Local Fast Rerouting with Low Congestion: A Randomized Approach

Gregor Bankhamer ¹ Robert Elsässer ¹ Stefan Schmid ²

¹Department of Computer Sciences University of Salzburg Austria

²Faculty of Computer Science University of Vienna Austria

Motivation - Local Failover Routing

- Mission-critical networks require fast reaction to link failures
- Fast rerouting mechanisms executing in the data plane
- First line of defense
 - Routes refined later on as part of the control plane

Challenges

- Algorithmically difficult
- Forwarding rules depend on *local* information only
- Sometimes low congestion impossible to achieve for deterministic algorithms

Our Contribution

- Can we do better with randomized algorithms?
- Consider resulting load and not only connectivity

Local Failover Routing - Description

Routing Problem

- Network of Clients/Routers. Deliver packets from source to destination
- **Desired:** Low amount of required hops and congestion
- 1) Pre-computed forwarding rules (data plane) depending on *local* information
 2) Fast reaction in case of failures 3) Improve routes via control plane

For a node v with neighborhood $\Gamma(v)$ pre-compute function

$$f_v: (\Gamma(v) \times \mathcal{P}) \to \Gamma(v)$$
 Next hop

Set of unreachable neighbors Packet header information (e.g. source address)

Related Work

Existing Local Failover Protocols

- Multiple deterministic approaches
- Randomized protocol [Chiesa et al., ICALP 2016]
 - k-connected networks, arborescence cover, packet-based communication
- Existing results either do not account for load or are deterministic
- Focus on resulting congestion

Negative Result

 Congestion lower bound for deterministic local failover protocols [Borokhovich and Schmid, OPODIS 2013]

Model and Setting

Environment

- Complete undirected Graph G = (V, E) with |V| = n.
 - May be generalized with arborescences or embedding
 - Some data center networks have high degree and low diameter

Communication Model

- Flow-based communication
- Consecutive stream of packets sent by source $s \in V$ to destination $d \in V$.

Challenging Communication Pattern - All-to-one Routing

- Traffic going to some destination node d
- Each node $V \setminus \{d\}$ sends out one flow targeted at d

Model and Setting ctd.

Performance Measures

- Required number of hops for the flows to reach d
- Maximum Load: Number of flows crossing any edge and node $v \in V \setminus \{d\}$
 - Congestion threatens dependability
 - Major concern of any traffic engineering algorithm

Powerful Adversary

- Knows employed failover strategy
- Knows destination d
- Allowed to fail a high amount of edges up to $\Omega(n)$.

Deterministic Case Lower Bound

Theorem (Borokhovich and Schmid, OPODIS 2013)

Consider any local destination-based failover scheme in a clique graph. There exists a set of φ (edge) failures ($0 < \varphi < n$) that results in a link load of at least φ .

Different Rulesets

- ▶ Borokhovich and Schmid also give a √φ lower bound in case the failover ruleset includes the source address.
- Can be extended to also account for hop-count
- Adversary can create a load of $\Omega(\sqrt{n})$ by destroying $\mathcal{O}(n)$ links.

Our Solution - Randomization

Goal: Break this bound and reduce the congestion significantly

Randomization

- Intuition: Adversary doesn't know which links are used by the protocol
- ▶ Protocol will achieve results with high probability (w.h.p.; at least prob. $1 n^{-1}$)

Adapted (oblivious) Adversary

- May still know the protocol and all-to-one routing target d
- Cannot know the nodes generated random bits or measure the network load

Challenges

- 1. Keeping the routing table (and the ruleset) small and simple
- 2. Dealing with cycles in the packets routing paths
- 3. Avoiding the disruption of flows (TCP re-ordering)

Our Results - Overview

	3-Permutations	Intervals	Shared-Permutations
Rule Set	Destination $+$ Hop	Destination	Destination + Hop 1
Resilience	$\Theta(n)$	$\Theta(n/\log n)$	$\Theta(n)$
Congestion	$\mathcal{O}(\log^2 n \cdot \log \log n)$	$\mathcal{O}(\log n \cdot \log \log n)$	$\mathcal{O}(\sqrt{\log n})$
Hops	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Bits	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^3 n)$
Shared Data	×	×	\checkmark

- ► All above results assume that up to O(n) or O(n/log n) edges are failed by the adversary
- Deterministic protocols would allow the adversary to induce a load of $\Omega(\sqrt{n/\log n})$

¹hop value may be set to an arbitrary value of $\mathcal{O}(\log \log n)$ bits

Baseline Idea - Permutation Based Routing

- Failover function f_v grows exponential with $\Gamma(v)$
- Equip v with permutation π_v of neighbors $\Gamma(v)$

Basic Destination-Based Protocol (TODO reference where this idea comes from)

Input: A packet with destination *d*

- 1: if (v, d) is intact then forward p to d and return
- 2: else forward p over edge with smallest i s.t. $(v, \pi_v(i))$ is not failed

Permutation Based Routing - Observation

Randomized approach: Select π_v uniformly at random at each node v

Observation 1: Forwarding Loops

Observation 2: Failing "inner edges"

- ▶ Intuition: Failing edges not incident to *d* is not beneficial to the adversary.
- Permutations are unknown to the adversary
 - If (v, v') is failed: $P[\pi_v(1) = v'] = 1/(n-1)$
- All but $\mathcal{O}(\log n)$ off all nodes will forward via (v, d) or $(v, \pi_v(1))$ w.h.p.

3-Permutations Protocol

- Extend the simple permutation-based approach
- Idea: If at most α ⋅ n (constant α < 1) edges are failed, all packets not trapped in a cycle will reach the destination within at most C₁ log n hops w.h.p.

- Swap permutations every $C_1 \log n$ hops to break out of cycles
- Caveat: Packet travels in the cycle for O(log n) hops and accumulates load on nodes lying on the cycle

3-Permutations Protocol (POV of node v)

Input: A packet with destination d and hop count h

- 1: if (v, d) is intact then forward p to d and return
- 2: else $i \leftarrow \arg \max_{j \in \{1,2,3\}} \{h \ge (j-1)C_1 \log n\}$ and send p to first reachable node in $\pi_v^{(i)}$
- 3: increase $h \neq = 1$
- Why only 3 permutations? No packet will get stuck in 3 cycles before hitting d w.h.p.

Theorem (3-Permutations (shortened))

Assume that the adversary fails at most $\alpha \cdot n$ edges. Then, if all nodes perform all-to-one routing to any destination d and follow the 3-Permutations protocol

- 1. all but $\mathcal{O}(\log^2 n)$ nodes are passed by $\mathcal{O}(\log n \cdot \log \log n)$ flows, and
- 2. the remaining nodes receive $O(\log^2 n \cdot \log \log n)$ load, and
- 3. no packet travels more than $\mathcal{O}(\log n)$ hops w.h.p.

Intervals Protocol

- Again extend upon simple permutation-based approach
- Avoid even temporary cycles w.h.p.
- Only relies on destination address

Concept

- ▶ Partition the nodes V into $k = O(\log n)$ sets $R_0, ..., R_{k-1} \subseteq V$
- ► Each $|R_i| \approx n/(4 \log_{1/\alpha} n) = O(n/\log n)$ for constant $0 < \alpha < 1$.
- ▶ (Random) failover permutation π_v of $v \in R_i$ consists nodes in $R_{(i+1) \mod k}$ only
- > Perform the Basic Permutation Protocol using this set of permutations π_{v} .

Intervals Protocol - Avoiding Temporary Cycles

Assume adversary may destroy $\alpha \cdot I = O(n/\log n)$ edges per partition $(0 < \alpha < 1)$.

Packet located on a "bad" node in R_i will move to a "bad" node in R_{i+1} with probability at most α. Hence α^k < O(1/n) prob. to traverse back to source.</p>

Intervals Protocol (POV of node v)

Input: A packet with destination *d*

- 1: if (v, d) is intact then forward p to d and return
- 2: else send p to first directly reachable node in π_v

Theorem (Intervals Protocol)

Assume the adversary is allowed to fail up to $\alpha \cdot I$ many edges in every interval (constant $0 < \alpha < 1$ and $I = n/(4 \log_{1/\alpha} n)$). Then, when considering all-to-one routing to any destination d, the Intervals protocol guarantees

- 1. that at most $\mathcal{O}(\log n \cdot \log \log n)$ flows pass any node $v \in V \setminus \{d\}$, and
- 2. every packet travels at most $O(\log n)$ hops w.h.p.
- Maximum resilience for $\alpha = 1/e$.
- Tradeoff of maximum resilience and load

Shared-Permutations Protocol

- Goal: Further decrease maximum load
- Introduce additional type of permutation

Concept

• Globally shared (random) permutations π_i^G of all nodes V ($0 \le i \le C_1 \log n$)

Input: A packet with destination d and hop h1: **if** (v, d) is intact **then** forward p to d and **return** 2: **else** forward p to the successor w of v in π_h^G

- What if the edge (v, w) is failed?
- ▶ Raise hop count to $E_1 > C_1 \log n + 1$ and use different routing strategy for *p*.

• Assumption: Adversary does not know π_i^G .

Shared-Permutations - Key Concept

- Assume the adversary fails $\alpha \cdot n$ edges ($0 < \alpha < 1$) of the form (v, d).
- Neglect any failed "inner edges"

► Invariant: Any node v ∈ V \ {d} receives flow from at most 1 source per hop value.

- Fraction of nodes that host a packet with hop h is roughly α^h .
- ▶ Packet hits a fixed node $v \in V \setminus \{d\}$ with prob. $\alpha^h/n \to \mathcal{O}(\sqrt{\log n})$ hits w.h.p.

Theorem (Shared-Permutations Protocol)

Assume that the adversary is allowed to fail $\alpha \cdot n$ edges. When performing all-to-one routing to any destination d, the Shared-Permutations protocol guarantees that

- 1. every node $v \in V \setminus \{d\}$ is passed by $\mathcal{O}(\sqrt{\log n})$ flows, and
- 2. no packet travels more than $\mathcal{O}(\log n)$ hops w.h.p.

Further Remarks

Empowered Adversary

- Allow adversary to measure load
- Eventually even local permutations can be inferred
- **Solution:** Periodically regenerate random bits
- 3-Permutations and Intervals: Nodes can re-compute the failover table locally and quickly.

Reduced Amount of Failures

At most $n^{1-\delta}$ edge failures (any constant $\delta > 0$)

	3-Permutations	Intervals	Shared-Permutations
Load	$\mathcal{O}(1) \sim \mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Hops	$\mathcal{O}(1) \sim \mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

Simulation Results - Maximum Average Load

Setup

- Complete graphs of increasing size
- All-to-one routing to random destination d
- Fail $[0.5 \cdot n]$ edges of the form (v, d)

Results

- On average, no protocol induced load above log n · log log n
- Shared-Permutation load below 7 in all experiments
- 3-Permutations lower than expected

Simulation Results - Average Load Box Plot

Results

- Results of the Shared-Permutations and Intervals protocol tightly concentrated
- Observation: Not all 3-Permutations runs contain temporary cycles
- Sometimes cycles exist and induce high load
- Still within the theoretical bound of O(log² n ⋅ log log n)

Thank you very much for your attention!

	3-Permutations	Intervals	Shared-Permutations
Rule Set	Destination + Hop	Destination	Destination + Hop
Resilience	$\Theta(n)$	$\Theta(n/\log n)$	$\Theta(n)$
Congestion	$\mathcal{O}(\log^2 n \cdot \log \log n)$	$\mathcal{O}(\log n \cdot \log \log n)$	$\mathcal{O}(\sqrt{\log n})$
Hops	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Bits	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^3 n)$
Shared Data	×	×	\checkmark