
Demand-Aware Plane Spanners of Bounded Degree
Esra Ceylan Klaus-Tycho Foerster Stefan Schmid Katsiaryna Zaitsava

Faculty of Computer Science, University of Vienna, Austria

Abstract—Plane spanners of bounded degree are efficient
communication backbones for networks. However, while existing
spanners provide attractive guarantees in the worst-case, they are
demand-oblivious and may hence be suboptimal under specific
traffic demands. This paper thus initiates the study of demand-
aware plane spanners of bounded degree, geometric spanners
whose topology accounts for the actual communication traffic.
We show that demand-awareness can significantly reduce the
distance travelled per bit, and present a spanner which exploits
topological flexibilities to account for the demand, without losing
the desirable guarantees of demand-oblivious spanners, namely
constant stretch and degree. We complement our analytical
results with further heuristic improvements and a simulation
study exploring the benefits of demand-awareness under realistic
traffic traces.

I. INTRODUCTION

Plane and geometric spanners are fundamental building
blocks of efficient communication networks. For example,
such spanners enable efficient unicast, multicast, and/or broad-
cast operations in wireless ad-hoc and sensor networks [1]. For
these applications, it is usually desirable that these spanners
minimize the stretch factor: they should approximately pre-
serve distances among the nodes in the network. Furthermore,
typically the spanners should be planar and of bounded degree
for scalability reasons. Conceptually similar challenges and
trends also exist when provisioning fiber-optic paths in wide-
area networks [2], in inter-satellite networks [3], and in mixed
ground-satellite networks [4], [5].

This paper is motivated by the observation that exist-
ing plane spanners may provide suboptimal communication
topologies because they are demand-oblivious: all communi-
cation pairs are treated equally, independently of their actual
communication demand (e.g., the number of transferred bits).
In practice, however, communication patterns typically fea-
ture much spatial structure, and some communication pairs
may communicate more frequently than others. This may
be exploited. For example, a sink in a sensor network may
have to collect measurement data from all other nodes, or
only communicate with nodes in their geographic proximity
for event detection. Given these specific patterns, it can be
beneficial to optimize spanners in a demand-aware manner:
rather than optimizing for all communication pairs equally,
the spanner optimizes for the communication pairs relatively
to their demand. In particular, in this paper we ask the
following questions:

• Given a set of nodes distributed arbitrarily on the Eu-
clidean plane with pairwise communication demands,
how to design a spanner of bounded degree and low
stretch accounting for the demands?

• How much benefit do these designs yield over demand-
oblivious approaches under realistic traffic traces?

• What further optimizations can we obtain by heuristic
means and by dropping the planarity requirement?

A. Motivation

We highlight the advantages of demand-aware geomet-
ric spanners in a small example. Consider the four nodes
v1, v2, v3, v4 and their placement in the plane in Fig. 1.

When each node can create three connections, subject to
planarity, the rhombus design on the left side of Fig. 1 is
optimal in the demand-oblivious model in which the maximal
stretch needs to be minimized: the shortest distance in the
network divided by the direct distance, for any two nodes. As
a matter of fact, the only meaningful design choice is whether
to connect v1 with v3 or v2 with v4. For the first pair, the
detour via v2 or v4 is much longer than the direct connection
via e1, whereas for the second pair of v2 and v4, the detour
via v1 or v3 is small in comparison to e2.

However, if demands are known, it can be beneficial to re-
configure and adapt the network design. For example, consider
the scenario where large amounts of traffic need to be routed
between v2 and v4, dwarfing demands between v1 and v3.
Now, it is much more advantageous to directly connect v2 and
v4 via e2, as shown on the right side of Fig. 1. By scaling the
demand, the absolute cost difference between the two designs
can be made arbitrarily large.

Fig. 1: Example to illustrate the benefit of demand-aware
optimizations. Each of the four nodes v1, . . . , v4 is capable
of creating three (non-crossing) direct connections. The left
design is optimal under demand-obliviousness, minimizing
stretch, whereas the right design is optimal for traffic matrices
where the demand between v2 and v4 dominates.

B. Contributions

This paper introduces the notion of demand-aware bounded-
degree plane spanners, geometric spanners whose topology
accounts for the actual communication demands. We show
that demand-awareness can significantly reduce the distance
travelled per bit, and present a spanner which exploits topolog-
ical flexibilities to account for the demand, without losing the
desirable guarantees of demand-oblivious spanners, namely
constant stretch and degree.

1

We complement our analytical results with an extensive
simulation study exploring the benefits of demand-awareness
under realistic traffic traces. Moreover, we show the optimal
demand-aware design problem to be NP-hard and provide
an integer program formulation. We also present efficient
link exchange heuristics, that yield improved demand-aware
designs, at the cost of increased computation time and stretch.

C. Organization

Our paper is structured as follows. We first provide a formal
model in §II, followed by a detailed integer program formula-
tion in §III, where we also prove the problem to be NP-hard.
Next in §IV, we present our polynomial-time demand-aware
network design algorithm with guaranteed stretch and degree
bounds. Afterwards in §V, we describe our link exchange
heuristics, followed by extensive simulations in §VI. Lastly,
we discuss related work in §VII, concluding in §VIII.

II. MODEL

We are given a set of nodes embedded arbitrarily in the
two-dimensional Euclidean plane, where every node can in
principle connect directly to any other node. Thus, the set
of nodes with all possible links forms a complete graph Kn,
where each of the n participating nodes is represented by a
vertex vj ∈ V , j ∈ {1, ... , n}. In this graph, Kn, the weight
of the edge connecting two nodes vj , vk ∈ V is given by
the Euclidean distance |vj , vk|. The communication pattern of
this network is described as an n × n matrix D with non-
negative real entries. That is, an element Dj,k of this matrix
represents the communication demand between two nodes vj
and vk, therefore we will refer to D as the demand matrix. In
this paper we will assume the communication between these
nodes to be bidirectional (undirected).

Our aim is to design a new network by extracting a (planar)
subgraph G = (V,E) of Kn which minimizes the total routing
costs. Due to physical limitations and for scalability, the
resulting graph is required to have a bounded degree. In order
to compare various graphs, we define the function plG(vj , vk),
which returns the length of the shortest path contained in G
between the nodes vj and vk. We want to minimize the sum of
the lengths of the shortest paths between the nodes, weighted
by their demand, i.e., min

∑n
j,k=1 plG(vj , vk) ·Dj,k.

We further introduce the stretch factor tj,k ∈ R≥1: for two
distinct nodes vj , vk, the stretch factor is defined as the ratio
between the length of the shortest path in a connected graph
and the Euclidean distance [6], i.e. tj,k := pl(vj , vk)/|vj , vk|.
The stretch factor t of a graph is the maximum stretch factor of
two distinct nodes in the graph, i.e. t := maxj 6=k tj,k. As a t-
spanner we will denote a connected graph with stretch factor t.
Geometrically, the stretch factor specifies by how much the
Euclidean distance is increased compared to the length of the
shortest path in Kn, i.e., the Euclidean distance.

We will assume that the given set of nodes are in general
position; in particular, the slope of the line connecting two
arbitrary points of G cannot be 0 or ±π/3. In the further
course this will ensure that the distance from two arbitrary

nodes v1, v2 to v with regard to a defined metric is not equal.
Otherwise ties can be broken arbitrarily by ordering points that
have the same distance from v, e.g. using a counterclockwise
ordering (see also [1]).

III. OPTIMAL DEMAND-AWARE SPANNERS

An optimal demand-aware spanner can be computed using
an integer program formulation. In the following, we present
such a program in detail. While the resulting runtime may
be superpolynomial, we will subsequently show that this is
unavoidable if one desires optimal solutions, as the problem
is NP-hard. In the next section, we will then present a
polynomial-time approximation algorithm.

A. Mixed Integer Program Formulation
Constants: Given a network topology with n nodes in the

two-dimensional Euclidean plane, xj resp. yj represents the x-
resp. y-coordinate of a node vj and Djk ∈ R+

0 is the demand
between two nodes vj , vk ∈ V . With

dist(vj , vk) = |vj , vk| =
√
(xj − xk)2 + (yj − yk)2

we will denote the Euclidean distance between two nodes
vj , vk. Furthermore, max degree is the upper bound for the
number of edges incident to a vertex.

Variables: The boolean exist(vj , vk) is set to 1 if the edge
between the nodes vj and vk exists in our graph and we set
the boolean zsrjk to 1 if the edge between the nodes vj and vk
is used in the path from vs to vr.

Objective: Our goal is to minimize the length of the shortest
path for each communicating pair according to their demands.

min

n∑
j,k=1

(
plG(vj , vk) ·Djk

)
Constraints: Edges must exist for use in communication:

zsrjk ≤ exist(vj , vk) ∀j, k, s, r

Moreover, we are considering an undirected graph.

exist(vj , vk) = exist(vk, vj) ∀j, k

Path length: The length of the path between nodes s, r is
the sum of the length of every edge traversed along the path.

plG(vs, vr) =
n∑

j,k=1

(
zsrjk · dist(vj , vk)

)
∀s, r

Bounded degree: In our model the maximum degree of the
graph is bounded by max degree, hence the degree of every
node needs to be bounded by max degree.

n∑
k=1

exist(vj , vk) ≤ max degree ∀j

Flow conservation: A flow that enters a node must leave
it, with the exception of the start and end nodes.

n∑
j=1

(
zsrjk − zsrkj

)
=

−1, if k = s,

1, if k = r,

0, otherwise,
∀k, s, r

2

Connectivity: To obtain a connected graph at least one edge
has to be used in the path between two nodes s and r.

1 ≤
n∑

j,k=1

zsrjk ∀s, r

Planarity: For this constraint we need to define some new
constants. We can determine if two edges (vj , vk), (vl, vm)
are parallel or not with the constant

pjklm := (yk − yj) · (xm − xl)− (xk − xj) · (ym − yl).

The edges (vj , vk), (vl, vm) are parallel iff pjklm = 0. Let
λjklm, µjklm ∈ R be defined as

λjklm :=

{
(xj−xl)·(ym−yl)−(yj−yl)·(xm−xl)

pjklm
, pjklm 6= 0,

0, pjklm = 0,

µjklm :=

{
(xj−xl)·(yk−yj)−(yj−yl)·(xk−xj)

pjklm
, pjklm 6= 0,

0, pjklm = 0.

Two edges (vj , vk), (vl, vm) are parallel or do not intersect
iff λjklm /∈ (0; 1) or µjklm /∈ (0; 1). Additionally, we need
a large enough constant C > 0. Next, we want to model the
following disjunctive constraint for planarity

λjklm ≤ 0 ∨ λjklm ≥ 1 ∨ µjklm ≤ 0 ∨ µjklm ≥ 1.

To achieve this we will define the boolean variables a1jklm,
a2jklm for the two cases of λjklm and b1jklm, b2jklm for the two
cases of µ.

The following constraints should hold for all j, k, l,m. For
λjklm and µjklm at most one of the two cases can occur.

a1jklm + a2jklm ≤ 1, b1jklm + b2jklm ≤ 1

If two edges do not exist, λjklm and µjklm do not matter.

0 ≤
(
exist(vj , vk) + exist(vl, vk)

)
−
(
a1jklm + a2jklm

)
,

0 ≤
(
exist(vj , vk) + exist(vl, vk)

)
−
(
b1jklm + b2jklm

)
If both edges exist, one case of λjklm or µjklm has to occur.(

exist(vj , vk) + exist(vl, vk)
)

−
(
a1jklm + a2jklm + b1jklm + b2jklm

)
≤ 1

Then, λjklm or µjklm should be at most 0 or at least 1.

λjklm ≤ C · (1− a1jklm), 1− C · (1− a2jklm) ≤ λjklm,
µjklm ≤ C · (1− b1jklm), 1− C · (1− b2jklm) ≤ µjklm.

B. NP-Hardness
We can show the problem of designing geometric demand-

aware networks to be NP-hard, by reduction from the NP-hard
Euclidean Traveling Salesman Problem in the path variant [7].
Our proof relies on minimizing the routing distance between
the path’s endpoints, while enforcing all-to-all connectivity.
This initial construction relies on small degrees of one respec-
tively two, which we then extend by means of additional nodes
and demands to any fixed degree bound of four or larger.

We defer the proof details to the Appendix.
Theorem 3.1: Designing a geometric demand-aware network

with minimum route length is NP-hard.

IV. A POLYNOMIAL-TIME DEMAND-AWARE SPANNER

This section presents and analyzes our proposed
polynomial-time approximation algorithm to design a
constant-degree spanner which achieves a provably low
stretch and allows to account for communication demands.
Our algorithm builds upon the traditional (demand-oblivious)
construction by Bonichon et al. [1], but we observe and
exploit flexibilities in this construction, using alternative links
which can optimize the topology in a demand-aware manner.

To this end, we first closely follow Bonichon et al.’s
construction in §IV-A, §IV-B and then present how to exploit
demand-awareness in §IV-C, showing that it can significantly
improve the total cost.

In a nutshell, our algorithm proceeds as follows. Starting
with n points v1, ... , vn in the two-dimensional Euclidean
plane and a matrix D ∈ Rn×n

+ , the goal is to obtain a
connected graph G = (V,E) with V = {v1, ..., vn} of
bounded degree. E is the set of edges of our graph G. An edge
e = (vj , vk), j, k ∈ {1, ... , n}, is weighted with its length, the
Euclidean distance |vj , vk|. The entries Djk of the n×n matrix
D are the nonnegative demands between two points vj and vk.

The algorithm begins with the complete Euclidean graph
Kn and step by step selects specific edges to reduce the
degree of the graph. To this end, for each node, we first in
§IV-A subdivide the plane into six conic regions, alternatingly
denoted as positive and negative cones. Then in §IV-B, each
node selects for each positive cone just one edge to remain.
However, in the negative cones, a node could still be connected
to every other node in the worst case. Hence, in §IV-C we
reduce the number of edges in negative cones to at most
three. Moreover, we also guarantee that the resulting maximum
degree is bounded by 9 and that our construction results in a
10-spanner of Kn. Afterwards in §IV-D, we investigate the
demand-awareness of our method and give an example where
we improve over the work of Bonichon et al. [1] by a factor
of three. In addition, we show that our method is efficient,
incurring at most quadratic run time.

A. Defining the Building Blocks: The Cones of a Node

Our algorithm revolves around the cones of a point v.
Definition 4.1: A cone is the area between two non-parallel

rays in the plane with the intersection point as its apex.
To obtain the cones required for this algorithm, we translate

the positive x-axis to our point v and then rotate this half-line
counterclockwise by angles of kπ/3 with k = 0, 1, ..., 5 (see
Fig. 2). Each pair of successive rays defines a cone with apex
v. In this way we obtain six cones Cv for a node v, which
are all congruent to each other.

We will distinguish between two types of cones, positive
and negative cones. Opposite of a positive cone Cv

i is the
corresponding negative cone Cv

i . Moreover, the clockwise and
counterclockwise neighboring cones cannot be of the same
type. Starting at the upper half, the cone in the middle is
named Cv

1 and the negative cone on the opposite is labeled
Cv

1 (see Fig. 2). The labeling continues counterclockwise and
follows the rules above, which means that the next positive

3

Fig. 2: Projective distance and parent of a cone

cone after Cv
1 is labeled Cv

2 and the last one Cv
3 . Hence, we

get the cone-sequence
(
Cv

1 , C
v
3 , C

v
2 , C

v
1 , C

v
3 , C

v
2

)
. We need a

cyclic numbering of the cones so that i±1, i = 1, 2, 3, is well-
defined. As one can see, the counterclockwise neighboring
cone of a positive cone Cv

i is the negative cone Cv
i−1 and the

clockwise neighbor is Cv
i+1. The same applies to a negative

cone Cv
i . We will use the variable i only for the numbering

of the cones thus omit specifying i = 1, 2, 3. Moreover, this
numbering has the property that u ∈ Cv

i ⇔ v ∈ Cu
i .

Let bCv
i

resp. bCv
i

be the bisector ray of the cone Cv
i resp.

Cv
i . To select specific nodes in each cone, we have to define

the function dP (v, v1) for two points v, v1.
Definition 4.2: The projective distance dP (v, v1) between

a node v and v1 ∈ Cv
i resp. v1 ∈ Cv

i returns the Euclidean
distance between v and the projection of v1 onto the bisector
bCv

i
resp. bCv

i
.

We observe that the projective distance is symmetric, i.e.
dP (v, v1) = dP (v1, v) for all nodes v, v1 ∈ V .

Definition 4.3: Given two points v1, v2 ∈ Cv
i , we say v1 is

closer to v than v2 if dP (v, v1) < dP (v, v2).
From our assumption, that the nodes in V are in general
position, we can conclude that the closest point of a cone
is uniquely defined which leads us to the following definition.

Definition 4.4: The closest point to v in a positive cone Cv
i

is called parenti(v).
See Fig. 2 for an example of the definitions above.

B. First Step: Connecting via Cones
Regarding these definitions, the algorithm starts with select-

ing edges from the complete Euclidean graph Kn as follows:
• In each positive and non-empty cone Cv

i of every node
v ∈ V select the edge (v, parenti(v)) ∈ Kn.

The resulting subgraph after this step will be called S1 =
(V,E1). Although we are constructing an undirected graph,
we will refer to the edges selected in this step as directed. An
edge e = (vj , vk) ∈ E1 is outgoing from vj and incoming at
vk, if vk = parenti(vj), i.e. the node vk is selected by the
positive cone Cvj

i of vj .
See Fig. 3 for an example of the graph S1 with eight nodes.

The corresponding positive resp. negative cones to the chosen
edges are colored red resp. blue.

Fig. 3: Example - resulting graph S1

Theorem 4.1: The subgraph S1 of Kn fulfills that 1) every
node in S1 has at most one outgoing edge in each positive
cone, 2) S1 is a 2-spanner of Kn, 3), S1 is a plane graph, and
all faces in S1 (except the outer face) are triangles.

We refer to Bonichon et al. [1] for the correctness of
Theorem 4.1. Even if the number of edges in all positive cones
of a node v is bounded by three in this graph, we do not have
a bound for the number of incoming edges in the negative
cones, i.e. the degree of S1 is still not bounded.

C. Second Step: Introduce Flexibility with Guarantees

The goal of this step is to take the graph S1 from Sec-
tion IV-B and extract a subgraph S2 with bounded degree,
while at the same time introducing flexibilities for demand-
awareness and retaining stretch guarantees. For this we more
or less reverse the first step and will now select specific edges
in each negative cone Cv

i of a point v ∈ V .
Definition 4.5: Let childreni(v) be the set of all points

vj ∈ Cv
i with an incoming edge e = (vj , v) ∈ S1 at v, i.e.

v = parenti(vj). Now we can define some special points in
childreni(v).
• closesti(v) is the closest node to v.
• firsti(v) is the first node of childreni(v) in counter-

clockwise order.
• secondi(v) is the second node of childreni(v) in coun-

terclockwise order.
• penultimatei(v) is the penultimate node of childreni(v)

in counterclockwise order.
• lasti(v) is the last node of childreni(v) in counterclock-

wise order.
These five points do not have to be defined in every negative

cone, e.g. if Cv
i = childreni(v) = ∅. If childreni(v) 6= ∅,

we always start labeling these special nodes with closesti(v).
After that, we continue labeling with the ordered nodes
firsti(v), secondi(v), penultimatei(v) resp. lasti(v). In
case closesti(u) = firsti(v), we call the node the closesti(u)
and say that firsti(v) is not defined. The same applies to the
ordered points secondi(v), penultimatei(v) resp. lasti(v).

Although we defined some special points for the negative
cones, not all of them are always relevant for us and they can
therefore be ignored. The edge (closesti(v), v), if closesti(v)
is defined, will always be picked. But to see which of the

4

Fig. 4: A node is (not) i-relevant

ordered nodes are possible candidates to be selected, we need
to verify if they are i-relevant.

Definition 4.6: A point v1 ∈ Cv
i±1 is i-relevant with respect

to v if all of the following conditions are met.
1) v1 6= closesti±1(v)
2) v1 fulfills one of the following:

a. v1 = firsti−1(v)
b. v1 = secondi−1(v) is closer to v than firsti−1(v)
c. v1 = penultimatei+1(v) is closer to v than lasti+1(v)
d. v1 = lasti+1(v)

3) v1 ∈ Cparenti(v)
i

Fig. 4 shows an example of points which are resp. are
not relevant with respect to v. The nodes first1(v) and
second1(v) fulfill all the conditions in Definition 4.5 and
hence are 2-relevant. The penultimate1(v) is not closer to v
than last1(v) and is therefore not 3-relevant. last1(v) is also
not 3-relevant because the last requirement is not fulfilled, i.e.
last1(v) /∈ Cparent3(v)

3 .
When a point is defined as special pointi±1(v), we will

just say this point is i-relevant and omit with respect to v.
To obtain a subgraph S2 = (V,E2) with bounded degree of

the graph S1 of the first step we select edges as follows:

In each negative cone Cv
i of every node v ∈ V choose the

following edges e ∈ S1 if the corresponding nodes exist, i.e.:
1) (closesti(v), v),
2) either (firsti(v), v) if firsti(v) is (i+1)-relevant

or (secondi(v), v) if secondi(v) is (i+1)-relevant,
3) either (lasti(v), v) if lasti(v) is (i-1)-relevant or

(penultimatei(v), v) if penultimatei(v) is (i-1)-relevant.

In this step we remove some edges of S1 to obtain S2.
Therefore, it is not assured that the resulting graph S2 is still
connected. We now prove that this property still holds. We give
a short sketch here and present the full proof in the Appendix.

Theorem 4.2: The subgraph S2 of S1 is planar and con-
nected.

Proof Sketch: Planarity of S2 follows from the planarity
of S1 (Theorem 4.1) and S2 ⊂ S1, as we only removed edges
from S1. To prove the connectivity of S2 we need to show that
for every removed edge (u, v) in S1 but not in S2 there exists a
path from u to v. Hence, for every node v the set childreni(v)

Fig. 5: Estimate of the length of a path between v and u

is connected. The idea is to consider two neighboring nodes
in the counterclockwise ordering of childreni(v). If these
two nodes do not have a direct connection, we can iteratively
construct a path in S2 connecting them. As we have n nodes,
we will obtain a path after finitely many steps.

A consequence of this theorem is that for two arbitrary
nodes u, v ∈ V there exists a path in S2. Let plS2

(u, v) be
the length of the shortest path in S2 between the two nodes
u, v ∈ V . We obtain the following property.

Theorem 4.3: S2 is a 10-spanner of Kn.
Proof: In combination with Theorem 4.1, we only need

to prove that S2 is a 5-spanner of S1. To obtain an upper
bound for the stretch factor of S2 in S1, we need an estimate
for the length of a path in S2 between two nodes v, u.
First, we estimate the path length plS2

(vj , vj+1) between two
neighboring nodes vj , vj+1 ∈ childreni(v) and then between
a node v and u ∈ childreni(v). For this we will consider the
rays defining the cones of vj , vj+1, the cones of the nodes in
childreni(v) and v and the intersection of these (see Fig. 5).
Moreover, we will look at an equilateral triangle in Cv

i with
v as a vertex. By using properties of our construction, e.g.
that the angle between two consecutive rays of a node is π/3,
we obtain plS2(vj , vj+1) ≤ 2|vj , vj+1| for two neighboring
nodes in the canonical path and plS2(v, u) ≤ 5|v, u| for the
path length between v and a children u of v.

We constructed this graph S2 by selecting at most one edge
in every positive cone and at most three edges in every negative
cone of a node. Hence, the maximal degree of S2 is bounded
by 12. Theorem 4.4 will provide an even better upper bound
for the degree of S2.

Theorem 4.4: The degree of S2 is bounded by 9.
Proof: By definition the edge from a node v to

closesti(v) is always contained in S2, if closesti(v) exists.
Therefore, we will prove by case differentiation that for every
i not all of the following three edges can be contained in S2:
• (parenti(v), v),
• (firsti−1(v), v) or (secondi−1(v), v),
• (penultimatei+1(v), v) or (lasti+1(v), v).
Let u = parenti(v). The first case is (u, v) /∈ S2, which

implies that the edge to parenti(v) is not in S2. Otherwise we
will consider (u, v) ∈ S2 and v being a special node. For each
case of a special node we can find an empty region whereby

5

some of the special nodes of v cannot be relevant and can
therefore not be selected.

As mentioned at the beginning of this section, the approach
used by us is based on the algorithm described in [1]. The first
selection process, explained in § IV-B, was mainly adopted
from their paper. However, an important difference to the work
of Bonichon et al. is in step 2, as this step turns our algorithm
demand-aware. In [1], besides closesti(v), only firsti(v)
and lasti(v) are considered, whereas in our construction
there is the possibility to choose between nodes, namely
between firsti(v) and secondi(v) resp. penultimatei(v) and
lasti(v). Hence, we can take the results in [1] as a base for our
method, but still had to adjust them for demand-awareness.

D. Demand-Aware Spanner and Runtime

Given the concepts above, we can now summarize our
algorithm, see Algorithm 1, and analyze its runtime. Our
algorithm is structured in two parts (the two outer for loops),
each implementing a step described in Section IV-B and IV-C.
For the first step, we have n nodes and three positive cones
per node, hence the loop in line 2 − 9 will run 3n times.
Additionally, the projective distance dP (v, u) of two nodes v
and u ∈ Cv

i can be computed in constant time and finding a
minimum in linear time. Hence, we obtain a time complexity
of O(n2) for the implementation of the first step. As noted
in the proof of Theorem 4.1 the resulting subgraph S1 after
the first step is closely related to the TD-Delaunay graph
which can be computed in O(n log n) time [8]. Therefore,
this intuitive approach with a time complexity of O(n2) can
be improved to at least O(n log n).

Let us consider the second outer for loop. Like the first, it
runs at most 3n times. Finding closesti(v) in each non-empty
negative cone and adding the corresponding edge to E2 has a
time complexity of O(n). Defining the special nodes can also
be done in linear time. Moreover, checking the if conditions
for the special nodes takes constant time. Therefore, we obtain
a quadratic time complexity for the second nested for loop
which implies O(n2) for the whole algorithm.

Theorem 4.5: Computing a demand-aware spanner with
Algorithm 1 finishes in a run time of O(n2).

To account for the demand, we observe that in the second
step of the algorithm, we have the possibility to choose in a
negative cone Cv

i between the edges
• (firsti(v), v) and (secondi(v), v) resp.
• (penultimatei(v), v) and (lasti(v), v)

if the corresponding nodes are i± 1 relevant. We exploit this
flexibility and choose based on the demand.

To give an example and illustrate the potential gain, Fig. 6
shows an example with six nodes where accounting for the
demand can reduce the total routing costs by a factor of 3.
In this example closesti(v), penultimatei(v) and lasti(v)
lie almost on the left resp. right boundary of the cone Cv

i

with penultimatei(v) and lasti(v) still being (i−1)-relevant.
Moreover, we assume |v, lasti(v)| � |v, penultimatei(v)|.

The blue edges are the edges to the closest nodes
according to negative cones, which means these edges

Algorithm 1 Geometric Demand-Aware Spanner (GDA)

Input: Set V of n nodes, n× n demand-matrix D
1: Initialize empty sets E1, E2

2: for every positive & non-empty Cv
i of each v ∈ V do

3: for u ∈ Cv
i do

4: Define dv,u := dP (v, u) (projective distance)
5: end for
6: Find up := parenti(v) with smallest proj. dist. to v
7: Add (v, up) to E1

8: Add v to childreni(up)
9: end for

10: for every Cv
i of each v ∈ V with childreni(v) 6= ∅ do

11: Find closesti(v) with smallest proj. dist. to v
12: Add (closesti(v), u) to E2

13: if |childreni(v)| ≥ 2 then
14: Define firsti(v), secondi(v), penultimatei(v),

lasti(v) in counterclockwise order in childreni(v)
15: if firsti(v) & secondi(v) are (i+ 1)-rel. then
16: Choose (v, firsti(v)) or (v, secondi(v))

according to higher demands and add it to E2

17: else if firsti(v) or secondi(v) are (i+1)-rel. then
18: Add edge from v to (i+ 1)-rel. node to E2

19: end if
20: if penultimatei(v) & lasti(v) are (i−1)-rel. then
21: Choose (v, penultimatei(v)) or (v, lasti(v))

according to higher demands and add it to E2

22: else if penultimatei(v) or lasti(v) are (i−1)-rel.
then add edge from v to (i-1)-rel. node to E2

23: end if
24: end if
25: end for

Output: Connected and planar graph S2 = (V,E2) with
stretch factor t ≤ 10 and maximum degree 9

are selected independently of the demand, but the neg-
ative cone Cv

i has the option to select between the
edge to penultimatei(v) resp. lasti(v) (corresponding
edges are colored red). By selecting the edge (lasti(v), v)
we obtain additional routing costs arbitrarily close to
2 |v, penultimatei(v)| · Demand(v, penultimatei(v)), but
selecting (penultimatei(v), v) would cause arbitrarily small
costs. Assuming the demand of v to penultimatei(v) is
much higher than to lasti(v), the total routing costs to
penultimatei(v) and lasti(v) are arbitrarily close to three
times higher when selecting the edge (lasti(v), v).

Theorem 4.6: Computing a demand-aware spanner with
Algorithm 1 can improve the path length objective by a factor
of at least arbitrarily close to 3 over the construction by
Bonichon et al. [1].

V. IMPROVING DEMAND-AWARE SPANNERS FURTHER

In the previous section, we pointed out the topological
flexibilities offered by our spanner construction, and how they
can be exploited to render the network more demand-aware,
while preserving approximation guarantees.

6

Fig. 6: Example - cost effectiveness of including the demand

In the following, we will build upon this algorithm and
propose two heuristics to improve the demand-awareness
further. We present a Link Exchange algorithm to improve
the objective value for a given graph. In this algorithm, we
consider all the edges which are not contained in the given
graph and sort them in descending order according to the
demand between their endpoints. Our approach is to attempt to
insert one of these edges at a time and check if this improves
the objective, while maintaining degree bounds. To maintain
planarity, the algorithm first removes the intersecting links in
our graph with the considered edge. Next, the objective value
is computed. If it is infinite, we cannot serve all demands
and can therefore investigate the next edge in the list, else
we continue with the degree constraint. If the degree of both
vertices of the edge is still at most nine, we can continue.
Otherwise, we have to remove one or two edges at the
endpoints, where the algorithm computes all possible objective
values, chooses the smallest one and compares this with the
initial value. Once we checked all edges, we start with the
next iteration, containing all edges not present in the current
network design. If there are no changes after a complete
iteration, the algorithm terminates.

To study the costs incurred by considering only planar
graphs, we can also specify a non-planar link exchange
algorithm, where the check for intersecting edges is skipped.

VI. EVALUATION

To evaluate the efficiency of our algorithms in realistic sce-
narios, we conducted several experiments using real topologies
and considering both real and synthetic traffic matrices. We
next discuss our methodology and the obtained results.

A. Methodology

We implemented and compare four different algorithms. We
start with the state-of-the art spanner algorithm from Bonichon
et al. [1] which does not take the demands into account,
henceforth referred to as Oblivious. We compare Oblivious to
our geometric demand-aware spanner Algorithm 1, denoted as
GDA, which improves the local selection of links according
to traffic sizes. On top of GDA, we then perform our link
exchange approach, evaluating both planar (LE+P) and non-
planar (LE+NP) variants, where we apply the same upper

degree bound of nine as for GDA (Thm. 4.4). To bound the run
time for LE+P/NP, we observed that the improvement after the
first iteration through all links was almost negligible and we
hence bound the number of iterations to two. Moreover and in
the same fashion, we also cap the run time of all algorithms to
103, returning the then best-so-far obtained result. Along the
same lines, we omit the MIP results due to their excessive time
complexity, as our link exchange algorithms already perform
very close to a lower cost bound provided by Kn.

B. Experimental Setup

The performed experiments can be divided into two parts
based on the origin of the input data: 1) real topologies and
real demand matrices, and 2) real topologies and synthetically
generated demand matrices. We choose the Geant topology
from the SNDlib library [9] as an example of real topology in
the first part and consider 100 different real demand matrices.
In the second part, 150 topologies from Topology Zoo [10]
are considered with the number of vertices ranging from 20
to 90. Per topology, 10 demand matrices were generated using
a standard gravity model [11]; for this purpose, an exponential
distribution was utilized with setting the scale to 1,000. Herein,
the average of the results of all experiments with the equal
number of nodes was calculated.

Four aspects of the specified algorithms are compared: total
costs, stretch factor, average degree of the design, and run
time performance. To show the results, we present boxplots
(for Geant) and line charts (for Topology Zoo). On the total
costs plot, we compare with an (infeasible) complete design
Kn as a lower bound, and display by how many percent the
costs increase in comparison.

Our simulations were executed on an HP DL380 G9 with 2x
IntelXeons E5-2697V3 SR1XF with 2.6 GHz, 14 cores each,
and a total of 128 GB DDR4RAM. The host machine was
running Ubuntu 18.04.4 LTS. The algorithms are implemented
in Python (3.7) using the NetworkX library (2.4), where each
of the four algorithms only runs on a single core.

C. Large-Scale Results

The overall trend is that w.r.t. total costs, LE+NP performs
best, followed by LE+P and GDA, with Oblivious being last.
On the other hand, the trend for the remaining three metrics
is reversed, with Oblivious and GDA performing essentially
along the same lines, followed by LE+P and lastly LE+NP.
Each of the considered metrics is discussed separately next.

1) Total costs: In general, the total costs for GDA are better
than the ones for the Oblivious algorithm. In the case of Geant,
we observe an average improvement of 1%, with Topology
Zoo showing similar results. However, there are some places
where the improvement reaches a value of 1-1.5% percent.
Moreover, after applying the planar link exchange module
(LE+P), a noticeable decrease in total costs is being observed.
Comparing to GDA, the improvement in Geant is around 7%
on average, with results in Topology Zoo being up to 10-12%
better. Already here, we are quite close to the lower bound
provided by the complete graph Kn. The non-planar exchange

7

(a) Total costs (b) Stretch factor (c) Average degree (d) Computation time

Fig. 7: Boxplots for the simulations in the Geant network

(a) Total costs (b) Stretch factor (c) Average degree (d) Computation time

Fig. 8: Line charts for the simulations in Topology Zoo networks

of links (LE+NP) gives an even stronger effect: in both cases
the obtained values are only 1-2 extra percent away from the
theoretical (unreachable) lower bound, though all in all, both
LE+P and LE+NP remain relatively close

2) Stretch factor: Prior work [1] established that Oblivious
has a stretch factor of at most 6, with our demand-aware
spanner GDA not having a stretch factor beyond 10 (The-
orem 4.3). In our experiments we see that the stretch factor
never gets close to these bounds: for both Geant and Topology
Zoo, the stretch factor is always lower then 2. On the other
hand, the link exchange modules provide no guarantees on
the stretch. While the stretch factor value exceeds 6 in the
worst case for LE+NP in Geant, and 5 for LE+P, it is mostly
below 3 for LE+P. For Topology Zoo it also rises compared
to Oblivious and GDA, but is not larger than 5, except for
LE+NP for a few outliers. In general, the stretch factor for
LE+NP is usually bigger on average then for LE+P. Upon
closer investigation, we saw that the extreme stretch factors
were created by nodes very close to each other, with small
demand, where the exchange heuristics might remove their
direct connection for total gain.

3) Average degree: We measured the average degree of
vertices in graph obtained after completion of each of the
algorithms. The average degree for both Oblivious and GDA
differs only slightly, in both Geant and Topology Zoo cases
it does not exceed 4. Both versions of the Link Exchange
module show an increase in the average degree, which is
explained by the addition of a greater number of links to
the graph. The result for LE+NP has the most links out of
all the algorithms and shows that the majority of the vertices
regardless of topology have degree 9, resulting in an average
degree approximately equal to 9. LE+P on the other hand

mostly hovers between 5 and 6, which can be explained with
planar graphs always having an average degree smaller than 6,
and LE+P behaving quite aggressive in its optimization.

4) Computation Time: The running time of each of the
considered algorithms increases for larger topology size. As
the total costs must be obtained at least once per iteration
while exchanging links, the processing time is greater for any
of the link exchange modifications comparing to Oblivious and
GDA. The Oblivious and GDA algorithms are both very fast:
it takes less then 1 sec to run these algorithms for topologies
with less then 50 nodes. LE+P is generally faster then LE+NP:
this can be explained by the fact that we need to calculate
the total costs more often when the degree exceeds 9 during
link insertion, and this happens frequently in the case when
planarity is not required. For the maximum of 50 considered
nodes the performance does not reach the chosen upper bound
of 1000 sec. However, link exchange in bigger topologies may
halt its optimization due to specified run time bounds.

D. Summary and Discussion

Our demand-aware GDA slightly improves w.r.t. the primary
objective of total costs over Oblivious, but at the same time
retains essentially identical stretch (even a bit better for some
Topology Zoo networks), average degree, and computation
time. We hence see GDA as a good first step to introduce
demand-aware geometric spanners with provable performance
guarantees. At the same time, we see our link-exchange
algorithms utilizing demand-awareness in a stronger fashion.
Even for larger networks, they stay close to a complete
graph Kn, with the planar version maintaining low average
degree. On the other hand, the link-exchange algorithms lose
provable stretch guarantees, but as we see in the plots, the
planar version still maintains a low stretch throughout. Herein,

8

if a certain stretch must be guaranteed, it would moreover
be easy to introduce an invariant that prohibits exchanges
violating a maximum stretch bound. As thus, we believe planar
link-exchange algorithms to introduce interesting flexibilities
for demand-aware geometric applications, and we hope that
future work can benefit from our studies. For computation
time, the link exchange algorithms could easily be optimized
by parallelization. For example, when checking which edges
to remove to maintain degree bounds, all computations are
independent, and already on our machine we would expect
this insight to yield a speed-up of ≈ 10×.

VII. RELATED WORK

That traffic patterns often feature much structure is well-
document in the literature and also applies to other networks,
e.g., [12]. In particular, we are not the first to explore the
design of demand-aware networks, and we refer the reader
to a recent overview article on the topic [13]. In contrast to
existing literature, however, we consider a geometric setting
where nodes are embedded in the plane, as often assumed in
the literature, e.g., in sensor networks. This makes our problem
technically fairly different, and rather, needs to be seen from
the perspective of geometric spanners. There already exist
many different methods for constructing t-spanners for a set of
points in the Euclidean plane with various properties like small
size, degree or weight, see [6]. Plane geometric graphs have
also been studied well, e.g. in [8], [14]–[17]. These algorithms
focus on minimizing the stretch factor.

However, besides a low stretch factor network topologies
often require a bounded degree as well. This raises the
question about the smallest maximum degree and stretch
factor which is achievable for a plane spanner of a two-
dimensional Euclidean graph. Several researchers tried to solve
this problem. One method, used in [18]–[22], starts with the
classical L2-Delaunay triangulation of a set of points in the
Euclidean plane and then extracts a lower degree spanning
subgraph. For example, using the L1-Delaunay triangulation
Bonichon et al. [23] were able to construct a plane spanner
of maximum degree 4 with stretch factor of around 156.
Another approach taken in [1], [24] is based on the Triangular-
Distance-Delaunay (short TD-Delaunay) triangulation defined
by Chew [8]. It selects edges from the TD-Delaunay graph
to get a spanning subgraph and then modifies the graph to
decrease the maximum degree.

While existing work aims at reducing the maximum degree
and the stretch factor of a graph, we can still build upon this
prior work. In particular, our work extends the approach by
Bonichon et al. [1], in that we also start with a TD-Delaunay
triangulation, but additionally exploit the flexibility to choose
between edges to render the network demand-aware.

VIII. CONCLUSION

We introduced the natural notion of spanners which are
demand-aware, and presented a first construction which lever-
ages topological flexibilities to account for the demand.

We understand our work as a first step and believe that our
work opens several interesting avenues for future research. For
example, it will be interesting to explore demand-dependent
metrics which capture to which extent demand-awareness can
improve performance. Related to this, today, we still do not
fully understand the exact approximation factors which can be
achieved by geometric spanners of given degrees. Moreover,
we also plan to investigate three-dimensional demand-aware
network design, e.g., with satellites [3]–[5].

REFERENCES

[1] N. Bonichon et al., “Plane Spanners of Maximum Degree Six,” in
ICALP. Springer, 2010, pp. 19–30.

[2] R. Durairajan et al., “Greyfiber: A system for providing flexible access
to wide-area connectivity,” CoRR, vol. abs/1807.05242, 2018.

[3] D. Bhattacherjee and A. Singla, “Network topology design at 27, 000
km/hour,” in CoNEXT. ACM, 2019.

[4] M. Handley, “Using ground relays for low-latency wide-area routing in
megaconstellations,” in HotNets. ACM, 2019.

[5] Y. Hauri et al., “”internet from space” without inter-satellite links,” in
HotNets. ACM, 2020.

[6] G. Narasimhan and M. Smid, Geometric Spanner Networks. Cambridge
University Press, 2007.

[7] C. H. Papadimitriou, “The euclidean traveling salesman problem is np-
complete,” Theor. Comput. Sci., vol. 4, no. 3, pp. 237–244, 1977.

[8] L. P. Chew, “There Are Planar Graphs Almost as Good as the Complete
Graph,” J. Comp. Sys. Sciences, vol. 39, no. 2, pp. 205 – 219, 1989.

[9] S. Orlowski et al., “Sndlib 1.0—survivable network design library,”
Networks: An International Journal, vol. 55, no. 3, pp. 276–286, 2010.

[10] S. Knight et al., “The internet topology zoo,” IEEE JSAC, vol. 29, no. 9,
pp. 1765–1775, 2011.

[11] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
ACM SIGCOMM CCR, vol. 35, no. 5, pp. 93–96, 2005.

[12] C. Avin et al., “On the complexity of traffic traces and implications,” in
Proc. ACM SIGMETRICS, 2020.

[13] C. Avin and S. Schmid, “Toward demand-aware networking: A theory
for self-adjusting networks,” in ACM SIGCOMM CCR, 2018.

[14] P. Bose and M. Smid, “On plane geometric spanners: A survey and open
problems,” Computational Geometry, vol. 46, no. 7, pp. 818–830, 2013.

[15] L. P. Chew, “There Is a Planar Graph Almost as Good as the Complete
Graph,” in SOCG. ACM, 1986.

[16] J. M. Keil and C. A. Gutwin, “Classes of Graphs Which Approximate
the Complete Euclidean Graph,” Discrete & Computational Geometry,
vol. 7, no. 1, pp. 13–28, 1992.

[17] G. Xia, “The Stretch Factor of the Delaunay Triangulation Is Less than
1.998,” SIAM Journal on Computing, vol. 42, no. 4, p. 1620–1659, 2013.

[18] P. Bose, P. Carmi, and L. Chaitman-Yerushalmi, “On bounded degree
plane strong geometric spanners,” Journal of Discrete Algorithms,
vol. 15, pp. 16–31, 2012.

[19] P. Bose, J. Gudmundsson, and M. Smid, “Constructing Plane Spanners
of Bounded Degree and Low Weight,” Algorithmica, vol. 42, no. 3, pp.
249–264, Jul 2005.

[20] P. Bose, M. Smid, and D. Xu, “Delaunay and Diamond Triangulations
Contain Spanners of Bounded Degree,” International Journal of Com-
putational Geometry & Applications, vol. 19, pp. 119–140, 2009.

[21] I. A. Kanj and L. Perkovic, “On Geometric Spanners of Euclidean and
Unit Disk Graphs,” in STACS, ser. LIPIcs, vol. 1. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2008, pp. 409–420.

[22] X.-Y. Li and Y. Wang, “Efficient Construction of Low Weight Bounded
Degree Planar Spanner,” in Computing and Combinatorics, T. Warnow
and B. Zhu, Eds. Springer, 2003, pp. 374–384.

[23] N. Bonichon et al., “There are Plane Spanners of Degree 4 and Moderate
Stretch Factor,” Discrete & Computational Geometry, vol. 53, no. 3, pp.
514–546, Apr 2015.

[24] I. Kanj, L. Perković, and D. Türkoglu, “Degree Four Plane Spanners:
Simpler and Better,” Journal of Computational Geometry, vol. 8, no. 2,
pp. 3–31, 2017.

[25] J. Malkevitch, “AMS feature column: Sales and chips,” September
2005, accessed 19 January 2021. [Online]. Available: http://www.ams.
org/publicoutreach/feature-column/fcarc-tsp

9

APPENDIX

A. Deferred Proofs for §III-B

Proof of Theorem 3.1: Our reduction will be from the
NP-hard Euclidean Traveling Salesman Problem in the path
variant [7]: Given a set of |V | = n points (nodes) on the
plane, with Euclidean distances, find a path through all points
of minimum length, or in the decision variant, is there some
such path of length at most `? Note that an optimum path will
be planar, as it is well known [25, Fig. 4] that crossings of
edges can be uncrossed, in turn reducing the path length, i.e.,
the process is finite. Moreover, we can also assume that the
starting and ending node are fixed, as there are only O(n2)
combinations.

We will show that we can polynomially transfer any instance
I , from the planar Euclidean Traveling Salesman Problem in
the path variant with fixed start- and end-nodes, to an instance
I ′ of our problem, both in the decision variant, s.t. that the
output for I is true if and only if the output for I ′ is true.

To construct I ′, we take from I the same set of nodes
V , with identical coordinates, and construct a corresponding
demand matrix D. To this end, we first consider a restricted
version of our problem where two nodes have a degree of one
and the remaining nodes have a degree of exactly two, which
we show to be NP-hard, we relax it later to the general case.

In more detail, we assume the start- and end-nodes (denoted
by s, d) from I to have a degree of one in I ′, with the other
nodes having degree two. We now fill all entries of D with
some arbitrarily small ε values, but fix a large demand of C1

between s and d. The ε entries enforce that the resulting graph
is connected (else the objective function evaluates to ∞, i.e.,
the solution must form a planar s-d-path, recall [25, Fig. 4]. On
the other hand, the large s-d-demand enforces the path from
s to d to be of minimum length in I ′, and it follows directly
that a minimum path length of ` in I results in a minimum
path length of ` in I ′ and vice versa, we omit the objective
function increase due the arbitrarily small ε’s for simplicity.

As the construction is polynomial, we have shown NP-
hardness for our problem in the setting where two nodes have
degree of one and the others have a degree of two.

We now expand our construction to also work in the setting
where each node has some fixed degree δ ≥ 4. To this end, we
will construct a gadget that uses up the extra connectivity, s.t.
the above reduction remains valid. As such, our construction
must not hinder any original edges, and hence, we consider
the edges formed by the complete graph, where for each node
v of degree two, we consider the largest possible equilateral
triangle 1) not touching any complete graph edge, where 2)
one corner is defined to be v, and shrink it by a factor of, e.g.
10, retaining v as a corner, s.t. no two triangles touch.

We set the other two corners of the triangle to be new nodes
v1, v2, where we add demands between all of v, v1, v2 of size
C3, appropriately larger than C1, s.t. any optimal solution must
form the sides of the triangle as edges. Lastly, if δ > 4, we
appropriately add additional nodes on the inside of the triangle,
δ−4 for each of v, v1, v2, to use up the remaining connectivity

Fig. 9: Labeling of childreni(v) with u = v1

with large demands C2, C3 � C2 � C1, while retaining the
original construction, analogously for the original two nodes of
degree one. Hence, the triangle gadgets use up the additional
degree connectivities, while not interfering with the original
reduction proof, with the reduction still being polynomial.

Corollary A.1: For every fixed maximum node degree δ ≥ 4,
designing geometric demand-aware networks is NP-hard.

B. Deferred Proofs for §IV-C
Proof of Theorem 4.2: Planarity of S2 follows from

the planarity of S1 (Theorem 4.1) and S2 ⊂ S1, as we only
removed edges from S1.

To prove the connectivity of S2 we need to show that for
every removed edge (u, v) in S1 but not in S2 there exists a
path from u to v. Assume, without loss of generality, the edge
(u, v) ∈ S1 is outgoing from u and incoming at v, i.e.

v = parenti(u) ∈ Cu
i ⇔ u ∈ Cv

i .

Moreover, we will consider childreni(v), i.e. all nodes
in Cv

i with v as parenti and label these nodes v1, v2, ...,
starting in counterclockwise order (see Figure 9). As S1 is a
triangulation (see Theorem 4.1) the edges (v1, v2), (v2, v3), ...
are also contained in S1. Furthermore, we can conclude that in
a triangle 4(v, vj , vj+1) no other node is situated. The nodes
u and closesti(v) are among these labeled nodes. We will call
the path from closesti(v) to u consisting of edges (vj , vj+1)
the canonical path from v to u.

As u ∈ childreni(v) 6= ∅, the node closesti(v) exists and
therefore the edge (closesti(v), v) will be contained in S2. If
u = closesti(v) then (u, v) ∈ S2. Therefore, we consider the
case u 6= closesti(v).

Let e = (vj , vj+1) be an edge of the canonical path from v
to u. We will start with the case that this edge e is outgoing
from vj+1 and incoming at vj . The other case can be shown
analogously. First we will argue that vj+1 = lasti+1(vj). Then
we will show that vj and vj+1 are connected which proves the
theorem.

If vj+1 6= lasti+1(vj) then vj+1 would have a counter-
clockwise neighbor vN ∈ C

vj
i+1. As explained above, S1 is a

triangulation therefore

vN /∈ 4(v, vj , vj+1)

10

Fig. 10: Proof of vj+1 = lasti+1(vj)

Additionally, we know

vN /∈
(
C

vj+1

i ∩
(
Cv

i ∪ C
v
i−1
))

because this would mean v 6= parenti(vj+1) = vN which is
contradictory to vj+1 ∈ childreni(v) (see Figure 10).

Hence, vj+1 has to be closer to vj than vN . This implies
that either

vN ∈ C
vj+1

i+1 ⇒ vN /∈ Cvj

i+1

or

vN ∈ Cv
i+1 ⇒ edge (vj+1, vN) ∈ S1

⇒ contradiction to the planarity of S1.

Therefore vj+1 = lasti+1(vj). But vj+1 = closesti+1(vj) is
not true in general. Moreover, vj+1 is i-relevant since vj+1 ∈
C

parenti(vj)
i = Cv

i .
The next step will be to show the existence of a path

between vj and vj+1. Since vj+1 meets all requirements it
can be selected in the second step. Now we can differentiate
between the following cases.

Case 1: vj+1 = lasti+1(vj) is selected by vj .
In this case there is a direct connection between vj+1 and

vj . Hence, e ∈ S2. X
Case 2: vj+1 is not selected.
This means penultimatei+1(vj) is selected. Therefore,

this special node exists and is not the closest node in the
corresponding cone but is closer to vj than vj+1. This implies
penultimatei+1(vj) ∈ Cv

i meaning that penultimatei+1(vj)
is i-relevant.

The next question that arises is: Are the nodes vj+1 and
penultimatei+1(vj) connected?

We know that penultimatei+1(vj) /∈ childreni(v), other-
wise this would mean the edge (penultimatei+1(vj), v) ∈
S1. As penultimatei+1(vj) is closer to vj than vj+1,
penultimatei+1(vj) would be a neighbor of vj in the tri-
angulation S1, but the counterclockwise neighbor of vj in the
triangulation is vj+1.

Furthermore, there is no node between penultimatei+1(vj)
and vj+1 = lasti+1(vj) which has vj as its parenti+1 (see
Figure 11, the yellow colored area). Hence,

Fig. 11: Proof that S2 is connected, Case 2

(
C

vj+1

i ∩ Cpenultimatei+1(vj)
i

)
∪4(vj , vj+1, penultimatei+1(vj)) = ∅.

We will consider the region

R1 := C
vj+1

i ∩ Cpenultimatei+1(vj)
i+1

which is colored orange in Figure 11. This results in the
following cases.

Case 2.1: R1 = ∅.
Then penultimatei+1(vj) = closesti(vj+1) which means

the edge between penultimatei+1(vj) and vj+1 is in S2. X
Case 2.2: R1 6= ∅.
The negative cone Ci(vj+1) selects closesti(vj+1) ∈ R1.

Similar to the previous case we will look at a subarea R2 of
R1

R2 :=

(
C

closesti(vj+1)
i+1 ∪ Cclosesti(vj+1)

i

)
∩R1

and consider the following cases.
Case 2.2.1: R2 = ∅.
Then closesti(vj+1) = closesti+1(penultimatei+1(vj))

meaning the edge (closesti(vj+1), penultimatei+1(vj)) ∈
S2. X

Case 2.2.2: R2 6= ∅.
In this case we will again take a subset R3 ⊂ R2 like in

the previous case and examine whether R3 is empty.
In every step we check if the path between vj and vj+1 can

be closed, otherwise the considered area is getting smaller
compared to the previous step. We will continue these steps
until the path is closed. As we have n nodes, we will obtain
a path between vj and vj+1 after finitely many steps.

This proves that for two neighboring nodes vj and vj+1 in
the canonical path from v to u there exists a path between
these two nodes. Hence, we can conclude that for any edge
e = (u, v) ∈ S1 but not in S2 we can find a path from v to u
which proves the connectivity of the graph S2.

11

