS

(b) Deltacom, k = 10

Figure 4: The comparison of different algorithms
for two particular setups.

Fig. 4 compares two particular problem setups. We
quantify the performance gain of different algorithms
in comparison to LS, i.e. objalg/objLS for each sample.
The cumulative distributive function is then plotted of
all 500 samples in the test set. In general, the perfor-
mance of NN-LS is on a par with that of LS, indicating
that neural network provides good initial solutions for
local search. For B-LS, we conclude that the objective
cannot be significantly improved with different random
initial solutions. Notably different setups provide dis-
tinct comparisons for NN and GDY. NN is better than
GDY in Fig. 4a, whereas beaten by GDY in Fig. 4b.

In Fig. 5, we evaluate the performance of LS, B-LS
and NN-LS in terms of the objective and the runtime.
We variate k for Uninett2010. Interestingly, B-LS does
not necessarily provide a solution with dominant ob-
jective. The runtime of LS depends on the number of
searches. One search indicates one move towards an im-
proved objective, i.e. Line 5 to Line 18 in Alg. 3. The
highlight is in Fig. 5b, where NN-LS can save as much
as half the number of searches compared with LS for
most samples. Provided good initial random solution
as in B-LS, we could expect less runtime. Neverthe-
less, the runtime saving of NN-LS is still dominant. We
conclude that for the use case of WCPP, initial solution
subsampling provides mostly non-dominant solutions in
terms of the objective and has no advantage in runtime
saving.

Lastly, we compare the performance of all evaluated

5

5 10 15 20

Number of Controllers k

0

10

20

30
W

ei
g
h
te

d
C

tr
l.

L
a
t. LS

B-LS

NN-LS

(a) Objective funtion

5 10 15 20

Number of Controllers k

0

10

20

N
u
m

b
er

o
f

S
ea

rc
h
es LS

B-LS

NN-LS

(b) Runtime

Figure 5: The comparison of two advanced algo-
rithms, i.e. B-LS and NN-LS, in terms of objec-
tive and runtime for topology Uninett2010.

AttMpls Bics Cernet Uninett. Delta. Cogentco
0.0

0.5

1.0

1.5

2.0

N
u

m
b

er
o
f

S
ea

rc
h

es k = 5

k = 10

k = 20

Figure 6: The comparison of all evaluated
topologies in terms of runtime saving.

AttMpls Bics Cernet Uninett. Delta. Cogentco
0

50

100

W
ei

g
h
te

d
C

tr
l.

L
a
t.

LS

GDY

NN-LS

Figure 7: The comparison of all evaluated
topologies in terms of objective and k = 10.

topologies. We observe in Fig. 7 that NN-LS provides
the same achieved objective as LS, for all topologies
with different sizes and k = 10. Fig. 6 gives a normal-
ized comparison of runtime saving. For each sample, the
number of searches in NN-LS is divided by that in LS.
For all topologies NN-LS takes only one third the num-
ber of searches for most samples, which is independent
of k. In conclusion, for a heuristic algorithm that starts
with an initial feasible solution, applying machine learn-
ing prediction can result in solutions of decent quality
and reduce runtime significantly.

5. CONCLUSION AND FUTURE WORK
We performed a case study of data-driven commu-

nication network optimization. Our approach shows
promising first results: neural network prediction as ini-
tial solution for heuristic could save considerable amount
of algorithm runtime. It also opens several interesting

directions for future research. For example, it would be
interesting to extend our framework to account for addi-
tional features, such as network connectivity. Moreover,
it will be interesting to consider additional use cases for
dynamic and algorithmic data-driven optimizations.
Acknowledgments. This work has been performed
in part in the framework of the CELTIC EUREKA
project SENDATE-PLANETS (Project ID C2015/3-1)
and is partly funded by the German BMBF (Project
ID 16KIS0473), and in part in the framework of the
EU project FlexNets funded by the European Research
Council under the European Unions Horizon 2020 re-
search and innovation program (grant agreement No
647158 - FlexNets). Stefan Schmid was supported by
Aalborg University’s PreLytics project. The authors
alone are responsible for the content of the paper.

6. REFERENCES
[1] A. Blenk, P. Kalmbach, S. Schmid, and

W. Kellerer, “o’zapft is : Tap your network
algorithms big data !,” in Proc. of ACM
SIGCOMM Big-DAMA, ACM, 2017.

[2] T. Benson, A. Akella, and D. A. Maltz, “Network
traffic characteristics of data centers in the wild,”
in Proc. of the 10th ACM SIGCOMM conf. on
Internet measurement, pp. 267–280, ACM, 2010.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang,
“Understanding data center traffic characteristics,”
ACM SIGCOMM CCR, vol. 40, no. 1, pp. 92–99,
2010.

[4] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit, “Local search
heuristics for k-median and facility location
problems,” SIAM Journal on computing, vol. 33,
no. 3, pp. 544–562, 2004.

[5] Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi,
and Z. Wang, “Joint multi-label multi-instance
learning for image classification,” in Computer
Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pp. 1–8, IEEE, 2008.

[6] A. de Carvalho and A. Freitas, “A tutorial on
multi-label classification techniques,” Foundations
of Computational Intelligence Volume 5,
pp. 177–195, 2009.

[7] M.-L. Zhang and Z.-H. Zhou, “A review on
multi-label learning algorithms,” IEEE transactions
on knowledge and data engineering, vol. 26, no. 8,
pp. 1819–1837, 2014.

[8] D. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[9] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden,
and M. Roughan, “The internet topology zoo,”
IEEE JSAC, vol. 29, no. 9, pp. 1765–1775, 2011.

6

