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Source: Ballani et al. [1] in Sigcomm‘11

Costs for the tenats become unpredictable
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for 33% of the running times of jobs 
with reduce phases”

Source: Chowdhury et al. [2]  in Sigcomm’11

8



Proposed Solutions: Virtual Clusters

v2v1

9



Proposed Solutions: Virtual Clusters

v2v1 ?

9



Proposed Solutions: Virtual Clusters

Remove the uncertainty by specifiying the bandwidth 
connecting the VMs

v2v1
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Proposed Solutions: Virtual Clusters

• Introduced by Ballani et al. [1]

• Provides absolute guarantees on VMs and network perfomance

• Specified by two parameters:
• N the number of VMs

• B the available bandwidth between VMs.
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Virtual Cluster Embedding Problem

• Subproblem of the NP-hard virtual network embeddding problem

• Good heuristics available
• Ballani et al. [1] in Sigcomm’11

• Xie et al. [3] in Sigcomm’12
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Virtual Cluster Embedding Problem

• Subproblem of the NP-hard virtual network embeddding problem

• Good heuristics available
• Ballani et al. [1] in Sigcomm’11

• Xie et al. [3] in Sigcomm’12

but…

The virtual cluster embedding problem is not NP-hard.[4]
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Can the problem be solved efficiently with 
additional properties?
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Shortcoming of Virtual Clusters

Virtual Clusters provide a guarantee for the shuffle phase, but 
not for the transfer of chunks.
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Basic Problem
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Basic Solution
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Problem Decomposition

The basic problem can be extended with:

• VM interconnect (NI)
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Problem Decomposition

The basic problem can be extended with:

• VM interconnect (NI)

• Replica Selection (RS)

• Multiple Assignment (MA)

• Free placement of  VMs (FP)

• Bandwidth Constraints (BW)
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What is in the Paper?

• Trivial problem identification

• Matching based algorithms

• Flow based algorithm

• Hardness results
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Dynamic Programming

• Create physical topology annotations in a bottom-up manner

• Start at the servers

• For each amount n of VMs in {0,...,N}
• Set cost[n] to ∞ if n exceeds the servers capacity

• Set cost[n] to the bandwidth costs of placing n VMs at the server
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Dynamic Programming

• Create physical topology annotations in a bottom-up manner

• Start at the servers

• For each amount n of VMs in {0,...,N}
• Set cost[n] to ∞ if n exceeds the servers capacity

• Set cost[n] to the bandwidth costs of placing n VMs at the server

• For each switch and each amount of VMs in {0,…,N}
• Set cost[n] to the sum of the cheapest combination of the children and add 

the costs for the bandwdith on the uplink
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Runtimes

• Intel(R) Xeon(R) CPU L5420 @ 
2.50GHzwith (single threaded)

• 512 MB

• openjdk-7

• Max 4 VMs per Server

• 3 Chunks per VM
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What is in the Paper?
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Summary

• Virtual clusters provide dedicated resource guarantees

• Datalocality can be incorporated into the virtual cluster abstraction

• Problem decomposition into five properties
• NP-hardness proofs for some property combinations

• Algorithms for all other property combinations
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