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Introduction: Virtual Network Embeddings

‘Classic’ Cloud Computing Goal: Virtual Networks (since ~ 2006)
@ Only number and 'size’ of ° Add|t|on.a||y._
. . . communication
virtual machines is given ) )
requirements given

@ No guarantee on network

@ Network performance will
performance P
v

be guaranteed
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Introduction: Virtual Network Embeddings

‘Classic’ Cloud Computing Goal: Virtual Networks (since ~ 2006)

e Additionally:

Only number and ‘size’ of o
. . communication
virtual machines is given : i
requirements given

No guarantee on network

performance o Network performance will
be guaranteed

Embedding of Virtual Networks

] Virtual Network Substrate (Physical Network)
Map virtual nodes to substrate nodes . - ;

°
@ Map virtual edges to paths in the substrate
@ Respecting mapping restrictions

°

Respecting capacities
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Introduction: Virtual Network Embeddings

Embedding of Virtual Networks

. Virtual Network Substrate (PthlCdl Network)
Map virtual nodes to substrate nodes ’ .

Map virtual edges to paths in the substrate

Respecting mapping restrictions

Respecting capacities

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).
Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

o
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006
Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

vy

Importance of the Virtual Network Embedding Problem
o Studied extensively over the last decade (> 100 publications)
e ‘Parent’ to Virtual Cluster Embeddings (=~ 2011) and Service Chain Embeddings (= 2013)

Virtual Cluster Service Chain
VM,
VM5 Vl\dg

VM, o/ VM,
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Introduction: Virtual Network Embeddings
Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Importance of the Virtual Network Embedding Problem
o Studied extensively over the last decade (> 100 publications)
@ ‘Parent’ to Virtual Cluster Embeddings (= 2011) and Service Chain Embeddings (= 2013)

Virtual Cluster Service Chain
VM,
LB, LB, NAT
VM; VM, - o ‘o ‘o o m

VM, ./ VM Customer |* Cache FW Internet

cactus graphs: cycles intersect in at most one node ]
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).
Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics Approximation Algorithms Exact Algorithms
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP
Heuristics Approximation Algorithms Exact Algorithms

@ no quality guarantee @ quality guarantee @ near-optimal solutions
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics Approximation Algorithms Exact Algorithms
@ no quality guarantee @ quality guarantee @ near-optimal solutions
@ polynomial-time @ polynomial-time @ exponential-time
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics Approximation Algorithms Exact Algorithms
@ no quality guarantee o quality guarantee @ near-optimal solutions
@ polynomial-time o polynomial-time @ exponential-time

@ respects all constraints | e cannot respect all constraints! | o respects all constraints

!Matthias Rost and Stefan Schmid. “Charting the Complexity Landscape of Virtual Network Embeddings”.
In: Proc. IFIP Networking. 2018
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Introduction: Virtual Network Embeddings

Virtual Network Embedding Problem (VNEP) ~ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics Approximation Algorithms Exact Algorithms
no quality guarantee o quality guarantee @ near-optimal solutions
polynomial-time o polynomial-time @ exponential-time

respects all constraints | e cannot respect all constraints® | e respects all constraints

very intensively studied o not studied for general request graphs | @ intensively studied
v v

!Matthias Rost and Stefan Schmid. “Charting the Complexity Landscape of Virtual Network Embeddings”.
In: Proc. IFIP Networking. 2018
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Contributions

Heuristics Approximation Algorithms Exact Algorithms
no quality guarantee e quality guarantee @ near-optimal solutions
polynomial-time @ polynomial-time @ exponential-time

respects all constraints | e cannot respect all constraints® | e respects all constraints

very intensively studied | e not studied for general request graphs | @ intensively studied

Contributions of our paper
@ First approximation algorithm for the offline VNEP for maximizing the profit?.

@ Derived heuristics and studied performance in extensive computational study.

?For a limited class of request graphs: cactus graphs

!Matthias Rost and Stefan Schmid. “Charting the Complexity Landscape of Virtual Network Embeddings”.
In: Proc. IFIP Networking. 2018
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Formal Problem Statement & Integer Program



Formal Problem Statement & Integer Program

Substrate Network

@ Capacitated graph
Gs = (Vs, Es)

For each request r e R ...

@ Capacitated graph
Gr = (Vn Er)

Request 1: G

Request 2: G»
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Formal Problem Statement & Integer Program

Substrate Network

@ Capacitated graph
Gs = (Vs, Es)

For each request r e R ...

@ Capacitated graph
Gr = (Vra Er)

@ Mapping restrictions

Request 1: G

Request 2: G»
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Formal Problem Statement & Integer Program

Substrate Network

@ Capacitated graph
Gs = (Vs, Es)

For each request r e R ...

@ Capacitated graph
Gr = (Vra Er)

@ Mapping restrictions

@ Profit p, >0

Request 1: G

Request 2: Go
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R ...
o Capacitated graph @ Capacitated graph Request 1: Gp Request 2: G
GS=(V57ES) Gr:(VnEr)

@ Mapping restrictions
@ Profit p, >0
@ Valid mappings M,

Valid mappings: single virtual element mappings do not violate resource or mapping restrictions. J
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R ...
o Capacitated graph @ Capacitated graph Request 1: Gp Request 2: G
GS=(V57ES) Gr:(VnEr)

@ Mapping restrictions
@ Profit p, >0
@ Valid mappings M,

Valid mappings: single virtual element mappings do not violate resource or mapping restrictions. )
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R ...
[2]

@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Valid mappings: single virtual element mappings do not violate resource or mapping restrictions. J

Valid mappings for request 1: My = {mi, m3, m3,...}

& Ny
. —
[0/3] 0/0
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R ...
[2]

@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Valid mappings: single virtual element mappings do not violate resource or mapping restrictions. )

Valid mappings for requést 1: My = {m3, m3, m§,...}
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Formal Problem Statement & Integer Program

st 1: My = {m3, m

2

3

2,m37..

2/2

A

0/0

-

273

273

0/0

/5
D

0/0

0/0

}

0/0

0/3

0/0

Matthias Rost (TU Berlin)
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R ...
@ Mapping restrictions
@ Profit p, >0

@ Valid mappings M,

Valid mappings: single virtual element mappings do not violate resource or mapping restrictions. J

Valid mappings for request 2: My = {m}, m3, m3,...}
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R . ..
2]

@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fke{0,1} VreR,mf e M, (1)
o fk<a VreR (2)
mkeM,
> > Almf,x)-ff<cs(x)  VxeRs (3)
reR mke M,
max Z Z prfr (4)
r€R mkeM,
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R . ..
[2]
@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fke{0,1} VreR,mf e M, (1)
@ Select at most one mapping: Z fi<1 VreR (2)
mkeM,
> > Almf,x)-ff<cs(x)  VxeRs (3)
reR mke M,
max Z Z prfr (4)

r€R mkeM,
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Formal Problem Statement & Integer Program

Substrate Network For each request r e R . ..
[2]
@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fe{0,1} VreR,mf e M, (1)
@ Select at most one mapping: Z fi<1 VreR (2)
mkeM,
@ Enforce capacity for each resource x: Z Z A(m¥, x) - FF< cs(x) Vx € Rs (3)
reR mke M,
max Z Z prfr (4)
r€R mkeM,
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Substrate Network
2]

For each request r e R ...
@ Mapping restrictions

@ Profit p, >0

@ Valid mappings M,

Formal Problem Statement & Integer Program

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fe{0,1}
@ Select at most one mapping: o fk<a
mkeM,
@ Enforce capacity for each resource x: > > Almf,x) - fF< cs(x)
reR mke M,
- : k
@ Maximize the profit: max Z Z prf,
r€R mkeM,

VreR,meM,

VreR

Vx € Rs

(1)
()

(3)
(4)

Matthias Rost (TU Berlin)
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Formal Problem Statement & Integer Program

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fle{0,1} VreR,mf e M, (1)
@ Select at most one mapping: Z fi<1 VreR (2)
mkeM,
@ Enforce capacity for each resource x: Z Z A(m¥, x) - F¥< cs(x) Vx € Rs (3)
reR mke M,
@ Maximize the profit: max Z Z prtf (4)
reR m’;e_/\/[,

Example Solution to Integer Program: Profit 1005

Variables of request 1
=0

Variables of request 2
=0
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Formal Problem Statement & Integer Program

Virtual Network Embedding Problem as Integer Program

@ Is k-th mapping of request r chosen? fle{0,1} VreR,mf e M, (1)
@ Select at most one mapping: Z fi<1 VreR (2)
mkeM,
@ Enforce capacity for each resource x: Z Z A(m¥, x) - F¥< cs(x) Vx € Rs (3)
reR mke M,
@ Maximize the profit: max Z Z prtf (4)
reR m’;e_/\/[,

Example Solution to Integer Program: Profit 1005

Variables of request 1
=0

Variables of request 2
=0
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Approximation Framework: Randomized Rounding?

2P Raghavan and C D Thompson. "Provably Good Routing in Graphs: Regular Arrays’. In: Proc. 17th
ACM STOC. 1985, pp. 79-87.



Approximation Framework: Randomized Rounding

Assumption (for now):

Sets of valid mappings are of polynomial size and given.
= LP Formulation can be solved in polynomial-time.

Virtual Network Embedding Problem as Linear Program

@ Is k-th mapping of request r chosen? f¥e[0,1] Vr e R,mf € M, (5)
@ Select at most one mapping: Z fi<1 VreR (6)
mkeM,
@ Enforce capacity for each resource x: Z Z A(m¥, x) - F¥< cs(x) Vx € Rs (7)
reR mke M,
@ Maximize the profit: max Z Z prtf (8)
r€R mkeM,

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 30



Approximation Framework: Randomized Rounding

Virtual Network Embedding Problem as Linear Program
@ Is k-th mapping of request r chosen? fke[0,1] Vr e R, m € M, (5)

Example Solution to Linear Program: Profit 133%

Variables of request 1 Variables of request 2

2=03 2 =0.16

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 31



Approximation Framework: Randomized Rounding

Virtual Network Embedding Problem as Linear Program

@ |s k-th mapping of request r chosen? fke0,1] Vre R, mf € M, (5)

Example Solution to Linear Program: Profit 133%

Variables of request 2
2 =0.16

Variables of request 1

LP solution is convex combination valid mappings!

Let D, = {(f*, mK)|fk > 0, m* € M,} denote these optimal convex combinations for request r.

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 32



Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1
f2=03 f2=02

Variables of request 2
2 =0.16 =0

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input : Optimal convex combinations {D, },cr
foreach r € R do
| choose m¥ with probability f*
end
return solution

V.

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018
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Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1 Variables of request 2
2=03 2=02 2 =0.16

Idea: Treat weights as probabilities! Rounding Outcomes

Algorithm: RoundingProcedure Iter. Req. 1 Req. 2 Profit max Load

Input : Optimal convex combinations {D, },cr
foreach r € R do
| choose m¥ with probability f*
end
return solution

»
Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 34




Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1
f2=03 f2=02

Variables of request 2
2 = 0.16

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input : Optimal convex combinations {D, },cr
foreach r € R do
| choose m¥ with probability f*
end
return solution

v

Matthias Rost (TU Berlin)

Virtual Network Embedding Approximations: Leveraging Randomized Rounding

Rounding Outcomes

Req. 1 Req. 2 Profit
1 m} m3 1509

max Load
200%

IFIP Networking 2018 35



Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

2=03 f2=0.2

Variables of request 1 Variables of request 2
2 = 0.16 |

Idea: Treat weights as probabilities! Rounding Outcomes
: 3 Iter. Req. 1 Req. 2 Profit max Load
Algorithm: 'RoundmgProced.ure' 1 rg% rgg 150 200%
Input : Optimal convex combinations {D, },cr 5 m3 0 100$ 100%

foreach r € R do

| choose m¥ with probability f*
end
return solution

»
Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 36




Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1
f2=03 f2=02

Variables of request 2 |

£2 =0.16

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input : Optimal convex combinations {D, },cr
foreach r € R do
| choose m¥ with probability f*

end
return solution

v

Matthias Rost (TU Berlin)

Rounding Outcomes
Iter. Req. 1 Req. 2 Profit max Load
1 m} m3 1509 200%
2 m3 0 100% 100%
3 m} m3 150% 200%
IFIP Networking 2018 37
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Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1 Variables of request 2

fl=0.5 f2=03 f2=02 | 2 =0.16 |
T SR d :
(g “ J
Idea: Treat weights as probabilities! Rounding Outcomes
: 3 Iter. Req. 1 Req. 2 Profit max Load
Algorithm: RoundingP d
gori : m - oundingProce -ure- 1 mt 2 1508 200%
Input : Optimal convex combinations {D, },cr 5 m3 0 100$ 100%
foreach r € Rk do. “ ) 3 mil m3 1509 200%
| choose m¥ with probability f 4 . il 150% 200%
end
return solution 4
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Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133%

Variables of request 1 Variables of request 2

fl=05 f2=03 f2=02 | 2 =0.16 |
T SR d :
(g “ J
Idea: Treat weights as probabilities! Rounding Outcomes
: 3 Iter. Req. 1 Req. 2 Profit max Load
Algorithm: RoundingP d
gori : m - oundingProce -ure- 1 mt 2 1508 200%
Input : Optimal convex combinations {D, },cr 5 m3 0 100$ 100%
foreach r € Rk do. “ ) 3 mil m3 1509 200%
| choose m¥ with probability f 4 . il 150% 200%
end ) ] ) )
return solution
Matthias Rost (TU Berlin) Virtual Network Embedding Approximatio;s: Leveraging Randomized Rounding IFIP Networking 2018 39
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Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation

// perform preprocessing

compute optimal LP solution

compute {D,},cx from LP solution

do

| solution +— RoundingProcedure({D;},cr)
while ( solution not (a, 3, y)-approximate )

and rounding tries not exceeded

Algorithm: RoundingProcedure

Input : Optimal convex combinations {D, } ,cr
foreach r € R do
| choose m¥ with probability £*
end
return solution

’

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding

IFIP Networking 2018
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Approxim

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution

compute {D,},cr from LP solution
do

| solution < RoundingProcedure({D,},cr)

. solution not (e, 3, v)-approximate
while . .
and rounding tries not exceeded

ation Algorithm for VNEP

4

Main Theorem: First Approximation for the Virtual Network Embedding Problem

The Algorithm returns («, 3, 7)-approximate solutions for the VNEP? of at least an « fraction

of the optimal profit, and allocations on nodes and edges within factors of 5 and v of the
original capacities, respectively, with high probability.

“restricted on cactus request graphs

Matthias Rost (TU Berlin) Virtual Network Embedding A

pproximations: Leveraging Randomized Rounding IFIP Networking 2018
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Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution

compute {D,},cr from LP solution
do

| solution < RoundingProcedure({D,},er)

. solution not (c, 3, y)-approximate
while . ’
and rounding tries not exceeded

V.

Definition of Parameters

a=1/3 relative achieved profit)

B=(1+e¢e- \/2 - A(RY) -log(|RY])) (max node load)

(

(
y=(14+¢e-+/2-A(Es) - log(|Es|)) (max edge load)
E = dmax(ra X)/CS(X) S 1 (

max

max demand/capacit
reR,xeRg / P y)

ACO) =135 3 (A1) o))

reR

sum over R of squared
max (total / single) alloc

)

Main Theorem: First Approximation for the Virtual Network Embedding Problem

The Algorithm returns («, 3, v)-approximate solutions for the VNEP? of at least an « fraction

of the optimal profit, and allocations on nodes and edges within factors of 8 and + of the
original capacities, respectively, with high probability.

“restricted on cactus request graphs

Matthias Rost (TU Berlin)

Virtual Network Embedding Approximations: Leveraging Randomized Rounding

IFIP Networking 2018

43

v




Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution

compute {D,},cx from LP solution
do

| solution +— RoundingProcedure({D,};er)

. solution not («, 3, y)-approximate
while . .
and rounding tries not exceeded

)

Definition of Parameters
a=1/3

B=(1+e-1/2- A(RY)-log(IRY())

v=(1+e- /2 A(Es) - log(|Es|))
= max\’, S
€ reg,i)éde ax(r,x)/cs(x) <1

A(X) = max >~ (Amax(r, x)/dmax(r, x))?
reR

relative achieved profit)

(

(max node load)
(max edge load)
(

max demand/capacity)

sum over R of squared
max (total / single) allo

(

y

y

Applicability in Practice: Computing 5 and + is hard

Option 1: Overestimating § and v

— bad solution returned after few iterations

J

Option 2: Underestimating 5 and ~

— no solution returned after many iterations

J

Matthias Rost (TU Berlin)

Virtual Network Embedding Approximations: Leveraging Randomized Rounding

IFIP Networking 2018
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Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution

compute {D,},cr from LP solution
do

| solution + RoundingProcedure({D,};er)

. solution not («, B, y)-approximate
while . .
and rounding tries not exceeded

v

Definition of Parameters
a=1/3

B=(1+e-/2- A(RY) - log(IRY]))

(
(
v =(1+¢e-v2-A(Es) - log(|Es[)) (
(

= <
€ rE’Ir{],i)éRs dmax(r7x)/C5(X) <1
A(X) = E Amax ) dmax ) 2
( ) Tea;((reﬁ( (r X)/ (r X)) (

relative achieved profit)
max node load)

max edge load)

max demand/capacity)

sum over R of squared
max (total / single) alloc

)

Option 1: Overestimating § and v

— bad solution returned after few iterations

Applicability in Practice: Computing 8 and ~ is hard

J Option 2: Underestimating 5 and ~

— no solution returned after many iterations

J

Option 3: Consider Heuristics
Return best solution found within X iterations.J

Matthias Rost (TU Berlin)

Virtual Network Embedding Approximations: Leveraging Randomized Rounding
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Derived Heuristics

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution

compute {D,},cr from LP solution
do

| solution < RoundingProcedure({D,},rer)
while ( solution not (a, 3, ~)-approximate )

and rounding tries not exceeded

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018 46



Heuristic Idea: Return best of X

Derived Heuristics

Algorithm: Heuristic Adaptation

// perform preprocessing
compute optimal LP solution
compute {D,},cr from LP solution
do
| solution + RoundingProcedure({D,}rer)
while rounding tries not exceeded
return best solution

Vanilla Rounding: RRfinroad
o still may exceed capacities

@ return solution with least resource violations
(among those: highest profit)

Matthias Rost (TU Berlin) Virtual Network Embedding Approximations: Leveraging Randomized Rounding IFIP Networking 2018
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D

Heuristic Idea: Return best of X

Algorithm: Heuristic Adaptation
// perform preprocessing
compute optimal LP solution
compute {D,},cr from LP solution
do
| solution + RoundingProcedure({D,};cr)
while rounding tries not exceeded
return best solution

erived Heuristics

Vanilla Rounding: RRfinr0ad
@ still may exceed capacities

@ return solution with least resource violations
(among those: highest profit)

Algorithm: RoundingProcedure (Heuristic)

Heuristic Rounding: RRyeuristic

Input : Optimal convex combinations {D,},er
foreach r € R do
choose m¥ with probability f¥
discard mapping if capacity violated
end
return solution

@ RoundingProcedure:
discard chosen mappings exceeding capacities

@ always yields feasible solutions

@ return solution with highest profit

v
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Taking a Step Back: How to Compute LP Solutions?

Assumption (for now):

Sets of valid mappings are of polynomial size and given.
= LP Formulation can be solved in polynomial-time.

How to compute optimal convex combinations {D,},eR?J
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Taking a Step Back: How to Compute LP Solutions?

How to compute optimal convex combinations {D,},GR?J

Obtaining convex combinations {D,},c% is challenging!

© Presented LP has exponential size and cannot be used.
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Taking a Step Back: How to Compute LP Solutions?

How to compute optimal convex combinations {Dr},GR?J

Obtaining convex combinations {D, },cx is challenging!
© Presented LP has exponential size and cannot be used.

© C(lassic LP formulation may yield meaningless solutions for cyclic graphs:
o Theorem: Solution to classic LP Formulation cannot be decomposed into valid mappings.
o Theorem: Classic LP Formulation has infinite integrality gap.

Classic LP Formulation Structural Deficiency of Classic LP Formulation
R T Request G, Substrate Gig Classic LP Solution Decomposition Attempt
P vericw © ) Uy 0.5 0.52
VreRiEV, @ (3
] [reneee] \ uGI’ up o.5kI/'\I 0.57 0.5ke” \I 0.57
i, | | (ERENCE | )
dee k.Z_. i us us 0.55 0.5k 0.5k
V[ Eu,v) e(’EJs)\E;L } ((Q) \/. ‘?g/.
VreR,(ru)eRY  (10) Uy Re))

VreR (uv)eEs (1)

(x,¥) ¥(x.y) € Rs (12)

V.
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Taking a Step Back: How to Compute LP Solutions?

How to compute optimal convex combinations {D,},ER?J

Novel Decomposable Linear Programming Formulation (Details in the paper)

@ Intuition — ‘breaking cycles’: fix any node on a cycle — |Vs| copies of the classic Formulation.
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Taking a Step Back: How to Compute LP Solutions?

How to compute optimal convex combinations {D,},eR?J

Novel Decomposable Linear Programming Formulation (Details in the paper)

@ Intuition — ‘breaking cycles’: fix any node on a cycle — | Vs| copies of the classic Formulation.

@ Formulation size increases by factor O(|Vs|) and is only applicable for cactus request graphs

Virtual Cluster Service Chain
VM,
LB, LB, NAT
VM5 VM, S o ‘o ‘o ‘o m

VM4 .} Vl\/Ig Customer Cache FW Internet

cactus graphs: cycles intersect in at most one node J
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Taking a Step Back: How to Compute LP Solutions?

How to compute optimal convex combinations {D,},GR?J

Novel Decomposable Linear Programming Formulation (Details in the paper)
@ Intuition — ‘breaking cycles’: fix any node on a cycle — |Vs| copies of the classic Formulation.
@ Formulation size increases by factor O(|Vs|) and is only applicable for cactus request graphs

@ Generalization to arbitrary request graphs is possible?, but ...

o Formulation size increases super-polynomially — fixed-parameter tractable approximations.
o No polynomial-time approximations can exist for arbitrary request graphs, unless P = NP.

“Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network
Embedding Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452.
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Computational Evaluation

Requests: Synthetic Cactus Requests>
Substrate: GEANT Network
1.0
0.9
0.8
0.7
w 0.6
Sos
Yo4
0.3 —— number of nodes: |V,|
0.2 —— number of edges: |E/|
gé —— number of cycles: |E/|—|V/|+1
‘ 0 3 6 9 12 15 18 21 )

Generation Parameters for 1,500 instances
Number of requests: 40, 60, 80, 100
Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0
Cese auallable at J Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

https://github.com/vnep-approx/
evaluation-ifip-networking-2018

Instances per combination: 15

3Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized

Rounding. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.03622
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Computational Evaluation

Baseline Algorithm — MIPycp: solve classic MIP Formulation for upto 3 hours

Acceptance Ratio Avg. Node Load? Avg. Edge Load3
100 60 30
5 5 1.0 5 401118 8.1 6.8 8.1
o o] 50 s
O 80 9] 9] 24
£ Lo 40 L
8 60 o o 18
3 306 30 3
g 0 | g 4 12
o £04122.2 29,86 28.4 28,8 [0 =
) 20 3 wof I °
w Z0.2111.8 12,0 12,6 12.8 w
r : . . 0 0
40 60 80 100 40 60 80 100 40 60 80 100
Number of Requests ) Number of Requests Number of Requests

3Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized

Rounding. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.03622
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Computational Evaluation: Results

Vanilla Rounding Performance

225
200
175+
1501
125+

1001

Max Load (RRuinLoad) [%]

60 80 100 120 140
Proﬁt(RRMinLoad)/PrOﬁt(M|PMCF) [%]

v
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Computational Evaluation: Results

Vanilla Rounding Performance

22541 ERF

= 0.25

200
1751
1501
125+

1001

Max Load (RRwinLoad) [%]

60 80 100 120 140
Proﬁt(RRMinLoad)/PrOﬁt(M|PMCF) [%]

@ Relative profit = 80 - 120% J

v
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Computational Evaluation: Results

Vanilla Rounding Performance

22541 ERF

= 0.25

200
175+
1501
125

1001

Max Load (RRwinLoad) [%]

60 80 100 120 140
PrOﬁt(RRMinLoad)/PI"Oﬁt(M'PMCF) [%]

@ Relative profit = 80 - 120%

@ Resource augmentations mostly < 200%

v
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Vanilla Rounding Performance

Computational Evaluation: Results

Heuristic Rounding (w/o augmentations)
< 225{ ERF < e 100
s . 0.25 ) S 4.0180.6 86.9 LA
22001 . 05 - ®
3 1o : L 20 20
= ] . ()
51754 20 - o
& 150l . 40 3 1.0168.1 68,7 788 69| |80
= | 0
o . )
© o .
3 1251 p 0.5 &oa 6@03 @01 6608 70
x o
g 100 1 2 0.25167.2 68,0 65,85 66.3
' ' ; ' y y v T 60
60 80 100 120 140 40 60 80 100
Profit(RRminLoad)/Profit(MIPyce) [%] Number of Requests
@ Relative profit ~ 80 - 120%
@ Resource augmentations mostly < 200%
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Computational Evaluation: Results

Vanilla Rounding Performance Heuristic Rounding (w/o augmentations)
©225{ ERF . : 100
= = 0.25 =
§200- = 0.5 T 90
£1751 720 S
& 150l . 40 3 1.0{68.1 68.7 748 769 || 80
= y 0n
© . )

@© 4
S 1251 < cqc) 0.51680.1 68,8 68.1 66.3 70
x - (@]
g 1001 : B 3 0.251 67.2 68,0 8.5 66.8
! ! ] } T y T T 60
60 80 100 120 140 40 60 80 100
Profit(RRminLoad)/Profit(MIPyce) [%] Number of Requests
@ Relative profit ~ 80 - 120% @ Relative profit ~ 65 - 90%
@ Resource augmentations mostly < 200%
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Computational Evaluation: Results

Vanilla Rounding Performance Heuristic Rounding (w/o augmentations)
— 100
o 2251 - o
S S 4.01{80.6 869 ARG
3200 @
E 20 90
£1751 S
& 1501 3 1.0{68.1 68.7 748 769 || 80
= 0n
° 0
§125. cqc) 0-5'&03 6@08 @01 6603 70
x (@]
g 1004 ° ; 3 0.251 67.2 68,0 65,8 66.3
| | ] | T y y T 60
60 80 100 120 140 40 60 80 100
Profit(RRminLoad)/Profit(MIPyce) [%] Number of Requests
@ Relative profit ~ 80 - 120% @ Relative profit ~ 65 - 90%
@ Resource augmentations mostly < 200% @ min: 22.5% / mean: 73.8% / max: 101%

v

4
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Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper
@ First approximation algorithm for the offline VNEP for maximizing the profit.

@ Derived heuristics (w/0) resource augmentations achieves 73.8% on average.
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Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper
@ First approximation algorithm for the offline VNEP for maximizing the profit.

@ Derived heuristics (w/0) resource augmentations achieves 73.8% on average.

Main Challenge: Computing Decomposable LP Solutions |

Classic LP Formulation Novel LP Formulation
@ non-decomposable solutions @ decomposable formulation for cactus request graphs
o infinite integrality gap o formulation size increases by factor O(| Vs|)
@ generalization to arbitrary request graphs possible*
v

*Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding

Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452
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Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper
@ First approximation algorithm for the offline VNEP for maximizing the profit.

@ Derived heuristics (w/0) resource augmentations achieves 73.8% on average.

Main Challenge: Computing Decomposable LP Solutions

Classic LP Formulation Novel LP Formulation
@ non-decomposable solutions @ decomposable formulation for cactus request graphs
@ infinite integrality gap o formulation size increases by factor O(| Vs|)

@ generalization to arbitrary request graphs possible*

M

Future Work
Other Rounding Heuristics / Column Generation for Solving the LP / Online Problem

*Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding
Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452
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