Cost-Efficient Embedding of Virtual Networks With and Without Routing Flexibility

IFIP Networking 2020

Balázs Németh, Budapest Univ. of Technology and Economics, Hungary Yvonne-Anne Pignolet, DFINITY, Switzerland Matthias Rost, TU Berlin, Germany <u>Stefan Schmid</u>, Faculty of Computer Science, University of Vienna, Austria Balázs Vass, Budapest Univ. of Technology and Economics, Hungary

Introduction: Virtual Network Embeddings

Request and Substrate Graphs

Request: directed weighted graph $G_r = (V_r, E_r, d_r)$

- V_r : request (virtual) nodes
- E_r⊆V_r×V_r: request (virtual) edges
 directed data flow between request nodes.
- Element x ∈V_r∪E_r has demand d_r(x)≥0
 e.g., CPU, memory, bandwidth requirements
- For request graph $r \in R$,

 $n_r = |V_r|$ and $m_r = |E_r|$

Substrate : weighted graph $G_s = (V_s, E_s, d_s)$

- V_s : physical machines
- E_s : physical communication links
- Element $x \in V_s \cup E_s$ has capacity $d_s(x) \ge 0$ e.g., CPU, memory, bandwidth, etc.)

3

• $n_s = |V_s|$ and $m_s = |E_s|$

Stefan Schmid

Cost-Efficient Embedding of Virtual Networks W ith and W ithout Routing Flexibility

Embedding of Virtual Networks

Given a set of requests R, we want to:

 Map virtual element to substrate element,
 s.t. the mapping is *valid* + *feasible*,

respects restrictions (e.g., avoids distant substrate nodes, or substrate links raising security issues)

• feasible:

valid + respects substrate capacities

Cost of mapping a request r:

- $A(m_r,x)$: resource allocation induced by valid mapping m_r on substrate element $x \in G_S$
- $c_s(x)$: unit cost of substrate resource $x \in G_s$
- Cost of a mapping m_r of r is defined as:

 $c_S(m_r) = \sum_{x \in G_S} c_S(x) \cdot A(m_r, x)$

Stefan Schmid

Problem Versions

- Cost Valid Mapping Problem (CVMP): return valid minimal cost mapping m_ror request r on substrate s, if one exists f
- Cost Virtual Network Embedding Problem (CVNEP): return minimal cost feasible embedding M_R for the request set R on substrate s, if one exists.
- Profit Virtual Network Embedding Problem
 (PVNEP): Given a profit b_r≥0 for each request r∈R, return feasible embedding of a subset of requests R'⊆R maximizing the profit Σ_{r∈R} b_r.

- VNEP without Routing Flexibilities . Given a routing P, a mapping m_r is valid if each virtual edge takes the path predefined in P. Under this adaptation, CVNEP and PVNEP return a feasible embedding minimizing the cost or maximizing the profit for a request set R.
- (α, β, γ) approximation of the CVNEP (or PVNEP):
 - at most $\alpha > 1$ times the cost (or at least $1/\alpha$ times the profit) of an optimal solution
 - $\begin{tabular}{ll} \circ & \mbox{allocations on nodes and edges within factors of β} \\ & \geq 1 \mbox{ and $\gamma \geq 1$ of the original capacities respectively,} \\ & \mbox{with high probability (whp).} \end{tabular}$

Contributions

Main Contributions

- polynomial-time approximation for the general Cost VNEP
 - via randomized rounding
 - first polynomial-time approximation algorithm with provable guarantees on embedding cost
- defining novel variant of VNEP where routes cannot be optimized, (e.g., due to performance considerations or technological constraints)
 - adapting algorithms and approximation guarantees

7

Preliminaries

Tree Decompositions

- pair $T_r = (T_r, B_r)$,
- undirected tree T_r=(V_T,E_T) and a family of node bags B_r={B_t} t ∈V_T with B_t⊆V_r, s.t.:
 - $\circ \quad \ \ for node \ i \in V_{r'} \ set \ of \ tree \ nodes \ containing \ i \ is \\ connected \ in \ T_r,$
 - \circ $% \left({{\rm{each}}} \right)$ each node and each edge is contained in at least one bag.
- small if no two adjacent bags B $_1$ and B $_2$ s.t. B $_1 \subseteq$ B $_2$
- treewidth: max. bag size minus 1
- treewidth tw(G_r): minimum widths among all decompositions
- Computing a tree decomp. of minimal width is FPT-tractable
- ...and can be transformed into a small decomp. in linear time

In practice, request graphs are of low tree -width.

9

Solving the Cost Valid Mapping Problem

Algorithm 1: DYNVMP: Computing Optimal Valid Mappings

Input :substrate G_S , request G_r , tree decomposition \mathcal{T}_r **Output**:valid mapping of minimal cost or \perp if none exists

• Given a tree decomposition T_r of request graph r, algorithm DynVMP solves the CVMP optimally in $\mathcal{O}(n_r^3 \cdot n_S^{2 \cdot tw(\mathcal{T}_r)+3})$

• for details, see [6]:

M. Rost, E. Döhne, and S. Schmid, "Parametrized complexity of virtual network embeddings: Dynamic & linear programming approximations," in ACM SIGCOMM Computer Communication Review. ACM, 2019.

10

Polynomial Time Constant Approximation for Cost VNEP

LP Relaxation of Cost VNEP

LP Formulation 1: Enumerative Cost VNEP – Primal						
min r	$\sum_{\in \mathscr{R}, m_r^k \in \mathscr{M}_r} f_r^k \cdot$	$c_S(m_r^k)$	(1)			
$\sum_{m_r^r \in \mathcal{M}_r}$	$f_r^k = 1$	$\forall r \in \mathcal{R}$	(2)			
$\sum_{r \in \mathscr{R}} m \in \mathscr{M}_r f_r^k A(m_r^k),$	$(x) \le d_S(x)$	$\forall x \in G_S$	(3)			
	$f_r^k \ge 0$	$r \in \mathcal{R}, \forall m_r^k \in \mathcal{M}_r$	(4)			
I D Formulation 2 : Enumerative Cost VNED Dual						
$\sum_{max} \sum_{i=1}^{n} \frac{1}{i} + \sum_{i=1}^{n} \frac{1}{i}$			(5)			
$\max \sum_{r \in \mathscr{R}} \lambda_r + \sum_{x \in \mathcal{C}} \lambda_r$	$\int_{S} \mu_x \cdot a_S(x)$		(5)			
$\lambda_r \in \mathbb{F}$	R	$\forall r \in \mathscr{R}$	(6)			
$\mu_x \leq 0$)	$\forall x \in G_S$	(7)			
$\lambda_r + \sum \mu_x \cdot A(m_r^k)$	$x \le c_S(m_r^k)$	$\forall r \in \mathcal{R}, m^k \in \mathcal{M}_r$	(8)			

- (1) minimize sum of costs of fractional embeddings
- (2) enforce each request to be fully embedded
- (3) respect capacities

Analogously for Profit VNEP

Solve LP Relaxation of CVNEP

4	Algorithm 3: Solving LP 1 via Column Generation	
	Output: optimal cost LP solution or \perp if none exists	
1 2 3	compute profit LP solution [6] with $b_r = 1$ for each $r \in \mathscr{R}$ if LP's solution profit less than $ \mathscr{R} $ then return \perp as no solution can exist	
4	initialize sets of valid mappings $\hat{\mathcal{M}}_r$ using the above LP solution	
5	do	
6	compute solution to LP 1 over mapping sets $\{\hat{\mathcal{M}}_r\}_{r\in\mathcal{R}}$	
7	foreach $r \in \mathcal{R}$ do	
8	compute minimal cost mapping \hat{m}_r using DYNVMP	
9	under costs $c_{\mu}(x) := c_{S}(x) - \mu_{x}$ for $x \in G_{S}$ if $c_{\mu}(\hat{m}_{r}) < \lambda_{r}$ then add \hat{m}_{r} to $\hat{\mathcal{M}}_{r}$	Theor
10	while any mapping violating Constraint 8 was added	0
11 return last computed <i>primal</i> LP solution		

LP Formulation 1: Enumerative Cost VNEP – Primal					
	min $\sum_{k=1}^{k}$	$f_r^k \cdot c_S(m_r^k) \tag{1}$)		
	$\sum_{m' \in \mathcal{M}} f_r^{k} = 1$	$\forall r \in \mathscr{R}$ (2)	2)		
$\sum_{r \in \mathscr{R} \ m \in \mathscr{M}}$	$\int_{-\infty}^{m_r \in \mathcal{M}_r} A(m_r^k, x) \le d_S(x)$	$\forall x \in G_S \tag{3}$	5)		
	$f_r^k \ge 0$	$r \in \mathcal{R}, \forall m_r^k \in \mathcal{M}_r $ (4))		
LP Formulation 2: Enumerative Cost VNEP – Dual					
max	$\sum_{r=1}^{\infty} \lambda_r + \sum_{r=1}^{\infty} \mu_x \cdot$	$d_S(x)$	(5)		
	$\lambda_r \in \mathbb{R}$	$\forall r \in \mathcal{R}$	(6)		
	$\mu_x \leq 0$	$\forall x \in G_S$	(7)		
$\lambda_r + \sum_{x \in G}$	$\mu_x \cdot A(m_r^k, x) \le c_s$	$S(m_r^k) \forall r \in \mathcal{R}, m_r^k \in \mathcal{M}$	l _r (8)		

rem 1: Alg. 3 solves LP 1 optimally in $\mathcal{O}\left(\mathsf{poly}\left(\sum_{r\in\mathscr{R}}n_r^3\cdot n_S^{2\cdot tw(\mathscr{T}_r)+3}\right)\right)$

Approximation of (the Integer) CVNEP

Algorithm 5: Approximation of Cost VNEP

Input : substrate G_S with cost $c_S : G_S \to \mathbb{R}_{\geq 0}$, requests \mathscr{R} , approx. factors α, β, γ and N rounding tries **Output:** (α, β, γ) -approx. solution whp. or \bot if none exists

1 **compute** optimal fractional cost LP solution using Algorithm 3 2 **if** LP solution is \perp **then**

3 \lfloor return \perp // no feasible embedding exists

// post-process: prune costly mappings 4 foreach $r \in \mathcal{R}$ do

compute $WC_r \leftarrow \sum_{m_r^k \in \hat{\mathcal{M}}_r} f_r^k \cdot c_S(m_r^k)$ **set** $f_r^k \leftarrow 0$ for $m_r^k \in \mathcal{M}_r$ with $c_S(m_r^k) > \alpha \cdot WC_r$ **normalize** weights such that $\sum_{m_r^k \in \hat{\mathcal{M}}_r} f_r^k = 1$ holds again **do** // perform randomized roding **foreach** $r \in \mathcal{R}$ **embed** r **using** m_r^k **with probabil while** solution not (α, β, γ) -approximate and $\leq N$ tria **Theorem 2:** Algorithm 5 (α , β , γ)-approximates CVNEP.

Approximation ratios β , γ (for node and edge capacity exceedance, resp.) are:

$$\begin{split} \beta &= \alpha/(\alpha - 1) + \varepsilon \cdot \sqrt{2 \cdot \Delta(V_S) \cdot \log(n_S)} \\ \gamma &= \alpha/(\alpha - 1) + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(m_S)} \\ \text{with } \Delta(X) &= \max_{x \in X} \sum_{r \in \mathscr{R}: d_{\max}(r, x) > 0} (A_{\max}(r, x)/d_{\max}(r, x))^2 \\ \text{being the maximal sum of squared maximal allocation-to-capacity ratios over the resource set X and the maximum demand-to-capacity ratio \varepsilon} = \max_{r \in \mathscr{R}, x \in G_S} d_{\max}(r, x)/d_S(x). \end{split}$$

R untime in

$$\mathcal{O}\left(\mathsf{poly}\left(\sum_{r\in\mathscr{R}}n_r^3\cdot n_S^{2\cdot tw(\mathscr{T}_r)+3}\right)\right)$$

differs from profit version by pruning costly mappings

Evaluation

Synthetic Experiments

Substrate: cactus graphs (model industrial communication networks)

Request: series-parallel graphs (model control loops, map-reduce apps, etc.)

 Both graphs are randomly generated with 2x more nodes in request graphs than in substrate

cactus <u>https://www.graphclasses.org/classes/gc_108.html</u> series-parallel: <u>https://www.graphclasses.org/classes/gc_275.html</u>

Cost-Efficient Embedding of Virtual Networks W ith and W ithout Routing Flexibility

Synthetic Experiment Results (1/2)

- Relative rounding time of running without routing constraints to with routing constraints.
- Only 4-8% of time required for rounding solutions **without**
- Reason: with routing constraints more valid embeddings are generated (Algoritm 3 runs longer)

Synthetic Experiment Results (2/2)

- Relative integer cost between the two variants
- Cost are not really influenced by the problem variant
- Shortest path routing is a good edge embedding

18

Topology Zoo Substrates

GtsHungary (30 nodes)

series-parallel request graphs as for purely synthetic evaluation

Geant2012 (40 nodes)

SwitchL3 (42 nodes)

Cost-Efficient Embedding of Virtual Networks W ith and W ithout Routing Flexibility

Topology Zoo Results ratio 0 Max node load 3.0 2.5 0 GtsHungary SwitchL3 Geant2012

- Max node load : node capacity violation (violation bound is 5.0)
- Networks with mores nodes have higher max violation on average
- Reason: DynVMP tends to collocate nodes, rounding can only work from those generated mappings

Conclusion

- Virtual Network Embedding Problem (VNEP) is fundamental and intensively studied
- First constant approximation for cost VNEP
- Consider VNEP with fixed routing paths
- Simulation results on synthetic and real-world topologies show applicability