
Local Fast Rerouting with Low Congestion:
A Randomized Approach

Gregor Bankhamer 1 Robert Elsässer 1 Stefan Schmid 2

1Department of Computer Sciences
University of Salzburg

Austria

2Faculty of Computer Science
University of Vienna

Austria

Motivation - Local Failover Routing

I Mission-critical networks require fast reaction to link failures

I Fast rerouting mechanisms executing in the data plane
I First line of defense

I Routes refined later on as part of the control plane

Challenges

I Algorithmically difficult

I Forwarding rules depend on local information only

I Sometimes low congestion impossible to achieve for deterministic algorithms

Our Contribution

I Can we do better with randomized algorithms?

I Consider resulting load and not only connectivity

Local Failover Routing - Description

Routing Problem

I Network of Clients/Routers. Deliver packets from source to destination

I Desired: Low amount of required hops and congestion

I 1) Pre-computed forwarding rules (data plane) depending on local information
2) Fast reaction in case of failures 3) Improve routes via control plane

1) 2) 3)

I For a node v with neighborhood Γ(v) pre-compute function

fv : (Γ(v)× P)→ Γ(v)

Packet header information (e.g. source address)

Next hop

Set of unreachable neighbors

Related Work

Existing Local Failover Protocols

I Multiple deterministic approaches
I Randomized protocol [Chiesa et al., ICALP 2016]

I k-connected networks, arborescence cover, packet-based communication

I Existing results either do not account for load or are deterministic

I Focus on resulting congestion

Negative Result

I Congestion lower bound for deterministic local failover protocols [Borokhovich and
Schmid, OPODIS 2013]

Model and Setting

Environment

I Complete undirected Graph G = (V ,E) with |V | = n.
I May be generalized with arborescences or embedding
I Some data center networks have high degree and low diameter

Communication Model

I Flow-based communication

I Consecutive stream of packets sent by source s ∈ V to destination d ∈ V .

Challenging Communication Pattern - All-to-one Routing

I Traffic going to some destination node d

I Each node V \ {d} sends out one flow targeted at d

Model and Setting ctd.

Performance Measures

I Required number of hops for the flows to reach d
I Maximum Load: Number of flows crossing any edge and node v ∈ V \ {d}

I Congestion threatens dependability
I Major concern of any traffic engineering algorithm

Powerful Adversary

I Knows employed failover strategy

I Knows destination d

I Allowed to fail a high amount of edges – up to Ω(n).

Deterministic Case Lower Bound

Theorem (Borokhovich and Schmid, OPODIS 2013)

Consider any local destination-based failover scheme in a clique graph. There exists a
set of ϕ (edge) failures (0 < ϕ < n) that results in a link load of at least ϕ.

Different Rulesets

I Borokhovich and Schmid also give a
√
ϕ lower bound in case the failover ruleset

includes the source address.

I Can be extended to also account for hop-count

I Adversary can create a load of Ω(
√
n) by destroying O(n) links.

Our Solution - Randomization

Goal: Break this bound and reduce the congestion significantly

Randomization

I Intuition: Adversary doesn’t know which links are used by the protocol

I Protocol will achieve results with high probability (w.h.p.; at least prob. 1− n−1)

Adapted (oblivious) Adversary

I May still know the protocol and all-to-one routing target d

I Cannot know the nodes generated random bits or measure the network load

Challenges

1. Keeping the routing table (and the ruleset) small and simple

2. Dealing with cycles in the packets routing paths

3. Avoiding the disruption of flows (TCP re-ordering)

Our Results - Overview

3-Permutations Intervals Shared-Permutations

Rule Set Destination + Hop Destination Destination + Hop 1

Resilience Θ(n) Θ(n/ log n) Θ(n)
Congestion O(log2 n · log log n) O(log n · log log n) O(

√
log n)

Hops O(log n) O(log n) O(log n)
Bits O(log2 n) O(log2 n) O(log3 n)

Shared Data 5 5 X

I All above results assume that up to O(n) or O(n/ log n) edges are failed by the
adversary

I Deterministic protocols would allow the adversary to induce a load of
Ω(

√
n/ log n)

1hop value may be set to an arbitrary value of O(log log n) bits

Baseline Idea - Permutation Based Routing

I Failover function fv grows exponential with Γ(v)

I Equip v with permutation πv of neighbors Γ(v)

v

Γ(v) ≈ V
πv(1) πv(2) πv(4)πv(|Γ(v)|)πv(3)

requires n · log n bits

Basic Destination-Based Protocol (TODO reference where this idea comes from)

Input: A packet with destination d
1: if (v , d) is intact then forward p to d and return
2: else forward p over edge with smallest i s.t. (v , πv (i)) is not failed

Permutation Based Routing - Observation

I Randomized approach: Select πv uniformly at random at each node v

Observation 1: Forwarding Loops

d

v

v′

πv(1) = v′πv′(1) = v

Observation 2: Failing “inner edges”

I Intuition: Failing edges not incident to d is not beneficial to the adversary.
I Permutations are unknown to the adversary

I If (v , v ′) is failed: P[πv (1) = v ′] = 1/(n − 1)

I All but O(log n) off all nodes will forward via (v , d) or (v , πv (1)) w.h.p.

3-Permutations Protocol

I Extend the simple permutation-based approach

I Idea: If at most α · n (constant α < 1) edges are failed, all packets not trapped in
a cycle will reach the destination within at most C1 log n hops w.h.p.

πv(i) = v′

πv′(i′) = v

π
(2)
v′ (i′) = v′′

d

v v′

v′′

< 2C1 log n

I Swap permutations every C1 log n hops to break out of cycles

I Caveat: Packet travels in the cycle for O(log n) hops and accumulates load on
nodes lying on the cycle

3-Permutations Protocol (POV of node v)

Input: A packet with destination d and hop count h
1: if (v , d) is intact then forward p to d and return

2: else i ← arg maxj∈{1,2,3}{h ≥ (j − 1)C1 log n} and send p to first reachable node in π
(i)
v

3: increase h += 1

I Why only 3 permutations? No packet will get stuck in 3 cycles before hitting d
w.h.p.

Theorem (3-Permutations (shortened))

Assume that the adversary fails at most α · n edges. Then, if all nodes perform
all-to-one routing to any destination d and follow the 3-Permutations protocol

1. all but O(log2 n) nodes are passed by O(log n · log log n) flows, and

2. the remaining nodes receive O(log2 n · log log n) load, and

3. no packet travels more than O(log n) hops w.h.p.

Intervals Protocol

I Again extend upon simple permutation-based approach

I Avoid even temporary cycles w.h.p.

I Only relies on destination address

Concept

I Partition the nodes V into k = O(log n) sets R0, ...,Rk−1 ⊆ V

I Each |Ri | ≈ n/(4 log1/α n) = O(n/ log n) for constant 0 < α < 1.

I (Random) failover permutation πv of v ∈ Ri consists nodes in R(i+1) mod k only

I Perform the Basic Permutation Protocol using this set of permutations πv .

Intervals Protocol - Avoiding Temporary Cycles

I Assume adversary may destroy α · I = O(n/ log n) edges per partition (0 < α < 1).

R0 R1 R2 Rk−1

Nodes v with failed link (v, d)

I Packet located on a ”bad” node in Ri will move to a ”bad” node in Ri+1 with
probability at most α. Hence αk < O(1/n) prob. to traverse back to source.

Intervals Protocol (POV of node v)

Input: A packet with destination d
1: if (v , d) is intact then forward p to d and return
2: else send p to first directly reachable node in πv

Theorem (Intervals Protocol)

Assume the adversary is allowed to fail up to α · I many edges in every interval
(constant 0 < α < 1 and I = n/(4 log1/α n)). Then, when considering all-to-one
routing to any destination d , the Intervals protocol guarantees

1. that at most O(log n · log log n) flows pass any node v ∈ V \ {d}, and

2. every packet travels at most O(log n) hops w.h.p.

I Maximum resilience for α = 1/e.

I Tradeoff of maximum resilience and load

Shared-Permutations Protocol

I Goal: Further decrease maximum load

I Introduce additional type of permutation

Concept

I Globally shared (random) permutations πGi of all nodes V (0 ≤ i ≤ C1 log n)

Input: A packet with destination d and hop h
1: if (v , d) is intact then forward p to d and return
2: else forward p to the successor w of v in πGh

I What if the edge (v ,w) is failed?

I Raise hop count to E1 > C1 log n + 1 and use different routing strategy for p.

I Assumption: Adversary does not know πGi .

Shared-Permutations - Key Concept

I Assume the adversary fails α · n edges (0 < α < 1) of the form (v , d).

I Neglect any failed ”inner edges”

πG
1

Link to d failedv5 v6 v1 v4 v2 v3

2

I Invariant: Any node v ∈ V \ {d} receives flow from at most 1 source per hop
value.

I Fraction of nodes that host a packet with hop h is roughly αh.

I Packet hits a fixed node v ∈ V \ {d} with prob. αh/n → O(
√

log n) hits w.h.p.

Theorem (Shared-Permutations Protocol)

Assume that the adversary is allowed to fail α · n edges. When performing all-to-one
routing to any destination d , the Shared-Permutations protocol guarantees that

1. every node v ∈ V \ {d} is passed by O(
√

log n) flows, and

2. no packet travels more than O(log n) hops w.h.p.

Further Remarks

Empowered Adversary

I Allow adversary to measure load

I Eventually even local permutations can be inferred

I Solution: Periodically regenerate random bits

I 3-Permutations and Intervals: Nodes can re-compute the failover table locally and
quickly.

Reduced Amount of Failures

At most n1−δ edge failures (any constant δ > 0)

3-Permutations Intervals Shared-Permutations

Load O(1) ∼ O(log n) O(1) O(1)
Hops O(1) ∼ O(log n) O(1) O(1)

Simulation Results - Maximum Average Load

103 104 105 106 107

n
0

20

40

60

80

100

Av
er

ag
e

m
ax

. l
oa

d

3-Permutations
Intervals
Shared-Permutations
log * loglog

Setup

I Complete graphs of increasing size

I All-to-one routing to random
destination d

I Fail d0.5 · ne edges of the form (v , d)

Results

I On average, no protocol induced load
above log n · log log n

I Shared-Permutation load below 7 in
all experiments

I 3-Permutations lower than expected

Simulation Results - Average Load Box Plot

1000 11389 129721 985063 11220477
n

0

50

100

150

200

250

300

M
ax

. l
oa

d

Results

I Results of the Shared-Permutations
and Intervals protocol tightly
concentrated

I Observation: Not all 3-Permutations
runs contain temporary cycles

I Sometimes cycles exist and induce
high load

I Still within the theoretical bound of
O(log2 n · log log n)

Thank you very much for your attention!

3-Permutations Intervals Shared-Permutations

Rule Set Destination + Hop Destination Destination + Hop
Resilience Θ(n) Θ(n/ log n) Θ(n)

Congestion O(log2 n · log log n) O(log n · log log n) O(
√

log n)
Hops O(log n) O(log n) O(log n)
Bits O(log2 n) O(log2 n) O(log3 n)

Shared Data 5 5 X

	Introduction
	3-Permutations Protocol
	Intervals Protocol
	Further Remarks

