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Abstract—While operating communication networks
adaptively may improve utilization and performance, fre-
quent adjustments also introduce an algorithmic challenge:
the re-optimization of traffic engineering solutions is time-
consuming and may limit the granularity at which a net-
work can be adjusted. This paper is motivated by question
whether the reactivity of a network can be improved by re-
optimizing solutions dynamically rather than from scratch,
especially if inputs such as link weights do not change
significantly.

This paper explores to what extent dynamic algorithms
can be used to speed up fundamental tasks in network
operations. We specifically investigate optimizations related
to traffic engineering (namely shortest paths and maximum
flow computations), but also consider spanning tree and
matching applications. While prior work on dynamic graph
algorithms focusses on link insertions and deletions, we are
interested in the practical problem of link weight changes.

We revisit existing upper bounds in the weight-dynamic
model, and present several novel lower bounds on the
amortized runtime for recomputing solutions. In general,
we find that the potential performance gains depend on the
application, and there are also strict limitations on what
can be achieved, even if link weights change only slightly.

I. INTRODUCTION

As communication networks are often an expensive
infrastructure, making best use of the given resources
is important. For example, over the last decades, many
efficient traffic engineering algorithms have been devel-
oped which allow ISPs to improve network utilization
and performance [1], [2]. These algorithms typically rely
on the optimization of link weights (in particular the IGP
link weights), which in turn determine the shortest paths
computed by the ECMP protocol [3].
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In principle, a more dynamic and adaptive operation
of communication networks has the potential to signif-
icantly improve the network efficiency: traffic patterns
often feature a high degree of temporal structure [4]–[6],
which could be exploited for optimizations over time.
Motivated by this potential, we have recently seen great
efforts to render networks more flexible, adaptive, or
even “self-driving” [7]–[10].

This paper is motivated by the observation that a more
dynamic network operation also introduces an algorith-
mic challenge. Going back to our traffic engineering
example, the state-of-the-art approach of re-computing
shortest paths or optimal flow allocations from scratch
can be time-consuming [6], and may eventually become
the bottleneck which limits network reactivity. The high
runtimes may further prevent operators to conduct fast
what-if analyses, e.g., experimenting with different link
weights using tools such as FlowVisor [6]. While such
a high runtime may be unavoidable in some cases,
in practice it is unlikely that many link weights need
to be changed significantly in a short time [11]. This
introduces an optimization opportunity, and we ask:
• Given a small change of link weights, can we

recompute a solution dynamically, i.e., based on the
current solution, significantly faster than recomput-
ing it from scratch?

Link weight changes are not only an important operation
in the context of traffic engineering and shortest path
routing, but link weights also define other fundamental
network structures, such as spanning trees [12].

We are in the realm of dynamic graph algorithms, an
active research area in theoretical computer science [13].
However, while existing literature in this area primarily
revolves around the question whether solutions to graph
theoretical problems can be recomputed efficiently upon
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additions and removals of links, given the networking
context, we are many times interested in quickly reacting
to changes of the link weights only.
Our contributions. Motivated by the desire to speed
up traffic engineering decisions, we present novel
weight-dynamic graph algorithms, network algorithms
which dynamically recompute solutions upon link weight
changes, and initiate the study of lower bounds on the
time per operation for weight-dynamic graph algorithms.
Our results are summarized in Table I.

Dynamic algorithms are usually composed of a
database that is maintained during input changes. They
present trade-offs between two parameters: update time,
which is the time it takes to update the database upon
a change (edge insertion or deletion, or edge-weight
change); and query time, which is the time it take to
answer a query using the database (e.g., compute the
distance between a pair of nodes). Our algorithms all
have a constant query time, and different update times.
Our lower bounds show that in some cases, either the
update time or the query time must be high.

We first consider fundamental problems related to
routing, and in particular, the computation of shortest
paths and maximum flows. Computing a shortest (s, t)-
path for a new network can be done by a simple applica-
tion of Dijkstra’s algorithm [14] in O(m+n log n) time.
This can be improved to O(

√
m log n) time per update in

a dynamic network with only edge-weight changes [15].
We prove that the above algorithm is almost optimal:
• For any two constants ε, δ > 0, the amortized

update time for a (5/3 − δ)-approximation of the
shortest (s, t)-path problem is Ω(n1−ε), even when
edge weights can only change by a small additive
constant (this bound is consistent with the upper
bound, as the lower bound is proved on a graph
with m = Θ(n2)). This yields strong lower bounds
on the ability to pre-compute the effect of edge-
weight changes on the network flow, even when
the changes are only by a constant factor and if a
multiplicative error is allowed.

In terms of the maximum flow problem, we show:
• There is a simple algorithm that maintains the

maximum (s, t)-flow in O(m) time per change.
• The amortized update time for maximum (s, t)-flow

is Ω(n1−ε).
Motivated by these results, we then extend our

study of weight-dynamic algorithms to applications re-
lated to load balancing: we consider different match-
ing problems, including maximum weight matching, b-
matching [19], and semi-matching [20]. We extend the

definition of semi-matchings to weighted graphs in a
natural way, and show:

• For any constant ε > 0, the amortized update time
for a weighted maximum matching, semi-matching,
or b-matching, is Ω(n1−ε).

The above lower bounds hold under the popular as-
sumption of the OMv conjecture [21] from complexity
theory, discussed later. Finally, we study another basic
network problem, the computation of a minimum weight
spanning tree (MST), for which we prove an uncondi-
tional lower bound, as follows.

• There is an algorithm that maintains an MST in
O(log4 n/ log log n) amortized time [18]. While
this algorithm is for edge addition and deletion, it
can be adapted to handle edge-weight changes in a
trivial manner.

• The amortized update time of MST is Ω(log n); this
bound is unconditional.

All our lower-bound results hold for deterministic as
well as for randomized algorithms with error probability
at most 1/3, and also when amortized over a sequence
of changes.

In general, we hope that our insights can inform
the networking community what can and cannot be
achieved with such dynamic algorithms, and believe that
the notion of “weight-dynamic” network algorithm may
also be of interest for future research in the theory
community.
Organization. After defining the weight-dynamic model
in Section II, we consider its application for the shortest
(s, t)-paths problem (Section III), the maximum (s, t)-
flow problem (Section IV), different matching problems
(Section V), and finally the spanning tree problem (Sec-
tion VI). We review related work in Section VII and
conclude our contribution in Section VIII. Some proofs
are deferred to the full version of this paper.

II. PRELIMINARIES

We consider dynamic graphs where only the edge
weights change, while the underlying structure of the
graph remains intact. We are particularly interested in
the practically relevant scenario where link weights do
not change dramatically at once: an operator is unlikely
to adjust weights quickly and globally [11]. Moderate
changes render the problem different: for example, in
distance-related problems (shortest paths, MST), remov-
ing an edge in the “standard” model is equivalent to
giving it a very high weight in our model. In this paper,
we consider a more restricted model, where between any



Problem Static upper bound Dynamic upper bound Lower bound Conditional?

Shortest (s, t)-path O(m+ n logn) [14] O(
√
m logn) [15]

Ω(n1−ε) update
Ω(n2−ε) query

Thm. 1 3

Max (s, t)-flow O(m10/7W 1/7) [16] O(m) Thm. 2
Ω(n1−ε) update
Ω(n2−ε) query

Thm. 4 3

Maximum matching O(m10/7) [16] O(m) Thm. 5
Ω(n1−ε) update
Ω(n2−ε) query

Thm. 3 3

MST O(m) [17] O
(

log4 n
log logn

)
[18]

Ω(logn) update
Ω(logn) query

Thm. 7 7

TABLE I
OUR RESULTS VS. SOME PRIOR RESULTS ON EDGE-DYNAMIC ALGORITHMS.

The dynamic upper bounds are for update times, and have constant query time. The conditional lower bounds should be interpreted as follows:
in a graph with m = Θ(n2) edges there is no algorithm that has an update time of O(n1−ε) and a query of O(n2−ε) for any ε > 0;
the MST lower bound states there is no algorithm that has an update time of o(logn) and a query of o(logn). The shortest paths lower

bound holds even for (5/3− δ) approximations, for any δ > 0. W denotes the maximum weight of an edge in the graph.

two consecutive graphs, the edge weight differences are
limited by an additive constant.

Interestingly, while dynamic graph algorithms are well
explored in the more theoretical literature (see e.g. [22]–
[30] for work on exact and approximate shortest paths),
most existing work considers scenarios where entire
links change, and hence these results do not directly
apply to network optimization problems such as traffic
engineering where only the weights of links change.

A. Our model

We consider a simple weighted graph G = (V,E,w)
with n = |V | nodes, m = |E| edges, and an edge-
weight function w : E → {1, . . . ,W} giving each edge
a positive integer weight bounded by some value W (that
may depend, e.g., on n).

A fixed graph with dynamic edge weights is modeled
as a sequences G1, G2, ... of graphs, finite or infinite,
where each Gi = (V,E,wi) has the same topology
but possibly a different edge-weight function. All edge
weight functions have the same domain, i.e., they are of
the form wi : E → {1, . . . ,W} for the same bound W .

We focus on bounded edge-weight changes: for a
given constant c, for any i ≥ 1 and edge e ∈ E, we have
|wi+1(e)−wi(e)| ≤ c. Our lower bounds hold also in a
less strict regime, where the edge weight changes are not
bounded by a constant, and can even be multiplicative.

B. Problem definitions

We consider several classic problems on weighted
graphs, all having important applications in networking.

a) Shortest (s, t)-path: An (s, t)-path in a graph
G = (V,E,w) connecting two nodes s, t ∈ V is a
sequence P = (s = v0, v1, . . . , vk = t) of nodes,
such that for each 0 ≤ i < k, (vi, vi+1) ∈ E. The

weight (usually representing length) of such a path is
w(P ) =

∑k−1
i=0 w(vi, vi+1). Given two nodes s, t ∈ V , a

shortest (s, t)-path is an (s, t)-path with minimal weight,
i.e., such that no other (s, t)-path in G has strictly lower
weight. The goal in the shortest (s, t)-path problem is to
find such a path, or evaluate its length.

b) Maximum (s, t)-flow: An (s, t)-flow in a graph
G = (V,E,w) is a function f : V × V → {0, . . . ,W}
assigning each directed edge an amount of flow. For-
mally, we require for each u, v ∈ V : if (u, v) /∈ E
then f(u, v) = 0 (and specifically f(v, v) = 0); if
u /∈ {s, t} then

∑
u′∈V w(u, u′) =

∑
u′∈V w(u′, u);

and, if (u, v) ∈ E then f(u, v) ≤ w(u, v). The value (or
amount) of such a flow is defined to be

∑
u′∈V f(s, u′).

We define the residual weight of each edge e ∈ E as
w(e)− f(e), and the residual graph as a graph with the
same structure but with the residual weights.

Given two nodes s, t ∈ V , a maximum (s, t)-flow is an
(s, t)-flow of maximum value. The goal in the maximum
(s, t)-flow problem is to find such a flow its value.

c) Matchings: A matching in a graph is a set M ⊆
E of its edges such that no two edges intersect, i.e., for
each e, e′ ∈ M we have |e ∩ e′| 6= 1. In a weighted
graph, the weight of a matching M is

∑
e∈M w(e). We

also study the following extensions of matchings; note
that they not always constitute a legal matching. A b-
matching [19] is a natural extension of the notion of
matching, where each node can take part in at most b
edges of M . A further extension of this gives a different
bound bv to each node v ∈ V , as follows. Given a graph
G = (V,E,w) and a vector b where b = (bv)v∈V , a
b-matching in G is a set M ⊆ E of edges such that
for each v ∈ V , |{u | {v, u} ∈ M}| ≤ bv . The weight
of a b-matching is naturally defined as the sum of edge
weights in M . This definition also applies when M is



a multi-set. A b-matching with the b-vector satisfying
bv = 1 for all v ∈ V is a (standard) matching.

A graph G = (V,E) or G = (V,E,w) is bipartite
if there is a bi-partition of its nodes, V = L ∪ R, such
that E ⊆ L × R. A semi-matching in a bipartite graph
is a set M ⊆ E of edges that intersects every node in
L exactly once. Semi-matchings in unweighted graphs
were defined and discussed in [20], which presents a cost
measure for them, aiming at capturing quantities related
to task allocation problems. In Section V-B we discuss
an extension of this definition to weighted graphs [31].

d) Minimum weight spanning tree: A spanning tree
in a graph is a set T ⊆ E of edges that intersects
every node in G at least once, and contains no cycles
(a cycle is a non-trivial path from a node to itself that
does not repeat any other node). The weight of a tree
T in a weighted graph is the sum of its edge weights:
w(T ) =

∑
e∈T w(e). In the minimum weight spanning

tree problem (MST), our goal is to find a spanning tree
of minimum weight.

Approximation algorithms: For the shortest (s, t)-
path problem, we consider an approximation algorithm
with one sided error. That is, if a shortest (s, t)-path has
length `, then the (5/3−δ)-approximation algorithm we
consider returns a path of length ˆ̀ satisfying ` ≤ ˆ̀ ≤
(5/3−δ)`. Specifically, this approximated value ˆ̀allows
us to distinguish the cases ` = 3 (in which case ˆ̀< 5)
and ` = 5 (in which case ˆ̀≥ 5).

C. The OMv conjecture
We use the popular OMv conjecture as a condition for

some of our lower bounds. In fact, we will not use it as
is, but a related conjecture, called the OuMv conjecture.
We start by defining the OuMv problem.

Definition 1. In the Online Boolean Vector-Matrix-
Vector Multiplication (OuMv) problem, an algorithm
is given an integer n and an n × n Boolean matrix
M . Then, for n rounds numbered i = 0, . . . , n − 1,
the algorithm is given a pair of n-dimensional Boolean
column vectors (ui, vi) and has to compute uᵀiMvi and
output the resulting Boolean value before it can proceed
to the next round.

It is conjectured [21] that the OuMv problem has
no truly subcubic-time algorithm, as stated next. This
conjecture is implied by another, popular conjecture—
the OMv conjecture. Both conjectures implicitly assume
there are Θ(n2) non-zero entries in the matrix M .

Conjecture 1 (The OuMv conjecture). For any constant
ε > 0, there is no O(n3−ε)-time algorithm that solves
OuMv with an error probability of at most 1/3.

III. SHORTEST (s, t)-PATHS

The computation of shortest paths given the link
weights, is a most basic task in communication networks.
We will hence start our investigation of weight-dynamic
algorithms with this use case.

We focus on maintaining the shortest (s, t)-path length
in an undirected graph. Any algorithm that maintains
distances between all pairs of nodes (all pairs shortest
paths, or APSP) or between a source and all other nodes
(single-source shortest paths, or SSSP) can also be used
to compute the shortest (s, t)-path length, so our lower
bounds apply to these problems as well.

In the edge-weight change regime, shortest (s, t)-path
problem has a dynamic algorithm with O(

√
m log n)

update time and constant query time for the path length,
and O(`) query time for the path itself, where ` is the
length of the path [15]. This problem does not have a
truly sub-linear (in n) amortized time algorithm if edge
insertions and deletions are both allowed [21]. Here, we
extend this lower bound construction to the case where
only edge weight changes are allowed — note that the
lower bound is on a graph with m = Θ(n2).

Theorem 1. For any constants ε, δ > 0, there is no dy-
namic algorithm maintaining a (5/3−δ)-approximation
for the shortest (s, t)-path problem with O(n1−ε) amor-
tized time per edge-weight change and O(n2−ε) amor-
tized time per query, unless the OMv conjecture is false.

Given a Boolean n × n matrix M and two Boolean
n-dimensional vectors u, v, we define a weighted graph
GuMv as follows. The graph GuMv is a full bipartite
graph on V = (A ∪ {t}) ∪ (B ∪ {s}), with A =
{a1, . . . , an}, B = {b1, . . . , bn}. The weights of the
edges in A × B are w(ai, bj) = 3 − 2M [i, j] for
every (i, j) ∈ [n]2. The weights of the other edges
are w(s, ai) = 3 − 2u[i] and w(t, bi) = 3 − 2v[i] for
every i ∈ [n]. The following claim connects the OuMv
problem with the shortest (s, t)-path problem.

Claim 1. If uᵀMv = 1 then the shortest (s, t)-path in
GuMv has weight 3, and otherwise at least 5.

Using this claim, we can now prove Theorem 1.

Proof of Theorem 1. Consider an optimal dynamic al-
gorithm for the shortest (s, t)-path problem. Using this
algorithm we process pairs of vectors u, v arriving as
inputs to the OuMv problem with matrix M as follows.

First, build the graph GuMv for u, v the all-0-vectors,
and execute the initialization phase of the s-t-shortest
paths algorithm. Given a pair u, v of vectors arriving
online for the OuMv problem, update the edge weights



in the graph GuMv . Note that the change is only in edges
touching s or t, so O(n) edges are changed, and only
by an additive factor of 2.

Now, execute the algorithm on these updates, which
takes time T . If the algorithm returns a shortest path of
length strictly less than 5, we use Claim 1 to conclude
that uᵀMv = 1, and otherwise, uᵀMv = 0. Thus, we
have solved the OuMv problem by performing O(n)
changes and a single query for the simulation of each
round, and a total of O(n2) changes and n queries. If the
amortized update time of each change is O(n1−ε) and of
each query is (n2−ε), then the total running time would
be O(n3−ε), contradicting the OuMv conjecture.

IV. MAXIMUM (s, t)-FLOW

Maximum flow (or throughput) problems are among
the most studied network optimization problems, and we
hence consider weight-dynamic algorithms for them.

A. Maximum (s, t)-flow algorithms

Theorem 2. There is a dynamic algorithm for maintain-
ing the maximum (s, t)-flow in directed or undirected
graphs with edge weight increases and decreases, with
constant additive changes, in O(m) time per operation.

The proof of this theorem split into two cases: if the
capacity of an edge (u, v) is decreased by 1 unit and the
edge carries flow, find a flow-carrying path from s to u
and a similar path from v to t, and reduce the flow on
these paths by 1 unit; if the capacity of a saturated edge
(u, v) is increased by 1 unit, find similar paths in the
residual graph, and reduce the flow on the corresponding
edges in the original graph by 1.

When considering both edge insertions and deletions,
no non-trivial algorithm for maintaining max (s, t)-flow
is known. The best strategy for such cases is to execute
the state of the art algorithm for static graphs, requiring
O(m10/7W 1/7) rounds to complete [16]. Our algorithm
constitutes a significant improvement over this strategy.

B. Lower bounds for maximum (s, t)-flow

Dahlgaard [32] has proved an Ω(n1−ε) lower bound
on the amortized update time of the maximum cardinal-
ity bipartite matching problem, conditioned on the OMv
conjecture. From this, he derives a lower bound for the
maximum (s, t)-flow problem using standard techniques.

Dahlgaard’s lower bound is proved using a construc-
tion of a sequence of specifically crafted bipartite graphs.
Here, we adapt this lower bound to our setting, by using
the following result. This is [32, Lemma 1], along with
an observation regarding the number of changes, which
is implicit in the graph construction therein.

Lemma 1 ( [32]). Given an instance M, (ui, vi)0≤i≤n−1

of the OuMv conjecture, it is possible to construct a
sequence (Gi)0≤i≤n−1 of bipartite graphs such that if
uᵀiMvi = 1 then the maximum size of a matching in Gi
is 4n+ 2i+ 1, and otherwise it is 4n+ 2i. In addition,
all the graphs have the same bi-partition, with 6n nodes
in each side, and the difference between Gi and Gi+1 is
in the addition of O(n) edges.

From this, we can derive the following lemma.

Lemma 2. Given an instance M, (ui, vi)0≤i≤n−1 of the
OuMv conjecture, it is possible to construct a sequence
(Hi)0≤i≤n−1 of weighted full bipartite graphs such that
if uᵀiMvi = 1 then the maximum weight of a matching
in Hi is 10n + 2i + 1, and otherwise it is 10n + 2i.
In addition, all the graphs have 12n nodes, and the
difference between Hi and Hi+1 is in the increase of
O(n) edge weights from 1 to 2.

Proof of Lemma 2. As the graphs from Lemma 1 do
not differ in their set of nodes or bi-partition, we can
consider a full bipartite graph H on the same set of
nodes and bi-partition, with all edge weights 1. Let Hi

be the graph H , with the weight of edges appearing in Gi
increased by 1. Note that the matching Mi from Gi also
appears in Hi, and its weight wHi

(Mi) is doubled, i.e.,
wHi(Mi) = 2|Mi|. In addition, this matching matches
2|Mi| nodes, and we can also match all the other nodes,
since the graph is full bipartite, getting a matching M ′i of
total weight WHi

(M ′i) = 2|Mi|+6n−|Mi| = 6n+|Mi|.
Finally, note that no matching in Hi can contain more

weight-2 edges (since Mi was of maximum size in Gi),
or more edges in total (since M ′i matches all the nodes).
Hence, M ′i is a maximum weight matching in Hi.

Assume there is a dynamic algorithm that solves the
MWM problem on a sequence of graphs with edge
weight increases, in O(n1−ε) amortized time per weight
increase and O(n2−ε) amortized time per query. The
above lemma shows that, given an instance for the
OuMv conjecture of length n, we can construct the
sequence (Hi)0≤i≤n−1 of graphs, and use the alleged
algorithm to solve the instance of the OuMv conjecture.
In addition, the graphs have O(n) nodes and O(n2)
edges. So this gives an algorithm solving the OuMv
problem in O(n2−ε) time per vector-pair, refuting the
conjecture. As the OMv conjecture implies the OuMv
conjecture, we get the following theorem.

Theorem 3. There is no dynamic algorithm maintaining
a maximum weight matching in O(n1−ε) amortized time



per weight increase and O(n2−ε) amortized time per
query, for any ε > 0, unless the OMv conjecture is false.

As b-matchings constitute a specific case of match-
ings, the theorem immediately applies to them as well.

A standard textbook reduction, as the one mentioned
in [32] (see, e.g., [33]), gives a similar bound for the
max (s, t)-flow, as follows.

Theorem 4. There is no dynamic algorithm for main-
taining a maximum (s, t)-flow in an undirected graph
with edge weight increases in O(n1−ε) amortized time
per weight increase and O(n2−ε) amortized time per
query, for any ε > 0 unless the OMv conjecture is false.

The same results hold for the decremental case (and
of course, if both weight increases and decreases are
allowed). To see this, consider the same graph sequences,
but in the opposite order, in the same way as in [32].

Following the previous section, one may wonder if it
is possible to get similar lower bounds for approximate
versions of the maximum flow and maximum matching
problems. At least in one case, we know this is impos-
sible: there exist 2-approximation dynamic algorithms
for matching, running in constant time [34]. Since these
dynamic algorithms can also be used in our setting,
getting a non-trivial lower bound for 2-approximation
of maximum matching is impossible. The questions of
lower approximation factors of matching, and of getting
a lower bound for maximum (s, t)-flow not through a
reduction to matching, remain open.

V. MATCHINGS

We next consider applications related to load-
balancing, and specifically, matchings. In the previous
section, we showed a lower bound for maximum match-
ing, which immediately implies a lower bound for the b-
matching problem. Here, we present a maximum match-
ing algorithm, and then turn to study a related problem:
the computation of semi-matchings. Semi-matchings are
traditionally studied in the context of allocating tasks
to machines [20], but also find applications, e.g., when
assigning users to points-of-presence [35].

A. Maximum weight matching algorithm

The aforementioned dynamic algorithm for the maxi-
mum (s, t)-flow problem immediately implies a similar
algorithm for the dynamic maximum weight matching
problem, through the same standard reduction used for
the lower bound (see e.g. [33]). This gives the following.

Theorem 5. There is a dynamic algorithm for maintain-
ing a maximum weight matching in graphs with edge

weight increases and decreases, with constant additive
changes, in O(m) time per operation.

B. Defining weighted semi-matchings

Consider a weighted bipartite graph G = (L,R,E,w)
where E ⊆ L×R is the set of edges and w : E → N is
an edge-weight function, where no node in L is isolated.
A semi-matching is a set M ⊆ E of edges in G such that
each node in L is incident on exactly one edge of M .

Following [31], we study an extension of this classical
definition of semi-matchings to the edge-weighted case,
which can model task allocation (resp. PoP assignment)
problems where a task may have different completion
times in different machines (resp. at different sites). We
consider a model where the cost of a semi-matching M
is defined to capture the total makespan of all the tasks
(nodes in L), or equivalently, the mean makespan. Since
the tasks are no longer identical, each machine sets the
order of the tasks allocated to it, in a way that will
minimize the total makespan. Formally, we define the
cost of M for a node (machine) r ∈ R as

costG(M, r) = min
π:[degM (r)]→ΓM (r)

degM (r)∑
i=1

∑
j≤i

w(π(j), r)

where ΓM (r) is the set of neighbors of r
in M , degM (r) = |ΓM (r)|, and [degM (r)] =
{1, . . . ,degM (r)}. The total cost of a matching M
is the sum of the costs of nodes in R, i.e.,
costG(M) =

∑
r∈R costG(M, r). Note that this

definition coincides with the definition for unweighted
graphs [20], by setting w as the constant function 1.

In the minimum-cost semi-matching problem, we are
given a weighted bipartite graph as above, and the goal
is to find in it a semi-matching with a minimal cost.

While semi-matchings resemble b-matchings in struc-
ture, finding minimum cost matchings of these types
constitutes a different algorithmic problem. One reason
for this is that in a semi-matching, the effect of a matched
edge on the cost is not linear, but also depends on the
other edges. Another reason is that in semi-matchings,
there is no predefined bound on the number of matching
edges touching each node.

C. Lower bounds for the semi-matchings problem

The lower bound for the maximum weight matching
problem from Theorem 3 also implies a lower bound for
maintaining a minimum cost semi-matching as follows.

Theorem 6. There is no dynamic algorithm for main-
taining a minimum cost semi-matching in O(n1−ε)



amortized time per weight increase and O(n2−ε) amor-
tized time per query, for any ε > 0, unless the OMv
conjecture is false.

To prove this theorem, we use Lemma 1, in a way
similar to the one taken in the proof of Lemma 2.
Specifically, given a graph Gi from Lemma 1, we
construct a graph Hi as follows.

Let H be a full bipartite graph on the same set of
nodes as Gi and the same bi-partition (all these graphs
have the same nodes and partition), with all edge weights
set to 2. Let Hi be the graph H with the weights of edges
that appear in Gi decreased by 1. A matching Mi in Gi
is also a matching in Hi, with cost costHi(Mi) = |Mi|.
In addition, this matching matches |Mi| nodes from L,
and we can also match all the rest of the L-nodes without
using any of the nodes of R twice, as the graph is full
bipartite with equal-sized sides. This matching M ′i is
a semi-matching, with a cost costHi(M

′
i) = |(Mi))| +

2(6n−|Mi|) = 12n−|Mi|. This gives an upper bound on
the minimum weight of a semi-matching in Hi. Finally,
note that a semi-matching in Hi cannot use less edges,
and cannot use less of weight 2 in Hi, so its cost cannot
be smaller. Hence, the minimum cost of a semi-matching
in Hi is 12n− |Mi|, yielding the next lemma.

Lemma 3. Given an instance M, (ui, vi)0≤i≤n−1 of the
OuMv conjecture, it is possible to construct a sequence
(Hi)0≤i≤n−1 of weighted full bipartite graphs such that
if uᵀiMvi = 1 then the cost of a semi-matching in Hi

is at least 8n − 2i + 1, and otherwise it is 8n − 2i.
In addition, all the graphs have 12n nodes, and the
difference between Hi and Hi+1 is in the decrease of
O(n) edge weights from 2 to 1.

This lemma immediately implies Theorem 6, in a way
similar to the derivation of Theorem 3 from Lemma 2.

VI. MINIMUM WEIGHT SPANNING TREES

We conclude with another important application in
communication networks: the computation of spanning
trees. These are used, e.g., on the Layer 2 of the
networking stack to avoid forwarding loops, and also
find applications in the context of sensor networks [36].

A. Minimum weight spanning tree construction algo-
rithms

Holm et al. [18] gave an algorithm that maintains
a minimum spanning tree in a fully dynamic set-
ting, i.e., with both edge insertions and deletions, in
O(log4 n/ log log n) amortized time per update, and
constant time per MST-size query. This algorithm can

be adapted to our setting without any increase in the
asymptotic running time: any edge-weight change in our
model is simply translate to the deletion of the edge with
its old weight, and addition of it with its new weight.

B. Lower bounds for minimum weight spanning tree
computation

We use the seminal result of Pătraşcu and De-
maine [37], who gave a lower bound for the connectivity
problem in a dynamic graph in the cell probe model.

Theorem 7. There is no dynamic algorithm, even ran-
domized, maintaining minimum weight spanning tree in
o(log n) amortized time per edge-weight change and
o(log n) amortized time per query.

As in [37, §9.1], our bound is based on a reduction
from connectivity to the MST size problem. In a manner
similar to our approach in Section IV-B, we reduce the
connectivity problem in an unweighted graph G to the
MST size problem in a new, weighted graph H , which
is always connected. Instead of removing an edge, we
increase its weight, which relates the connectivity of G
and the MST size in H .

VII. RELATED WORK

We have recently witnessed many great efforts to
render networks more flexible and adaptive, from the
application layer, over the transport layer, network layer,
link layer, down to the physical layer, to just reference
some examples [7]. For the specific case study of traffic
engineering considered in this paper, empirical works
show that adjusting OSPF weights and hence rerouting
traffic multiple times per day, allows to improve network
efficiency and account for time-of-day effects and to
some extent circadian effects [2], [10]. Accordingly,
there has recently been much interest in more dynamic
traffic engineering mechanisms [10], [38], which also
find first deployments [2]. That said, the earliest ap-
proaches date back to the Arpanet [39]. While the high
runtime of traffic engineering algorithms was often a
main concern in the literature [1], [2], [40], we are not
aware of any work on dynamic algorithms to improve
performance, which is the focus of this paper.

Dynamic graph algorithms have received much atten-
tion in the literature. In the following, we briefly review
related work on fully dynamic graph algorithms (both
edge insertions and deletions), and refer the reader to
surveys on the topic for a further discussion [13], [41].

For the shortest path problem there is a lower bound
conditioned on the OMv conjecture showing that for any
ε > 0 and δ > 0 no (5/3− δ)-approximation algorithm



for the shortest (s, t) problem can achieve Ω(n1/ε)
amortized time per edge insertion, edge deletion, or
query [21]. This lower bound even holds in unweighted,
undirected graphs. There are also already many interest-
ing upper bounds in different scenarios, depending on
whether the graph is directed or undirected, weighted
or unweighted, whether the running time is amortized
or worst-case, and whether the adversary that generates
the sequence of operations is oblivious or adaptive. We
restrict ourselves here to amortized running against an
adaptive adversary and the results we state apply to
weighted, directed and undirected graphs. The fastest
fully dynamic exact all-pairs-shortest path algorithm
takes time O(n2(log n + log2(m/n))) per edge update
operation and constant time per query [42], [43]. For
single-source shortest paths the fastest exact fully dy-
namic algorithm is still O(m); in graphs with real edge
weights in [1,W ] there exists a (1 + ε)-approximation
algorithm in time O(n1.823/ε2) per update for any small
ε > 0 using fast matrix multiplication and O(n2.621)
preprocessing time [44]. There are also algorithms that
realize interesting tradeoffs between approximation ratio
and query time [45], e.g., guaranteeing a O(log4 n)-
approximation with O(m1/2+o(1)) time per operation,
or a no(1)-approximation with O(no(1)) update time.

Dynamicity restricted to edge-weight changes was
much less studied. Single source shortest paths can
be maintained in this case in O(log n) worst-case up-
date time in specific graph families, such as graphs
with bounded genus, and in O(

√
m log n) update time

for general graphs, all with constant query time [15].
APSP can be maintained in graphs of treewidth k in
O(k3 log n) update time and O(k2 log(n) log(k log n))
query time [46]. A (1 + ε)-approximation for distance
queries (i.e., APSP), can be maintained in planar graphs
when the edge-weight changes are such that no distance
in the graph is stretch by more than a multiplicative
factor M , in Õ(M4/ε3) update and query time [46].

There exists no exact fully dynamic s-t flow algorithm
that is faster than recomputation from scratch, and there
is a conditional lower bound based on the OMv conjec-
ture of Ω(n1−ε) time per operation [32] and also based
on other conjectures [47]. For the case of only edge-
weight changes, there is an algorithm that has the same
worst-case guarantees as recomputation, but better per-
formance on real-world cases [48]. The fully dynamic al-
gorithm we present here also leads to an insertions-only
or deletions-only algorithm with amortized time O(n)
per operation [49]. Nonetheless, various approximation
algorithms exist: An O(log n log log n)-approximation

in time Õ(m3/4) [50] and a no(1)-approximation in
O(no(1)) update time [51].

Finally, there exists an Ω(log n) lower bound on
the time per operation for any fully dynamic mini-
mum spanning tree algorithm [37]. Regarding upper
bounds, there is an O(log4 n/ log log n) time exact
fully dynamic minimum spanning tree algorithm [18]
and a O(log n(log log n)2)-time algorithm for connec-
tivity [52] that can be turned into a (1 + ε)-approximate
minimum spanning tree algorithm by partitioning the
edges into weight classes and maintaining for each
weight class a spanning forest that contains all edges
of the spanning forests of the smaller weight class.

However, we are not aware of any study on dynamic
graph algorithms for link weight changes.

VIII. CONCLUSION

Motivated by networking applications in which re-
source allocations depend on (and are controlled by)
link weights, we initiated the study of weight-dynamic
network algorithms. Considering different applications,
from traffic engineering to spanning tree constructions,
we derived bounds on the potential speedup of dynamic
algorithms compared to computation from scratch.

While most traffic engineering solutions today are
still designed for fairly static scenarios, this can come
at the price of a suboptimal resource utilization or
performance: by not reacting to specific changes in the
demand, a network may temporarily become overutilized
(harming performance) or underutilized (harming effi-
ciency), depending on the situation. Since traffic patterns
typically indeed feature much temporal structure, this
is problematic. We hence believe that our study aligns
well with the current trend toward more adaptive com-
munication networks, and can inform the networking
community what can and cannot be achieved with such
dynamic algorithms. We further believe that our notion
of “weight-dynamic” network algorithms may also be
of interest to the theory community, and can lead to
interesting follow-up work.
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