Virtual Network Embedding Approximations: Leveraging Randomized Rounding

IFIP Networking 2018

Matthias Rost
Technische Universität Berlin, Internet Network Architectures

Stefan Schmid Universität Wien, Communication Technologies

'Classic' Cloud Computing 4 **B** • Only number and 'size' of virtual machines is given No guarantee on network performance

Goal: Virtual Networks (since ≈ 2006)

- Additionally: communication requirements given
- Network performance will be guaranteed

Embedding of Virtual Networks

- Map virtual nodes to substrate nodes
- Map virtual edges to paths in the substrate
- Respecting mapping restrictions
- Respecting capacities

Embedding of Virtual Networks

- Map virtual nodes to substrate nodes
- Map virtual edges to paths in the substrate
- Respecting mapping restrictions
- Respecting capacities

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Importance of the Virtual Network Embedding Problem

- Studied extensively over the last decade (> 100 publications)
- ullet 'Parent' to Virtual Cluster Embeddings (pprox 2011) and Service Chain Embeddings (pprox 2013)

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Importance of the Virtual Network Embedding Problem

- Studied extensively over the last decade (> 100 publications)
- ullet 'Parent' to Virtual Cluster Embeddings (pprox 2011) and Service Chain Embeddings (pprox 2013)

cactus graphs: cycles intersect in at most one node

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics

- no quality guarantee
- polynomial-time
- very intensively studied

Approximation Algorithms

- quality guarantee

- not studied for general request graphs

- near-optimal solutions

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics

- no quality guarantee
- polynomial-time
- very intensively studied

Approximation Algorithms

- quality guarantee

- not studied for general request graphs

- near-optimal solutions
- respects all constraints

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics

- no quality guarantee
- polynomial-time
- very intensively studied

Approximation Algorithms

- quality guarantee
- polynomial-time
- not studied for general request graphs

- near-optimal solutions
- exponential-time

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics

- no quality guarantee
- polynomial-time
- respects all constraints
- very intensively studied

Approximation Algorithms

- quality guarantee
- polynomial-time
- cannot respect all constraints¹
- not studied for general request graphs

- near-optimal solutions
- exponential-time
- respects all constraints
 - intensively studied

¹Matthias Rost and Stefan Schmid. "Charting the Complexity Landscape of Virtual Network Embeddings". In: *Proc. IFIP Networking*. 2018

Virtual Network Embedding Problem (VNEP) ≈ 2006

Online: Find an optimal feasible embedding for a single request (e.g. minimizing resource cost).

Offline: Find feasible embeddings for an optimal (sub)set of requests (e.g. maximizing achieved profit).

Algorithmic Approaches to the VNEP

Heuristics

- no quality guarantee
- polynomial-time
- respects all constraints
- very intensively studied

Approximation Algorithms

- quality guarantee
- polynomial-time
- cannot respect all constraints¹
- not studied for general request graphs

- near-optimal solutions
- exponential-time
- respects all constraints
- intensively studied

¹Matthias Rost and Stefan Schmid. "Charting the Complexity Landscape of Virtual Network Embeddings".

Contributions

Heuristics

- no quality guarantee
- polynomial-time
- respects all constraints
- very intensively studied

Approximation Algorithms

- quality guarantee
- polynomial-time
- cannot respect all constraints¹
- not studied for general request graphs

Exact Algorithms

- near-optimal solutions
- exponential-time
- respects all constraints
- intensively studied

Contributions of our paper

- First approximation algorithm for the offline VNEP for maximizing the profit^a.
- Operived heuristics and studied performance in extensive computational study.

^aFor a limited class of request graphs: cactus graphs

¹Matthias Rost and Stefan Schmid. "Charting the Complexity Landscape of Virtual Network Embeddings".

Substrate Network

 Capacitated graph $G_S = (V_S, E_S)$

For each request $r \in \mathcal{R}$

- Capacitated graph $G_r = (V_r, E_r)$
- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

Substrate Network

 Capacitated graph $G_S = (V_S, E_S)$

For each request $r \in \mathcal{R}$

- Capacitated graph $G_r = (V_r, E_r)$
- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

For each request $r \in \mathcal{R}$. . .

- Mapping restrictions
- Profit $p_r > 0$
- ullet Valid mappings \mathcal{M}_r

For each request $r \in \mathcal{R}$...

- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

est 1: $\mathcal{M}_1 = \{m_2^1, m_2^2, m_3^3, \ldots\}$

For each request $r \in \mathcal{R}$...

- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

For each request $r \in \mathcal{R}$. . .

- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

Virtual Network Embedding Problem as Integer Program

Is k-th mapping of request r chosen?

$$f_r^k \in \{0,1\}$$
 $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)

$$\sum f_r^k \le 1 \qquad \forall r \in \mathcal{R}$$
 (2)

$$\sum_{\substack{m_r^k \in \mathcal{M}_r \\ r \in \mathcal{R}}} f_r^k \le 1 \qquad \forall r \in \mathcal{R}$$

$$\sum_{r \in \mathcal{R}} \sum_{\substack{m_r^k \in \mathcal{M}_r \\ r \neq s}} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$$
(3)

$$\max \sum_{r \in \mathcal{P}_r} \sum_{k=1}^{r} p_r f_r^k \tag{4}$$

For each request $r \in \mathcal{R}$...

- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

Virtual Network Embedding Problem as Integer Program

- Is k-th mapping of request r chosen?
- Select at most one mapping:

$$f_r^k \in \{0,1\}$$
 $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)

$$\sum f_r^k \le 1 \qquad \forall r \in \mathcal{R}$$
 (2)

$$\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$$
 (3)

$$\max \sum_{r \in \mathcal{R}} \sum_{mk \in \mathcal{M}} p_r f_r^k \tag{4}$$

For each request $r \in \mathcal{R}$...

- Mapping restrictions
- Profit $p_r > 0$
- Valid mappings \mathcal{M}_r

Virtual Network Embedding Problem as Integer Program

- Is k-th mapping of request r chosen?
- Select at most one mapping:
- Enforce capacity for each resource x:

$$f_r^k \in \{0,1\}$$
 $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)

$$\sum_{m_r^k \in \mathcal{M}_r} f_r^k \le 1 \qquad \forall r \in \mathcal{R}$$
 (2)

$$\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$$
 (3)

$$\max \sum_{r \in \mathcal{P}} \sum_{p_r \in \mathcal{M}} p_r f_r^k \tag{4}$$

For each request $r \in \mathcal{R}$. . .

- Mapping restrictions
- Profit $p_r > 0$
- ullet Valid mappings \mathcal{M}_r

Virtual Network Embedding Problem as Integer Program

- Is k-th mapping of request r chosen?
- Select at most one mapping:
- Enforce capacity for each resource x:
- Maximize the profit:

Matthias Rost (TU Berlin)

$$f_r^k \in \{0,1\}$$
 $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)

$$\sum_{m_r^k \in \mathcal{M}_r} f_r^k \leq 1 \qquad \forall r \in \mathcal{R}$$
 (2)

$$\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$$
 (3)

$$\max \sum_{r \in \mathcal{T}} \sum_{k=1}^{r} p_r f_r^k \tag{4}$$

Virtual Network Embedding Problem as Integer Program

- Is k-th mapping of request r chosen?
- Select at most one mapping:
- Enforce capacity for each resource x:
- Maximize the profit:

- $f_r^k \in \{0,1\}$ $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)
- $\sum f_r^k \leq 1$ $\forall r \in \mathcal{R}$ (2)
- $\sum A(m_r^k, x) \cdot f_r^k \leq c_S(x)$ $\forall x \in R_S$ (3) $r \in \mathbb{R} \ m_{r}^{k} \in \mathcal{M}_{r}$
 - $\max \sum \sum p_r f_r^k$ (4) $r \in \mathbb{R}$ $m_r^k \in \mathcal{M}_r$

Example Solution to Integer Program: Profit 100\$

Virtual Network Embedding Problem as Integer Program

- Is k-th mapping of request r chosen?
- Select at most one mapping:
- Enforce capacity for each resource *x*:
- Maximize the profit:

- $f_r^k \in \{0,1\}$ $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (1)
- $\sum f_r^k \le 1 \qquad \forall r \in \mathcal{R}$ (2)
- $\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$ (3)
 - $\max \sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} p_r f_r^k \tag{4}$

Example Solution to Integer Program: Profit 100\$

Approximation Framework: Randomized Rounding²

²P Raghavan and C D Thompson. "Provably Good Routing in Graphs: Regular Arrays". In: *Proc. 17th ACM STOC.* 1985, pp. 79–87.

Assumption (for now):

Sets of valid mappings are of polynomial size and given.

⇒ LP Formulation can be solved in polynomial-time.

Virtual Network Embedding Problem as Linear Program

• Is k-th mapping of request r chosen?

 $f_r^k \in [0,1] \qquad \forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (5)

Select at most one mapping:

$$\sum_{m_r^k \in \mathcal{M}_r} f_r^k \le 1 \qquad \forall r \in \mathcal{R}$$
 (6)

• Enforce capacity for each resource x:

$$\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \leq c_S(x) \qquad \forall x \in R_S$$
 (7)

• Maximize the profit:

$$\max \sum_{r \in \mathcal{R}} \sum_{m^k \in \mathcal{M}_r} p_r f_r^k \tag{8}$$

Virtual Network Embedding Problem as Linear Program

• Is k-th mapping of request r chosen?

- $f_r^k \in [0,1] \qquad \forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (5)

Example Solution to Linear Program: Profit 133\$

Virtual Network Embedding Problem as Linear Program

• Is k-th mapping of request r chosen?

 $f_r^k \in [0,1] \quad \forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (5)

. . . .

Example Solution to Linear Program: Profit 133\$

. . .

LP solution is convex combination valid mappings!

Let $\mathcal{D}_r = \{(f_r^k, m_r^k) | f_r^k > 0, m_r^k \in \mathcal{M}_r\}$ denote these optimal convex combinations for request r.

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$. foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

end

return solution

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k end

return solution

Rounding Outcomes

Reg. 2 Profit max Load Iter. Reg. 1

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

end

return solution

Rounding Outcomes

Iter. Req. 1 Req. 2 Profit max Load m_2^2 150\$ 200% m_1^1

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$. foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k end

return solution

Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	m_1^3	Ø	100\$	100%

Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$. foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

end

return solution

Rounding Outcomes

lter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	$m_1^{\bar{3}}$	Ø_	100\$	100%
3	$m_1^{ ilde{1}}$	m_2^1	150\$	200%

Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$. foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

ena		
return	solutio	

Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	m_1^3	Ø	100\$	100%
3	$m_1^{ar{1}}$	m_2^1	150\$	200%
4	$m_1^{\tilde{2}}$	$m_2^{\overline{1}}$	150\$	200%
	•	-		

Approximation Framework: Randomized Rounding

Example Solution to Linear Program: Profit 133\$

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure **Input**: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$. foreach $r \in \mathcal{R}$ do choose m_r^k with probability f_r^k

Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load		
1	m_1^1	m_{2}^{2}	150\$	200%		
2	m_1^3	Ø	100\$	100%		
3	$m_1^{ar{1}}$	m_2^1	150\$	200%		
4	$m_1^{\overline{2}}$	$m_2^{\overline{1}}$	150\$	200%		
:	:	:	:	:		
•	•	•	•	•		

return solution

end

Approximation Algorithm for VNEP & Derived Heuristics

Randomized Rounding Approximation

```
Algorithm: RoundingProcedure Input : Optimal convex combinations \{\mathcal{D}_r\}_{r\in\mathcal{R}} foreach r\in\mathcal{R} do | choose m_r^k with probability f_r^k end return solution
```

Randomized Rounding Approximation

```
Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution
compute \{\mathcal{D}_r\}_{r\in\mathcal{R}} from LP solution
do
    solution \leftarrow RoundingProcedure(\{\mathcal{D}_r\}_{r\in\mathcal{R}})
            solution not (\alpha, \beta, \gamma)-approximate
            and rounding tries not exceeded
```

Main Theorem: First Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ) -approximate solutions for the VNEP^a of at least an α fraction of the optimal profit, and allocations on nodes and edges within factors of β and γ of the original capacities, respectively, with high probability.

^arestricted on cactus request graphs

Randomized Rounding Approximation

Algorithm: VNEP Approximation // perform preprocessing compute optimal LP solution compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) while $\left(\begin{array}{c} \text{solution } not \ (\alpha, \beta, \gamma) \text{-approximate} \\ \text{and rounding tries not exceeded} \end{array}\right)$

Definition of Parameters

$$\begin{split} \alpha = &1/3 & \text{(relative achieved profit)} \\ \beta = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(R_S^V) \cdot \log(|R_S^V|)}) \text{ (max node load)} \\ \gamma = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)}) \text{ (max edge load)} \\ \varepsilon = & \max_{r \in \mathcal{R}, x \in R_S} d_{\max}(r, x)/c_S(x) \leq 1 \text{ (max demand/capacity)} \\ \Delta(X) = & \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x)/d_{\max}(r, x))^2 \left(\sup_{\text{max (total / single) alloc}} \right) \end{split}$$

$$\max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x) / a_{\max}(r, x)) \pmod{x}$$
 (total / single) allow

Main Theorem: First Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ) -approximate solutions for the VNEP^a of at least an α fraction of the optimal profit, and allocations on nodes and edges within factors of β and γ of the original capacities, respectively, with high probability.

^arestricted on cactus request graphs

Randomized Rounding Approximation

Algorithm: VNEP Approximation

// perform preprocessing compute optimal LP solution **compute** $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution

do

solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) solution *not* (α, β, γ) -approximate and rounding tries not exceeded

Definition of Parameters

$$lpha=$$
 1/3 (relative achieved profit)

$$\beta = (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(R_S^V) \cdot \log(|R_S^V|)})$$
 (max node load)

$$\gamma = (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)})$$
 (max edge load)

$$arepsilon = \max_{r \in \mathcal{R}, x \in \mathcal{R}_{\mathcal{S}}} d_{\mathsf{max}}(r, x) / c_{\mathcal{S}}(x) \leq 1 \pmod{\mathsf{max}}$$
 (max demand/capacity)

$$\Delta(X) = \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x) / d_{\max}(r, x))^2 \begin{pmatrix} \text{sum over } \mathcal{R} \text{ of squared} \\ \max \text{ (total / single) alloc} \end{pmatrix}$$

Applicability in Practice: Computing β and γ is hard

Option 1: Overestimating β and γ

→ bad solution returned after few iterations

Option 2: Underestimating β and γ

→ no solution returned after *many* iterations

Randomized Rounding Approximation

Algorithm: VNEP Approximation

// perform preprocessing

compute optimal LP solution compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do

do | solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) while $\begin{pmatrix} \text{solution } not \ (\alpha, \beta, \gamma) \text{-approximate} \\ \text{and rounding tries not exceeded} \end{pmatrix}$

Definition of Parameters

$$\alpha = 1/3$$

(relative achieved profit)

$$\beta = (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(R_S^V) \cdot \log(|R_S^V|)})$$
 (max node load)

$$\gamma = (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)})$$
 (max edge load)

$$\gamma = (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S)} \cdot \log(|E_S|))$$
 (max edge load)

$$arepsilon = \max_{r \in \mathcal{R}, x \in \mathcal{R}_{\mathcal{S}}} d_{\mathsf{max}}(r, x) / c_{\mathcal{S}}(x) \leq 1 \pmod{\mathsf{demand/capacity}}$$

$$\Delta(X) = \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x) / d_{\max}(r, x))^2 \begin{pmatrix} \text{sum over } \mathcal{R} \text{ of squared} \\ \max \text{ (total / single) alloc} \end{pmatrix}$$

Applicability in Practice: Computing β and γ is hard

Option 1: Overestimating β and γ \rightarrow bad solution returned after few iterations

tion returned after few iterations

Option 2: Underestimating β and γ

 \rightarrow no solution returned after many iterations

Option 3: Consider Heuristics

Return best solution found within X iterations.

Derived Heuristics

Randomized Rounding Approximation

```
Algorithm: VNEP Approximation // perform preprocessing compute optimal LP solution compute \{\mathcal{D}_r\}_{r\in\mathcal{R}} from LP solution do | solution \leftarrow RoundingProcedure(\{\mathcal{D}_r\}_{r\in\mathcal{R}}) while \begin{pmatrix} \text{solution } not \ (\alpha,\beta,\gamma)\text{-approximate} \\ \text{and rounding tries not exceeded} \end{pmatrix}
```

Derived Heuristics

Heuristic Idea: Return best of X

Algorithm: Heuristic Adaptation

// perform preprocessing compute optimal LP solution

compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution

do

solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) while rounding tries not exceeded

return best solution

Vanilla Rounding: RR_{MinLoad}

- still may exceed capacities
- return solution with least resource violations (among those: highest profit)

Derived Heuristics

Heuristic Idea: Return best of X

Algorithm: Heuristic Adaptation

// perform preprocessing compute optimal LP solution **compute** $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution

do solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$)

while rounding tries not exceeded return best solution

Algorithm: RoundingProcedure (Heuristic)

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k discard mapping if capacity violated

end

return solution

Vanilla Rounding: RR_{MinLoad}

- still may exceed capacities
- return solution with least resource violations. (among those: highest profit)

Heuristic Rounding: RR_{Heuristic}

- RoundingProcedure: discard chosen mappings exceeding capacities
- always yields feasible solutions
- return solution with highest profit

Assumption (for now):

Sets of valid mappings are of polynomial size and given.

 \Rightarrow LP Formulation can be solved in polynomial-time.

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

Obtaining convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ is challenging!

- Presented LP has exponential size and cannot be used.
- ② Classic LP formulation may yield meaningless solutions for cyclic graphs:
 - Theorem: Classic LP Formulation has infinite integrality gaps

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

Obtaining convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ is challenging!

- Presented LP has exponential size and cannot be used.
- Classic LP formulation may yield meaningless solutions for cyclic graphs:
 - Theorem: Solution to classic LP Formulation cannot be decomposed into valid mappings.
 - Theorem: Classic LP Formulation has infinite integrality gap.

Classic LP Formulation

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

Novel Decomposable Linear Programming Formulation (Details in the paper)

- Intuition 'breaking cycles': fix any node on a cycle $\rightarrow |V_S|$ copies of the classic Formulation.
- Formulation size increases by factor $\mathcal{O}(|V_S|)$ and is only applicable for cactus request graphs

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

Novel Decomposable Linear Programming Formulation (Details in the paper)

- Intuition 'breaking cycles': fix any node on a cycle $\rightarrow |V_S|$ copies of the classic Formulation.
- Formulation size increases by factor $\mathcal{O}(|V_S|)$ and is only applicable for cactus request graphs

cactus graphs: cycles intersect in at most one node

How to compute optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$?

Novel Decomposable Linear Programming Formulation (Details in the paper)

- Intuition 'breaking cycles': fix any node on a cycle $\rightarrow |V_S|$ copies of the classic Formulation.
- Formulation size increases by factor $\mathcal{O}(|V_S|)$ and is only applicable for cactus request graphs
- Generalization to arbitrary request graphs is possible^a, but ...
 - $\bullet \ \ \text{Formulation size increases } \textbf{super-polynomially} \rightarrow \textbf{fixed-parameter tractable} \ \text{approximations}.$
 - No polynomial-time approximations can exist for arbitrary request graphs, unless $\mathcal{P} = \mathcal{NP}$.

^aMatthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452.

Computational Evaluation

Computational Evaluation

Substrate: GEANT Network

Code available at

https://github.com/vnep-approx/ evaluation-ifip-networking-2018

Generation Parameters for 1,500 instances

Number of requests: 40, 60, 80, 100

Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0

Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

Instances per combination: 15

³Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.03622

Computational Evaluation

³Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.03622

Vanilla Rounding Performance

- Relative profit $\approx 80 120\%$
- Resource augmentations mostly < 200%

Heuristic Rounding (w/o augmentations)

- Relative profit $\approx 65 90\%$
- min: 22.5% / mean: 73.8% / max: 101%

- Relative profit $\approx 80 120\%$
- Resource augmentations mostly < 200%

Heuristic Rounding (w/o augmentations)

- Relative profit $\approx 65 90\%$
- min: 22.5% / mean: 73.8% / max: 101%

- Relative profit $\approx 80 120\%$
- Resource augmentations mostly < 200%

Heuristic Rounding (w/o augmentations)

- Relative profit $\approx 65 90\%$
- min: 22.5% / mean: 73.8% / max: 101%

Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper

- First approximation algorithm for the offline VNEP for maximizing the profit.
- 2 Derived heuristics (w/o) resource augmentations achieves 73.8% on average.

Main Challenge: Computing Decomposable LP Solutions

Classic LP Formulation

- non-decomposable solution
- infinite integrality gap

Novel LP Formulation

- decomposable formulation for cactus request graphs
- ullet formulation size increases by factor $\mathcal{O}(|V_S|)$
- generalization to arbitrary request graphs possible

Future Work

Other Rounding Heuristics / Column Generation for Solving the LP / Online Problem

⁴Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452

Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper

- First approximation algorithm for the offline VNEP for maximizing the profit.
- ② Derived heuristics (w/o) resource augmentations achieves 73.8% on average.

Main Challenge: Computing Decomposable LP Solutions

Classic I P Formulation

- non-decomposable solutions
- infinite integrality gap

Novel I P Formulation

- decomposable formulation for cactus request graphs
- formulation size increases by factor $\mathcal{O}(|V_S|)$
- generalization to arbitrary request graphs possible⁴

⁴Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452

Conclusion: A First Step Towards provably Good Algorithms for the VNEP!

Contributions of our paper

- First approximation algorithm for the offline VNEP for maximizing the profit.
- 2 Derived heuristics (w/o) resource augmentations achieves 73.8% on average.

Main Challenge: Computing Decomposable LP Solutions

Classic LP Formulation

- non-decomposable solutions
- infinite integrality gap

Novel LP Formulation

- decomposable formulation for cactus request graphs
- ullet formulation size increases by factor $\mathcal{O}(|V_S|)$
- generalization to arbitrary request graphs possible⁴

Future Work

Other Rounding Heuristics / Column Generation for Solving the LP / Online Problem

⁴Matthias Rost and Stefan Schmid. *(FPT-)Approximation Algorithms for the Virtual Network Embedding Problem.* Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452

References I

- Raghavan, P and C D Thompson. "Provably Good Routing in Graphs: Regular Arrays". In: *Proc. 17th ACM STOC.* 1985, pp. 79–87.
- Rost, Matthias and Stefan Schmid. "Charting the Complexity Landscape of Virtual Network Embeddings". In: *Proc. IFIP Networking.* 2018.
- .(FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.04452.
- .Virtual Network Embedding Approximations: Leveraging Randomized Rounding. Tech. rep. Mar. 2018. url: http://arxiv.org/abs/1803.03622.