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Request and Substrate Graphs

Substrate :  w eighted graph GS = (V S, E S, dS)

● V S : physical machines

● E S : physical communication links

● Element x ∈ V S ∪E S has  capacity dS(x)≥0

e.g., CP U, memory, bandw idth, etc.)

● ns=|V s| and ms=|E s|

Request : directed w eighted graph Gr=(V r, E r, dr)

● V r : request (virtual) nodes 

● E r⊆V r×V r : request (virtual) edges 

directed data flow  betw een request nodes.

● Element x ∈V r∪E r has demand dr(x)≥0

e.g., CP U, memory, bandw idth requirements

● For request graph r ∈ R  , 

nr=|V r| and mr=|E r| 
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Embedding of Virtual Networks

Cost of mapping a request r:

● A (mr,x) : resource allocation induced by valid mapping 
mr on substrate element x ∈ GS

● cS(x) : unit cost of substrate resource x∈GS

● Cost of a mapping mr of r is  defined as:

Given a set of requests R , w e w ant to:

● Map virtual element to 

substrate element,  

s .t. the mapping is  valid + feasible, 

● valid : 

respects restrictions (e.g., avoids 

distant substrate nodes, or substrate 

links raising security issues)

● feasible : 

valid + respects substrate capacities
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Problem Versions

● VNEP without Routing Flexibilities . Given a 
routing P , a mapping mr is valid if each virtual 
edge takes the path predefined in P . Under this 
adaptation, CV NEP  and P V NEP  return a feasible 
embedding minimizing the cost or maximizing 
the profit for a request set R .

● (α, β, γ) -approximation of the CV NEP  (or 
P V NEP ):
○ at most α > 1 times the cost (or at least 1/α times 

the profit) of an optimal solution
○ allocations on nodes and edges within factors of β

≥ 1 and γ ≥ 1 of the original capacities respectively, 
with high probability (whp).

● Cost Valid Mapping Problem (CVMP):

return valid minimal cost mapping mror request r 

on substrate s , if one exists f

● Cost Virtual Network Embedding Problem 

(CVNEP): return minimal cost feasible 

embedding MR  for the request set R  on 

substrate s , if one exists.

● Profit Virtual Network Embedding Problem 
(PVNEP): Given a profit br≥0 for each request 
r∈R ,  return feasible embedding of a subset of 

requests R ’⊆R  maximizing the profit Σr ∈R br.
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Contributions
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Main Contributions

● polynomial- time approximation for the general Cost V NEP

○ via randomized rounding

○ first polynomial- time approximation algorithm with provable guarantees on embedding cost

● defining  novel variant of V NEP  w here routes cannot be optimized, 
(e.g., due to performance considerations or technological constraints)

○ adapting algorithms and approximation guarantees 
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Tree Decompositions

In practice, request graphs are of low tree -width.

● pair Tr = (Tr ,Br) , 
● undirected tree Tr=(VT,ET) and a family of node 

bags Br={Bt} t ∈V T w ith B t⊆V r, s .t.:
○ for node i ∈ V r, set of tree nodes containing i is  

connected in Tr,
○ each node and each edge is contained in at least one 

bag.
● small if no two adjacent bags B 1 and B2 s.t. B1 ⊆ B2
● treewidth: max. bag size minus 1 
● treewidth tw(Gr): minimum w idths among all 

decompositions
● Computing a tree decomp. of minimal width is 

FPT-tractable
● ...and can be transformed into a small decomp. in 

linear time
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Solving the Cost Valid Mapping Problem

● Given a tree decomposition T r of request graph r, algorithm DynV MP  solves the CV MP  
optimally in

● for details , see [6]:
M. R ost, E . Döhne, and S . S chmid, “P arametrized complexity of virtual netw ork 
embeddings: Dynamic & linear programming approximations,”in A CM S IGCOMM 
Computer Communication R eview . A CM, 2019.
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Polynomial Time 
Constant Approximation 
for Cost VNEP
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LP Relaxation of Cost VNEP

(1) minimize sum of costs of fractional embeddings
(2) enforce each request to be fully embedded
(3) respect  capacities
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Analogously for Profit VNEP
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Solve LP Relaxation of CVNEP

Theorem 1: Alg. 3 solves LP 1 optimally in
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Approximation of (the Integer) CVNEP

Theorem 2: A lgorithm 5 (α, β, γ)- approximates CV NEP .

A pproximation ratios β, γ (for node and edge capacity 
exceedance, resp.) are:

R untime in 
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Evaluation
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Synthetic Experiments
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S ubstrate: cactus graphs
(model industrial communication netw orks)

R equest: series- parallel graphs 
(model control loops, map- reduce apps, etc.)

cactus https://www.graphclasses.org/classes/gc_108.html
series- parallel: https://www.graphclasses.org/classes/gc_275.html

J. Keller et. al. P EELS CH ED: a S imple 
and P arallel S cheduling A lgorithm for 
S tatic Taskgraphs, P A R S : P arallel-
A lgorithmen, - R echnerstrukturen und -
S ystemsoftware: V ol. 28, No. 1. 
Gesellschaft für Informatik e.V .. (S . 
100- 109). DOI: 10.1007/B F03341989 

https://en.wikipedia.org/wiki/Cactus_graph

cactus series-
parallel

● B oth graphs are randomly generated 
w ith 2x more nodes in request graphs 
than in substrate

https://www.graphclasses.org/classes/gc_108.html
https://www.graphclasses.org/classes/gc_275.html
https://en.wikipedia.org/wiki/Cactus_graph
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Synthetic Experiment Results (1/2)

● R elative rounding time of running 
without routing constraints to with 
routing constraints.

● Only 4- 8%  of time required for 
rounding solutions without 

● R eason: with routing constraints 
more valid embeddings are 
generated (A lgoritm 3 runs longer) 
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Synthetic Experiment Results (2/2)

● R elative integer cost betw een the 
tw o variants

● Cost are not really influenced by the 
problem variant

● S hortest path routing is  a good edge 
embedding
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Topology Zoo Substrates
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GtsH ungary (30 nodes)

Geant2012 (40 nodes)

S w itchL3 (42 nodes)

series- parallel 
request graphs as 
for purely synthetic 
evaluation
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Topology Zoo Results

● Max node load : node capacity 
violation (violation bound is  5.0) 

● Netw orks w ith mores nodes have 
higher max violation on average

● R eason: DynV MP  tends to collocate 
nodes, rounding can only w ork from 
those generated mappings
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Conclusion
● V irtual Network Embedding P roblem (V NEP ) is  

fundamental and intensively studied
● First constant approximation for cost V NEP
● Consider V NEP  with fixed routing paths
● S imulation results on synthetic and real- world 

topologies show applicability 
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