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Introduction: Virtual
Network Embeddings
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e V :request (virtual) nodes

=
=

* ECVxV, :request(virtual) edges Substrate : weighted graph G¢ = (V, Eg, d¢)
directed data flow between request nodes.
e Element x €V ,UE, has demand d,(x)=0 e V :physical machines
e.g., CPU, memory, bandwidth requirements e E. :physical communication links
e Elementx € Vg UE; has capacity ds(x)=0
e Forrequestgraphr€eR, e.g., CPU, memory, bandwidth, etc.)
n=[V,|and m=[E,| e n=[Viand m=[E|
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Embedding of Virtual Networks

Virtual Network Substrate (Physical Network)

Given a set of requests R, we want to: [
A

e Map virtual element to

@

substrate element,

s.t. the mapping is valid + feasible,

D
3]

e valid:

Cost of mapping a request r:

respects restrictions (e.g., avoids

distant substrate nodes, or substrate e A(m,x) : resource allocation induced by valid mapping
) o o m, on substrate element x € G¢
links raising security issues) ® C5(x) :unit cost of substrate resource xeGg
o feasible: e Cost of a mapping m,of r is defined as:
valid + respects substrate capacities cs(m;) =Y xegg Cs(X) - A(my, x)
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Problem Versions

Cost Valid Mapping Problem (CVMP):

return valid minimal cost mapping m.or request r
on substrate s, if one exists f

Cost Virtual Network Embedding Problem
(CVNEP): return minimal cost feasible
embedding M; for the request set R on

substrate s, if one exists.

Profit Virtual Network Embedding Problem
(PVNEP): Given a profit b,>0 for each request
reR, return feasible embedding of a subset of
requests R'SR maximizing the profit 2, .z b

re

VNEP without Routing Flexibilities . Given a
routing P, a mapping m, is valid if each virtual
edge takes the path predefined in P. Under this
adaptation, CVNEP and PVNEP return a feasible
embedding minimizing the cost or maximizing
the profit for a request set R.

(a, B, v) -approximation of the CVNEP (or
PVNEP):
o atmosta> 1 times the cost (or at least 1/a times
the profit) of an optimal solution
o allocations on nodes and edges within factors of 8
> 1 and y = 1 of the original capacities respectively,
with high probability (whp).
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Contributions



Main Contributions

e polynomial-time approximation for the general Cost VNEP

o

o

via randomized rounding

first polynomial-time approximation algorithm with provable guarantees on embedding cost

e defining novel variant of VNEP where routes cannot be optimized,
(e.g., due to performance considerations or technological constraints)

o

adapting algorithms and approximation guarantees
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Preliminaries



Tree Decompositions

pair 7, = (T, ,B)),

undirected tree T =(V,E;) and a family of node

bags B,={B;} t eV; with B,CV, s.t.:

o fornodei€V, setof tree nodes containing i is
connected in T,

o each node and each edge is contained in at least one
bag.

small if no two adjacent bags B ; and B, s.t. B; € B,
treewidth: max. bag size minus 1

treewidth fw(G,} minimum widths among all
decompositions

Computing a tree decomp. of minimal width is
FPT-tractable

...and can be transformed into a small decomp. in
linear time

VM,

Graph G, VM, VM,

Customer FW Internet

VI\"L'{ .) A% I\’I4

Backend, Backend,

Bags B,

Tree T,

In practice, request graphs are of low tree -width.
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Stefan Schmid

Solving the Cost Valid Mapping Problem

Algorithm 1: DynVMP: Computing Optimal Valid Mappings
Input :substrate Gg, request Gy, tree decomposition 7
Output:valid mapping of minimal cost or L if none exists

e Given a tree decomposition T, of request graph r, algorithm DynVMP solves the CVMP
optimally in G (n,3 ng2tWITn+3)

e for details, see [6]:
M. Rost, E. Déhne, and S. Schmid, “Parametrized complexity of virtual network
embeddings: Dynamic & linear programming approximations,”in ACM SIGCOMM
Computer Communication Review. ACM, 2019.
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Polynomial Time
Constant Approximation
for Cost VNEP



LP Relaxation of Cost VNEP

LP Formulation 1: Enumerative Cost VNEP — Primal

min Y o fFestmb (1)
reﬁ,mfeﬂr
Y k= YreR (2)
mhe,
S fFamE o= ds) Vxe Gg 3)
reR,m. e,
*=o0 re RNmke t, (4)

LP Formulation 2: Enumerative Cost VNEP — Dual

max » Ay+ ) py-ds(x) (5)
TER xeGg

Ar€R Yre®x (6)

Uy <0 VxeGs (7)

Art ). ,ux-A(mf,x)s cs(m’,f) Vre%,mfeﬂr (8)

xeGg

(1) minimize sum of costs of fractional embeddings
(2) enforce each request to be fully embedded
(3) respect capacities

Analogously for Profit VNEP
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Solve LP Relaxation of CVNEP

Algorithm 3: Solving LP 1 via Column Generation

LP Formulation 1: Enumerative Cost VNEP — Primal

Output: optimal cost LP solution or L if none exists

1 compute profit LP solution [6] with b, =1 for each re #
2 if LP’s solution profit less than |%| then

£ 4 =

10
11

L return | as no solution can exist

initialize sets of valid mappings .#, using the above LP
solution
do
compute solution to LP 1 over mapping sets {4y}, cqp
foreach r € #Z do
compute minimal cost mapping 72, using DYNVMP
under costs cu(x) = cg(x) — uy for x € Gg
if ¢, (/i) <A, then add 7, to 4,

while any mapping violating Constraint 8§ was added
return last computed primal LP solution

min Y frk'c‘s(m,]-c) H
re®,mke d,
DN AES! Vre® )
mLeMy,
Y fFamt, < dsw VxeGs 3)
rER,m €My
k>0 re@Nmke u, 4)

LP Formulation 2: Enumerative Cost VNEP — Dual

max Y A+ Y piy-dg(x)

reR x€Gg
AreR Vre®
Ux <0 VxeGg

Ar + Z ,ux-A(mf,x)s cs(mf) VrE%,mfeﬁr
xeGs

(6))
©)
)
®)

Theorem 1: Alg. 3 solves LP 1 optimally in

o (P0|y (Zreg;z nd- ng-nv(g;)ﬂ))
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Approximation of (the Integer) CVNEP

Algorithm 5: Approximation of Cost VNEP

Input : substrate Gg with cost cg: Gs — Rxq, requests %,
approx. factors a, f,y and N rounding tries
Output: (a, ,7)-approx. solution whp. or L if none exists

1 compute optimal fractional cost LP solution using Algorithm 3
2 if LP solution is L then
| return L // no feasible embedding exists

10

// post-process: prune costly mappings
foreach r € Z do

compute WCj; ‘_meeﬁ, fF-cs(mk
set fr]c — 0 for m],f € .y with cs(mf) >a-WCy

normalize weights such that 3.« _ - f,fC =1 holds again

do // perform randomized r

| foreach r € Z embed r using mff with probabil
while solution not (a, B,v)-approximate and < N tri

]

ing

differs from profit version by pruning costly mappings

Theorem 2: Algorithm 5 (o, B, y)-approximates CVNEP.

A pproximation ratios 8, y (for node and edge capacity
exceedance, resp.) are:

B=all@—1)+¢e-1/2-A(Vs)-log(ns)

y=al(@-1)+e-\/2- A(Es)-loglms)
with A(X) = maXxEXZre%:dmax(r,xbo(Amax(r, X)/ Amax (1, x))z
being the maximal sum of squared maximal allocation-to-
capacity ratios over the resource set X and the maximum
demand-to-capacity ratio € = MaXrex xeGs Amax (1, X)/ ds ().

Runtime in o (p0|y (Zr(—:,@ n? ) né-m(ﬂ})%n
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Evaluation
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Synthetic Experiments

_________

Substrate: cactus graphs
(model industrial communication networks)

Request: series-parallel graphs
(model control loops, map-reduce apps, etc.)

ey

J. Keller et. al. PEELSCHED: a Simple

1
1
[ 1
i I €y d Parallel Scheduling Algorithm f
- " 1 and Parallel Scheduling Algorithm for
series :Iu :‘.:: Static Taskgraphs, PARS: Parallel-
! [ Algorithmen, -Rechnerstrukturen und -
| 3
pa ra”el ::_!_'_‘_‘_‘_‘_’ | Lo ! :|: Systemsoftware: Vol. 28, No. 1.
1

Gesellschaft fur Informatik e.V.. (S.
100-109). DOI: 10.1007/BF03341989

e Both graphs are randomly generated
with 2x more nodes in request graphs
than in substrate

https://en.wikipedia.org/wiki/Cactus_graph

cactus https://www.graphclasses.org/classes/gc_108.html

series-parallel: https://www.graphclasses.org/classes/gc_275.html
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VNEP without/with routing

relative Rand. Round. time

Synthetic Experiment Resulits (1/2)
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Substrate network node count
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Relative rounding time of running
without routing constraints to with
routing constraints.

Only 4-8% of time required for
rounding solutions without
Reason: with routing constraints
more valid embeddings are
generated (Algoritm 3 runs longer)
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Synthetic Experiment Resulits (2/2)

1.002- o T

1.000{ — =—— =e= 1

0.998; J—

0.9961 o °

10 20 30 40 50 60
Substrate network node count

VNEP without/with routing relative cost

Relative integer cost between the
two variants

Cost are not really influenced by the
problem variant

Shortest path routing is a good edge
embedding
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Topology Zoo Substrates

GtsHungary (30 nodes)

Geant2012 (40 nodes)

series-parallel
request graphs as
for purely synthetic
evaluation

SwitchlL3 (42 nodes)
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Topology Zoo Results

e Max node load : node capacity

®) o s .
‘= 4.0 violation (violation bound is 5.0)
© . T e Networks with mores nodes have
y®) higher max violation on average
g 3.57 e Reason: DynVMP tends to collocate
6 nodes, rounding can only work from
- 3.0 l those generated mappings
O 1
5 2.5 T
=

o

Geant2012 GtsHLjnga ry SwitchL3
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Conclusion

e Virtual Network Embedding Problem (VNEP) is
fundamental and intensively studied

e First constant approximation for cost VNEP

e Consider VNEP with fixed routing paths

e Simulation results on synthetic and real-world
topologies show applicability
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